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Abstract: The problem of point-set embedding of a planar graph G on a point set P in the plane is defined as finding

a straight-line planar drawing of G such that the nodes of G are mapped one to one on the points of P . Previous works

in this area mostly assume that the points of P are in general position, i.e. P does not contain any three collinear

points. However, in most of the real applications we cannot assume the general position assumption. In this paper, we

show that deciding the point-set embeddability of trees without the general position assumption is NP-complete. Then

we introduce an algorithm for point-set embedding of n -node binary trees with at most n
3

total bends on any point

set. We also give some results when the problem is limited to degree-constrained trees and point sets having constant

number of collinear points.

Key words: Point-set embedding, tree embedding, general position assumption, graph drawing, minimum bend

embedding

1. Introduction

Given an n -node planar graph G , its embedding on a point set P of n points in the plane is a planar straight-line

drawing of G in which the nodes of G are mapped one to one on the points of P .

Trees were the first class of graphs for which point-set embeddability was investigated [14], and it was

shown that they are always embeddable on point sets in general position [11]. A point set is in general position

if it does not contain any three collinear points. Bose et al. introduced an optimal O(n log n) time algorithm for

embedding rooted trees on point sets in general position such that the root node is placed on a given point [3].

Castaneda and Urrutia showed that the most general class of graphs that are always embeddable on any point

set in general position is the outer-planar graphs [6]. Later, Bose proposed a faster algorithm for embedding

outer-planar graphs [2].

The point-set embeddability of general planar graphs is NP-complete [5], even if the point set is in general

position. Moreover, Kaufmann et al. [12] showed that 1-bend embeddability of planar graphs is NP-complete,

while any planar graph is 2-bend embeddable on any point set. Graph G is k -bend embeddable on P if it has

a drawing on P with at most k bends on each of its edges. Pach and Wenger [13] considered a variant of the

problem in which the mapping between the vertices of the graph and the points is fixed. They showed that, in

this case, some edges may need O(n) bends to be embedded, and the resulting embedding may contain O(n2 )

bends in total.
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Colored embedding and simultaneous embedding are other variants of the point-set embedding problem

that have been considered in this area. In colored embedding, the nodes of the given graph and the given points

are colored and each node should be mapped on a point of the same color [1, 7]. In simultaneous embedding,

two given graphs with the same set of vertices should be embedded on the same point set [4, 8, 9, 10].

Most of the above-mentioned algorithms assume that the point set is in general position, which may

not be a realistic assumption in some applications. For example, in VLSI design applications and grid graph

drawing, the point set on which a graph is to be embedded contains many collinear points. In this paper, we

consider embedding of trees on point sets that are not in general position.

In the remainder of the paper, Section 2 shows that without the general position assumption the point-set

embeddability of trees is NP-complete. In Section 3, we first show that trees are 1-bend embeddable on any

point set, and then we describe our 1-bend embedding algorithm for n -node binary trees, which produces at

most n
3 bends in total. We present a straight-line embedding algorithm for ternary trees on point sets having

no four collinear points in Section 4, which shows that ternary trees are always embeddable on point sets that

have no four collinear points. In this section, we also give two examples that show that the results of this

section cannot be extended to 4-ary trees or point sets without five collinear points. Finally, the conclusion and

summary are given in Section 5.

2. The NP-completeness result

In this section, we prove that the point-set embeddability of trees without the general position assumption is

NP-complete. We prove this by reducing the well-known NP-complete problem 3-partition to the embedding

problem.

Given a positive integer B and a multiset S = {a1, .., an} containing n = 3m positive integers between

B
4 and B

2 , the 3-partition problem is to decide whether S can be partitioned into m multisets S1 , S2 , .., Sm

such that the sums of the numbers of multisets are equal (i.e. for any 1 ≤ i ≤ m ,
∑

aj∈Si
aj = B ). Note that,

due to the constraints B
4 < ai <

B
2 , each subset Si should contain exactly 3 elements and B should be at least

3. The 3-partition problem is strongly NP-complete, i.e. it is NP-complete even if the value of each integer

ai ∈ S is bounded by a polynomial on n . Thus, we assume N = mB is polynomially bounded with respect to
n .

Theorem 2.1 Let T be an n-node tree and P be a set of n points with integer coordinates on the plane.

Deciding whether T is embeddable on P is an NP-complete problem.

