
Turk J Math

(2015) 39: 851 – 863

c⃝ TÜBİTAK
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Abstract: In this paper, using generalized groups and their generalized actions, we define and study the notion of T -

spaces. We study properties of the quotient space of a T -space and we present the conditions that imply the Hausdorff

property for it. We also prove some essential results about topological generalized groups. As a main result, we show

that for each positive integer n there is a topological generalized group T with n identity elements. Moreover, we study

the maps between two T -spaces and we consider the notion of T -transitivity.
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1. Introduction

Groups appear in many branches of mathematics such as number theory, geometry, and the theory of Lie groups,

and they can also find many applications even in physics and chemistry. Here we need to recall the notion of

topological groups, which play a major role in the geometry and also group representation theory. They, along

with their continuous actions, are used to study continuous symmetries, which have many applications in physics

and chemistry. Topological groups have both algebraic and topological structures such that the multiplication

of the group and inverse function are continuous functions with respect to the topology. More precisely, a

topological group G is a group endowed with a topology such that the multiplication mapping m : G×G → G

defined by (g, h) → gh and the inversion mapping i : G → G defined by g → g−1 are continuous. For example,

any group, endowed with discrete topology or indiscrete topology is a topological group. Many familiar examples

of topological spaces are topological groups like the group (R,+) and (R∖{0},×) with the topology generated

by the euclidean metric (C,+) and (C∖{(0, 0)},×). Moreover, every subgroup of a topological group endowed

with the subspace topology is a topological group. Topological groups have many interesting properties; here

we recall some important theorems.

Theorem 1.1 [11] Let G be a topological group. Then:

• every neighborhood U of the identity element e in G contains an open symmetric neighborhood V of e

such that V V ⊆ U ;

• the identity component is a closed normal subgroup;

• G is a homogeneous space;

• G is Hausdorff if and only if the trivial subgroup {e} is closed in G.
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Theorem 1.2 [10] Let G be a topological group and H be a subgroup of G . Then:

• if H is an open subset of G , then it is also closed;

• the mapping p : G → G/H is an open map;

• if H is compact, then p : G → G/H is a closed map;

• G/H is a Hausdorff space if and only if H is closed in G .

We refer to [9, 10, 11, 20] for more theorems and more details about topological groups and their actions on

topological spaces. A resource about the importance of topological groups is [3].

Generalized groups or completely simple semigroups [2, 13] are an interesting extension of groups. In

a group, there is a unique identity element, but in a generalized group, each element has a special identity

element. This kind of structure appears in genetic codes [16]. The role of identity as a mapping lead to many

new important challenges. Generalized groups have been applied in genetic [1, 16], geometric [15], and dynamical

systems [17]. The notion of generalized action [12] is an extension of the notion of group actions [4, 7]. This

notion was studied first in 1999 [12, 14, 16]. Generalized action has been applied by other researchers [5, 6].

Let us recall the definition of a generalized group or completely simple semigroup [2]. A generalized group is a

semigroup T with the following conditions:

(i) For each t ∈ T there exists a unique e(t) ∈ T such that t · e(t) = e(t) · t = t ;

(ii) For each t ∈ T there exists s ∈ T such that s · t = t · s = e(t).

One can easily prove that each t in T has a unique inverse in T . The inverse of t is denoted by t−1 .

Moreover, for a given t ∈ T , e(t) = e(t−1) and e(e(t)) = e(t). Let T and S be two generalized groups. A map

f : T → S is called a homomorphism if f(st) = f(s) · f(t) for every s, t ∈ T . We refer to [16] for more details.

The geometrical viewpoint of completely simple semigroups is given in [18].

In Section 2, we study more properties of generalized groups and their generalized action on topological

spaces. We present the notion of T -spaces. We consider the quotient space of a T -space and we deduce the

conditions that imply the Hausdorff property for it. Moreover, we obtain some theorems about generalized

actions of topological generalized groups. We also introduce a simple method for constructing topological gen-

eralized groups. As a corollary, we show that for each positive integer n , there exists a topological generalized

group with n identity elements. In Section 3, the maps between two T -spaces and T -transitivity are considered.

2. T-Spaces

Let us begin this section by recalling the definition of a topological generalized group.