Proof Obviously, the problem is in NP, because given an embedding of T on the points of P one can check

its correctness (including planarity) in polynomial time. For NP-hardness, given an instance of the 3-partition

problem as defined before, we construct a tree T and a point set P as follows:

Tree T consists of a root node u that has (B + 1)N + n children v1, v2, .., vn and w1, w2, .., w(B+1)N .

Each node vi , 1 ≤ i ≤ n , is connected by an edge to the end node of a path πi consisting of ai nodes (see

Figure 1).

Point set P consists of (B + 2)N + n+ 1 points as follows:

• point p located at (0, 0)

• m points q1, q2, .., qm respectively located at (0, 1), (1, 1), ..., (m− 1, 1) (illustrated by circles in Figure 2)
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• 2m points qm+1, qm+2, .., q3m with the coordinates (±1, B+1), ((B+1)± 1, B+1), ..., ((m− 1)(B+1)±
1, B + 1) (illustrated by squares in Figure 2)

• N = mB points s1, s2, .., sN located at (2i, 2), (3i, 3), ..., ((B + 1)i, B + 1), 0 ≤ i < m (illustrated by

bullets in Figure 2)

• (B + 1)N points r1, r2, .., r(B+1)N located at (−i2N + j, i) , 1 ≤ i ≤ B + 1 and 0 ≤ j < N (illustrated

by crosses in Figure 2)

To complete the proof, we need to show that T is embeddable on P if and only if the answer to the

given instance of the 3-partition is YES.

First, assume that T is embeddable on P . In such an embedding, the root node u has to be embedded

on the point p , because u has (B + 1)N + n children and each point pi ∈ P \ {p} with coordinates (xi, yi) is

collinear with N +m− 1 points of P on the line y = yi , and therefore the number of points visible from pi is

not more than (B + 1)N + 2m+ 4, which is less than (B + 1)N + n (without loss of generality we can assume

that m > 4).

Furthermore, all the children of u have to be embedded on distinct points of the point set {q1, q2, .., qn, r1,
r2, .., r(B+1)N} , because u has (B + 1)N + n children and only (B + 1)N + n points, i.e. q1, q2, .., qn and

r1, r2, .., r(B+1)N , are visible from p . Moreover, because the nodes v1, v2, .., vn have some descendants, they

have to be embedded on points q1, q2, .., qn , and the remaining children of u , i.e. w1, w2, .., w(B+1)N , have to

be embedded on points r1, r2, .., r(B+1)N .

After embedding u and its children, the remaining points of P are partitioned into m groups of points,

each consisting of B collinear points such that no point of any group is visible from any point of another group.

Therefore, each path in the set Π = {π1, π2, .., πn} should be embedded entirely on one of these groups. This

partitions the set Π into m subsets such that the total number of nodes in all paths of a subset is B . Based

on the partitioning of Π, one can construct the desired partitioning for the multiset S .

Conversely, given a solution for the 3-partition problem, we can construct an embedding of T on the

point set P as follows:

• embed the root node u on the point p

• for each Si = {ai1 , ai2 , ai3}

– embed vi1 , vi2 , vi3 respectively on points (i, 1), (i(B + 1) + 1, B + 1) and (i(B + 1)− 1, B + 1)

– embed the three paths πi1 , πi2 , πi3 on points lying on the line y = ix as shown in Figure 3

• embed nodes w1, w2, .., w(B+1)N respectively on points r1, r2, .., r(B+1)N

2

3. 1-Bend embeddability of trees

Kaufmann and Wiese [12] have shown that any plane graph having an external Hamiltonian cycle has a 1-bend

embedding on any point set. An external Hamiltonian cycle is a Hamiltonian cycle containing at least one

edge of the outer face. This shows that trees are 1-bend embeddable on any point set, because it is possible

to add some edges to any tree so that it contains an external Hamiltonian cycle. However, in this section, we
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Figure 1. The constructed tree T of Theorem 2.1.