Definition 2.1 [1, 14] A topological generalized group is a Hausdorff topological space T that is endowed with

a generalized group structure such that the generalized group operations m1 : T → T defined by t 7→ t−1 and

m2 : T × T → T by (s, t) 7→ s · t are continuous maps and

e(s · t) = e(s) · e(t). (1)
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As shown in [16], every topological generalized group T is a disjoint union of topological groups. Moreover, the

mapping e : T → T defined by t 7→ e(t) is a continuous map. Note that in a topological generalized group,

property (1) implies that

e(t) · e(s) · e(t) = e(t), ∀t, s ∈ T. (2)

This property will be used frequently.

Theorem 2.2 If T is a topological generalized group, then

(s · t)−1 = e(s) · t−1 · s−1 · e(t).

Proof Since

(s · t)(e(s) · t−1 · s−1 · e(t))

= s · (t · e(s) · t−1 · s−1 · e(t))

= s · (t · e(t) · e(s) · e(t) · t−1 · s−1 · e(t)) (because t = t · e(t) and t−1 = e(t) · t−1)

= s · (t · e(t) · t−1 · s−1 · e(t)) (by equation (2))

= s · (e(t) · s−1 · e(t)) (because t · e(t) · t−1 = e(t) )

= (s · e(t) · s−1) · e(t)

= (s · e(s) · e(t) · e(s) · s−1) · e(t) (because s = s · e(s) and s−1 = e(s) · s−1)

= (s · e(s) · s−1) · e(t) (by equation (2))

= e(s) · e(t) = e(s · t),

we can see that (s·t)(e(s)·t−1 ·s−1 ·e(t)) = e(s·t). Similarly, we can show that (e(s)·t−1 ·s−1 ·e(t))·(s·t) = e(s·t).
Thus, (s · t)−1 = e(s) · t−1 · s−1 · e(t). 2

Example 2.3 If T is the topological space

R2 − {(0, 0)} = {reiθ| r > 0 and 0 ⩽ θ < 2π}

with the Euclidean metric, then T with the multiplication

(r1e
iθ1) · (r2eiθ2) = r1r2e

iθ2 (3)

is a topological generalized group. We have e(reiθ) = eiθ and (reiθ)−1 = 1
r e

iθ . Thus, we can see that the

identity set e(T ) is the unit circle S1 , where e(T ) is the set all identity elements of T . However, T is not a

topological group.

In Example 2.3, one can see that the identity set e(T ) is infinity. One of the main questions in generalized

group theory is whether there is a generalized group T such that e(T ) = n for any positive integer number n .

(See Corollary 2.26.)
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Definition 2.4 Suppose that X is a topological space and T is a topological generalized group. A generalized

action of T on X is a continuous map λ : T ×X −→ X with the following properties:

(i) λ(s, λ(t, x)) = λ(s · t, x) , for s, t ∈ T and x ∈ X ;

(ii) If x ∈ X , then there is e(t) ∈ T such that λ(e(t), x) = x .

Note that in the definition, if T is a group, then we have the definition of an action of a group that is defined in

[9]. Henceforth, λ(t, x) will be denoted by tx . For more details on the generalized action, one can see [6, 12].

Now let us define the notion of T -spaces.

Definition 2.5 A T -space is a triple (X,T, λ) where X is a Hausdorff topological space, T is a topological

generalized group, and λ : T ×X −→ X is a generalized action of T on X . Moreover, for each x ∈ X :

(i) Tx = {t ∈ T | tx = x} is called the stabilizer of x in T ;

(ii) T (x) = {tx| t ∈ T} is called the T -orbit of x in X .

For x ∈ X , Tx is a generalized subgroup of T [6]. For x ∈ X , if the stabilizer Tx is trivial (i.e.