B

m

p

N

N

N

y = x

0 1

y = 1
2x

y

x2 m

Figure 2. Configuration of the constructed point set P of Theorem 2.1.

introduce another method for 1-bend embedding of trees, which can be modified to produce 1-bend embeddings

with at most n
3 total bends for n -node binary trees. Our 1-bend embedding algorithm is an extension of a tree

embedding algorithm on point sets in general position in which the root of the given tree is placed on a convex

hull point, the remaining points are partitioned, and subtrees are embedded recursively [14, 3]. By convex hull

points of a point set, we mean the extreme points of its convex hull, i.e. the points of the convex hull that do

not lie in any open line segment joining two other points of the convex hull. A point p is visible from q in a

point set P , if no other point in P is on the line segment connecting p and q . Furthermore, in the remainder

of this section let δ be the smallest angle among all the angles formed by the triples of noncollinear points of

the point set P . The following lemma describes our algorithm.

Lemma 3.1 Any n-node tree T has a 1-bend embedding on any point set P of n points such that its root is

embedded on a given convex hull point p of P .

Proof We prove the lemma by giving a 1-bend embedding algorithm. Let r be the root of T and r1, .., rm

be its children and Ti be the subtree of T rooted at ri . First, we partition the point set P into m point

sets P1, .., Pm of sizes |T1|, .., |Tm| . Let p′ be the convex hull point of P consequent to p , and < p1, .., pn−1 >

be the sorted list of points in P \ {p} , sorted in increasing order lexicographically based on the pair (αi, di),

where αi is the angle ∠pipp′ and di is the Euclidean distance between points pi and p . We partition P into
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Figure 3. Desired embeddings of three paths πi1 , πi2 , and πi3 in the proof of Theorem 2.1

.

point sets P1 = {p1, .., p|T1|} , P2 = {p|T1|+1, .., p|T2|} , .., Pm = {pn−|Tm|, .., pn−1} . Because of our partitioning

method, the convex hulls of the point sets P1, P2, .., Pm are disjoint. Therefore, we embed r on point p , and

for 1 ≤ i ≤ m , we recursively embed tree Ti on point set Pi such that ri is embedded on the first point of Pi

say psi . If psi is visible from p , we embed edge (r, ri) on line segment psip . Otherwise, there should be some

points of P , say pj , .., psi−1 for some j < si , on the line segment psip . In this case, let qi be a point in the

plane such that ∠qipp1 > ∠psipp1 , and p , qi and psi form an isosceles triangle with base edge psip and base

angles equal to iδ
m+1 , and embed edge (r, ri) on line segments pqi and qipsi (see Figure 4(a) for illustration).

Because subtrees are embedded on subsets of P with disjoint convex hulls, the only thing to be proved for

the correctness of the algorithm is that line segments pqi and qipsi do not cross any other edge of the embedding.

Assume, as a contradiction, that an edge of the drawing connecting points px and py crosses line segments pqi

or qipsi . Because of the magnitude of the angle ∠pqipsi , no two edges of embedding incident to p can cross.

Thus, without loss of generality let px and py be different from p . Both px and py should be on the same side of

the line going through p and psi , i.e. the side on which qi lies, as illustrated in Figure 4(b), as otherwise px and

py should be on the different subsets of points of P and the algorithm does not embed any edge between them.

However, this shows that each triple of points p , psi , px , and py forms an angle less than δ , a contradiction. 2

The algorithm, given by Lemma 3.1, may produce n− 1 bends in embedding of an n-node binary tree.

In the following, we present an improved version of the algorithm for 1-bend embedding of binary trees that

produces at most n/3 total bends. The algorithm uses Lemma 3.2 to partition P \ {p} into two point sets and

recursively embed the subtrees. The problematic case is when all the points of P are collinear. In this case r

can be connected to each of its children by a polyline.

Lemma 3.2 Let P be a set of n points, not all of them collinear, and p be one of its convex hull points. For

any pair of integers n1 and n2 where n1 + n2 + 1 = n , there is a partitioning of P \ {p} into two point sets

P1 and P2 of sizes n1 and n2 such that convex hulls of P1 and P2 are disjoint and each of them has a point

visible from p .

Proof Let q be the convex hull point of P adjacent to p and < p1, .., pn−1 > be the sorted list of points in

P \{p} , sorted in increasing order lexicographically based on the pair (αi, di), where αi is the angle ∠pipq and

di is the Euclidean distance between points pi and p . Partition P \ {p} into two point sets P1 = {p1, .., pn1}
and P2 = {pn1+1, .., pn−1} . Clearly, convex hulls of P1 and P2 are disjoint and p1 is visible from p . Thus, if

P2 has a point visible from p , sets P1 and P2 form the desired partitioning. Otherwise, there must be more

than n2 points in P \ {p} on the line passing through p and pn−1 , say points pj , .., pn−1 , for some j ≤ n1 . In

this case, the sets P2 = {pj , .., pj+n2−1} and P1 = P \ (P2 ∪ {p}) form the desired partitioning. 2
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Figure 4. Embedding (a) the edges that require one bend in their embedding, and (b) the situation that two edges of

the embedding may cross.
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Figure 5. Embedding a binary tree on a set of collinear points.