Tx = {e(t)} for some t ∈ T ), we say that x is a regular point; otherwise, it is called a singular point. The

singular set of X , denoted by
∑

X , is the set of singular points of X . We define two maps θt : X → X and

ρx : T → X by θt(x) = tx and ρx(t) = tx , respectively, where t ∈ T and x ∈ X . We can see that θt and

ρx are continuous maps. Clearly, T (x) = ρx(T ) and Tx = (ρx)
−1(x). Thus, Tx is a closed subset of T and

then we can say it is a closed generalized subgroup of T . Now for continuing we need the definition of top

spaces that are introduced in [18]. The topological generalized group T is said to be a top space if T is a

manifold and the generalized group operations m1 and m2 are smooth [18]. As shown in [6], if X is a manifold

and Card(e(T )) < ∞ , then we can show that for x ∈ X , Tx is a generalized subtop space of T and also a

topological generalized subgroup of T .

By the action λ of a T -space (X,T, λ), we can define the following equivalence relation on X :

x ∼ y if and only if there is t ∈ T such that tx = y .

Now we consider the quotient space X /∼ , and by the projection map π : X → X /∼ , we define a topology

on X /∼ such that π is a continuous map. In fact, U ⊆ X /∼ is open if π−1(U) is open in X . Henceforth,

we will use of the notation X /T for the topological quotient space X /∼ .

Definition 2.6 Suppose that (X,T, λ) is a T -space. Then the generalized action λ is called:

(i) effective if for any two distinct s, t ∈ T , there exists x ∈ X such that sx ̸= tx ;

(ii) transitive if for given x, y ∈ X , there exists t ∈ T such that tx = y ;

(iii) free if for each x ∈ X , there exists precisely one t ∈ T such that tx = x ;

(iv) regular if it is transitive and free.

λ is transitive if and only if T (x) = X for each x ∈ X , and λ is free if and only if for each x ∈ X , Tx = {e(t)}
for some t ∈ T .
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Example 2.7 Every topological generalized group T acts on itself by the multiplication of T : st = s · t for

all s, t ∈ T . Note that this action need not be free; for instance, the action xy = y as the multiplication of T

implies Tx = T for x ∈ X .

Example 2.8 Every topological generalized group T acts on itself by the multiplication st = e(s) · t.

Example 2.9 Let T be R−{0} with the euclidean metric. T with the multiplication x · y = x is a topological

generalized group such that if x ∈ T , then e(x) = x−1 = x . T acts on itself with this multiplication. This

action is regular.

We recall that if T is a generalized group, X is a set, and S = {φt | φt : X → X is a mapping and t ∈
T} , then the triple (X,S, T ) is called a complete semidynamical system if:

(i) φt1 ◦ φt2 = φt1·t2 , for all t1, t2 ∈ T ;

(ii) For given x ∈ X , there is φt ∈ D such that x is a fixed point of φt .

We see that each T -space (X,T, λ) generates a complete semidynamical system (X,S, T ) where

S = {θt : X → X | θt(x) = tx, for x ∈ X and t ∈ T}.

As shown in [6], if e(T ) ⊆ Tx for each x ∈ X , then S with the multiplication θs ◦θt = θst is a topological

generalized group. In this case, for each θt ∈ S, e(θt) = θe(t) and (θt)
−1 = θt−1 .

Theorem 2.10 If e(T ) ⊆ Tx for each x ∈ X , then each θt is a homeomorphism.

Proof Every θt is a continuous map on X . Now we claim that each θt is one to one and onto and has the

inverse θt−1 . If θt(x) = θt(y), then tx = ty , and so t−1tx = e(t)x = x = y = e(t)y = t−1ty . Hence, θt is one

to one. On the other hand, for x ∈ X , there exists t−1x ∈ X such that θt(t
−1x) = tt−1x = e(t)x = x . Thus,

θt is also onto. If t ∈ T and x ∈ X , then

θt ◦ θt−1(x) = θtt−1(x) = θe(t)(x) = e(t)x = x.

The last equality follows from the fact e(T ) ⊆ Tx . In the same way,

θt−1 ◦ θt(x) = x.

Therefore, every θt is a homeomorphism. 2

Theorem 2.11 Let (X,T, λ) be a T -space. If T is compact and e(T ) ⊆ Tx for each x ∈ X , then λ : T ×X →
X is a closed map.