Algorithm 1 describes our solution for the 1-bend embedding problem. In this algorithm, if the root

of tree T has only one child, it will be embedded as described in lines 3 and 4. In the case of two child

nodes, if all the points of P are not collinear, the algorithm partitions the point set by Lemma 3.2 and embeds

subtrees recursively as described in lines 23 to 26, and connects the root to its children using straight-line edges.

Otherwise, in lines 14 to 21, it embeds subtrees recursively, and connects the root to one of its children by a

straight line and the other one via two line segments, as illustrated in Figure 5.

Lemma 3.3 If r is the root of an n-node binary tree T and p is a convex hull point of a set of n points P ,

procedure EmbedBinaryTree(T, r, P, p) given by Algorithm 1 creates a 1-bend embedding of T on P .

Proof The algorithm embeds each node of T on a distinct point of P , and each edge on one or two line

segments. Therefore, it suffices to show that no two edges of the embedding cross each other. However, similar

to the proof of Lemma 3.1, this also follows from the fact that the algorithm embeds subtrees recursively on

point sets with disjoint convex hulls and the angle δ
2 is smaller than any angle created by triples of points of

P . 2

In an embedding of a tree T , node u is a bend node if one of the edges of the embedding, connecting u

to its children, has some bends.
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Algorithm 1 The embedding algorithm

procedure EmbedBinaryTree(T ,r ,P ,p)

input:

an n-node binary tree T rooted at r , a set of n points P , and p a convex hull point of P

output:

a 1-bend embedding of T on P in which r is embedded on p and has at most n
3 total bends

1: embed r on p

2: if r has only one child r1 then

3: let p1 be the nearest convex hull point of P \ {p} to p

4: EmbedBinaryTree(T \ {r} , r1 , P \ {p} , p1 )

5: end if
6: if r has two children r1 and r2 then

7: let T1 and T2 be the two subtrees of T respectively rooted at r1 and r2
8: if both r1 and r2 have two children then

9: let r1 be the child of r such that: |T1| ̸= 3k′ unless also |T2| = 3k , (k, k′ ∈ Z+ )

10: else
11: let r1 be the child of r that does not have two children

12: end if
13: if all the points of P are collinear then

14: let p, p1, p2, ..., pn−1 be the sorted list of points in P along the line going through all of them

15: let T3 and T4 be the (possibly empty) subtrees of T2 rooted at r3 and r4 respectively

16: let i = |T1| and j = |T1|+ |T3|+ 1

17: let P1 = {p1, ..., pi} and P3 = {pi+1, ..., pj−1} and P4 = {pj+1, ..., pn−1}
18: EmbedBinaryTree(T1 , r1 , P1 , p1 )

19: embed r2 on pj , and embed edge (r, r2) on the polyline between p and pj consisting of two line

segments, which make angle δ
2 with the supporting line of the point set, see Figure 5

20: EmbedBinaryTree(T3 , r3 , P3 , pj−1 ) if T3 is not empty

21: EmbedBinaryTree(T4 , r4 , P4 , pj+1 ) if T4 is not empty

22: else
23: partition P into two point sets P1 and P2 around p by Lemma 3.2

24: let q1 , q2 be respectively the nearest convex hull points of P1 and P2 to p

25: EmbedBinaryTree(T1 , r1 , P1 , q1 )

26: EmbedBinaryTree(T2 , r2 , P2 , q2 )

27: end if
28: end if

Lemma 3.4 Let b be the total number of bends of an embedding of an n-node binary tree T produced by

Algorithm 1. Then b ≤ n
3 if the root of T is a bend node and b < n

3 otherwise.

Proof We prove the lemma by induction on n . For n ≤ 3, the lemma holds clearly. Assuming the lemma is

true for any binary tree of less than n nodes, we show that it is also true for an n node binary tree T rooted

at r . When r has only one child r1 , T \ {r} has n− 1 nodes and by the induction hypothesis it is embedded

with b1 ≤ n−1
3 bends in line 4 of the algorithm. Since edge (r, r1) is embedded as straight line, we should have

b = b1 < n
3 .
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Figure 6. Set of six points in which for each point there is exactly one nonvisible point

In the case that r has two children r1 and r2 , if all the points of P are not collinear, the algorithm

embeds edges (r, r1) and (r, r2) without bends, and so applying the induction hypothesis to the recursive calls

in lines 25 and 26, we have b < n
3 . However, if all the points of P are collinear, r should be a bend node and

we should prove that b ≤ n
3 .

In this case, because embedding of edge (r, r2) in line 19 has a bend, b is equal to b1 + b3 + b4 + 1,

where b1 , b3 , and b4 are respectively the total number of bends of the recursively created embeddings of T1 ,

T3 , and T4 in lines 18, 20, and 21. If |T1| = 3k and |T2| = 3k′ (k, k′ ∈ Z+ ), either b3 < |T3|
3 or b4 < |T4|

3

because both |T3| and |T4| cannot be multiples of three. Otherwise, considering lines 9 and 11 of the algorithm,

we have b1 < |T1|
3 because either |T1| is not a multiple of three or r1 has only one child. Therefore, since

|T1|+ |T2|+ |T3| = n− 2, we have b < n+1
3 , which implies that b ≤ n

3 because b and n are integers. 2

Theorem 3.5 summarizes the result.

Theorem 3.5 Any n-node binary tree is 1-bend embeddable on any point set of n points with at most n
3 total

bends.

4. Straight-line embedding of trees on near-general-position point sets

The construction of the NP-completeness proof provided in Section 2 uses trees of maximum degree O(n) and

point sets containing O(n) collinear points. Therefore, the complexity of the problem is still open if we limit

the problem to the degree-constrained trees or limit the maximum number of collinear points in the point set

to a constant. The following lemma shows that if we limit the point set P to have no four collinear points, the

ternary trees are always embeddable on P .

Lemma 4.1 Any n-node ternary tree T is embeddable on a set of n points P if there are no four collinear

points in P .

Proof Let r be the root of T , p be a convex hull point of P , and T1 , T2 and T3 be the possibly empty

subtrees of T respectively rooted at r1 , r2 , and r3 children of r . For the cases when n = 1, 2, the embedding

is trivial. Moreover, when n = 3, if the three points of P are collinear, we should embed r on the middle point

if r has degree two and on a nonmiddle point otherwise. Because point set P has no four collinear points, the

number of visible points from each point of P is at least ⌈n−1
2 ⌉ . Therefore, when n ≥ 6, at least three points

of P are visible from each convex hull point p of P . Similarly, when n = 4, 5, there is always convex hull point

p visible at least from three other points of P . Hence, in these cases, similar to the proof of Lemma 3.2, we can
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partition P \{p} to point sets P1 , P2 , and P3 of sizes respectively |T1| , |T2| , and |T3| with disjoint convex hulls

such that each partition contains at least one point visible from p . We embed r on p and for each subtree Ti ,

1 ≤ i ≤ 3, we recursively embed Ti on Pi such that ri is embedded on a convex hull point of Pi visible from p .

Note that, when |Ti| = 3, 4, 5, we should embed ri on the suitable convex hull point of Pi as described before. 2

The example point set shown in Figure 6 shows that not any 4-ary tree is embeddable on a point set

having no four collinear points. A 4-ary tree consisting of a node of degree five adjacent to five nodes of degree

one is not embeddable on the point set shown in this figure because the point set does not contain any point

visible from the other five points. In addition, in the case that the point set P has four collinear points, even

binary trees are not always embeddable. As an example, a binary tree consisting of a node of degree three

adjacent to three nodes of degree one is not embeddable on a point set consisting of four collinear points.

Therefore, Lemma 4.1 cannot be strengthened to the 4-ary trees or point sets without five collinear points.

5. Conclusions

We have shown that embeddability of trees on point sets is NP-complete. Our results also show that the

embedding is always possible when the problem is limited to ternary trees and point sets without four collinear

points, and this result cannot be strengthened any further. We also introduced an algorithm for embedding

n-node binary trees on any set of n points with at most n
3 total bends. As future works, we suggest research

on the problems of point-set embeddability of degree constrained trees and embeddability of planar graphs on

point sets that have few collinear points.
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