Proof Assume that C is a closed subset of T ×X and x ∈ X is a limit point of λ(C). Then there exists

a sequence {(ti, xi)} in C such that λ(ti, xi) = tixi converges to x . As T is compact, then there is a subse-

quence of {ti} that converges to a t in T . We rename that subsequence {ti} . T is a topological generalized

group, so the map m1 : T → T , defined by t 7→ t−1 , is continuous. This implies that {t−1
i } converges to

t−1 . λ is also continuous, and λ(t−1
i , tixi) converges to λ(t−1, x), so {e(ti)xi} converges to t−1x . However,
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for each x ∈ X , e(T ) ⊆ Tx , and thus e(ti)xi = xi , and consequently xi converges to t−1x . Thus, the sequence

{(ti, xi)} in C converges to (t, t−1x). Since C is a closed subset of T × X , then (t, t−1x) ∈ C . Therefore,

λ(t, t−1x) = e(t)x ∈ λ(C). According to the assumption, e(t)x = x . Thus, x ∈ λ(C), which means that λ(C)

is closed; that is, λ is a closed map. 2

Let (X,T, λ) be a T -space. If Y is a subset of X , then

TY := {ty| t ∈ T and y ∈ Y }.

Y is called invariant under T if TY = Y .

Theorem 2.12 Let (X,T, λ) be a T -space. Moreover, let T be compact, Y ⊆ X , and for each x ∈ X ,

e(T ) ⊆ Tx ; then:

(i) TY is closed if Y is closed;

(ii) TY is compact if Y is compact.

Theorem 2.13 Let (X,T, λ) be a T -space and for each x ∈ X , e(T ) ⊆ Tx . Then the projection map

π : X → X /T is an open map.

Proof To prove that λ is an open map, suppose Y ⊆ X is an arbitrary open subset of X . We have

TY = {ty | t ∈ T and y ∈ Y } = π−1(π(Y )) =
∪
t∈T

tY. (4)

Since θt is a homeomorphism, then it is an open map. Thus, for each t ∈ T , θt(Y ) = tY is an open set in X .

Hence, π−1(π(Y )) is an open set in X (from (4)). Therefore, π(Y ) is open in X /T , which means that π is
an open map. 2

Definition 2.14 Suppose that (X,T, λ) is a T -space. A generalized action λ is called perfect if e(T ) ⊆ Tx for

each x ∈ X . In this sense, the T -space is called perfect. Moreover, λ is called super perfect if for each x ∈ X ,

e(T ) = Tx .

Suppose that X and Y are two topological spaces. A mapping f : X → Y is called proper if for each

compact subset A of Y , f−1(A) is a compact subset of X [19]. We know that if the mapping f : X → Y is

closed and for each y ∈ Y , f−1(y) is compact, then f is a proper map [19].

Theorem 2.15 Let (X,T, λ) be a T -space, T be compact, and λ be perfect. Then:

(i) The projection map π : X → X /T is a closed map;

(ii) The quotient space X /T is Hausdorff;

(iii) The projection map π : X → X /T is a proper map;

(iv) X is compact if and only if X /T is compact;

(v) X is locally compact if and only if X /T is locally compact.
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Proof

(i) Suppose that Z ⊆ X is an arbitrary closed subset of X . As λ is perfect and T is compact, according to

Theorem 2.13, TZ = π−1(π(Z)) is closed in X . Since π is a surjective map, we can see that

π−1(X/T − π(Z)) = X − π−1(π(Z)). (5)

Since π−1(π(Z)) is closed in X , then X − π−1(π(Z)) is open in X . X /T − π(Z) is open in X /T .

Thus, π(Z) is closed in X /T , and hence π is a closed map.

(ii) Suppose that [x] and [y] are two distinct elements in X /T . Clearly, we can see that T (x) ∩ T (y) = ∅ .

As mentioned, T (x) = ρx(T ); that is, the T -orbit T (x) is the image of T . However, we know that ρx

is continuous and T is compact, which implies that T (x) = π−1([x]) is compact in X . In the same way,

T (y) is compact. Since X is Hausdorff and T (x) is compact in X and y /∈ T (x), thus there exist disjoint

open subsets U and V of X containing T (x) and y , respectively [19]. It is especially easy to see that

T (x) ∩ V = ∅ . Thus, [x] = π(x) /∈ π(V ). On the other hand, π(V ) is open in X /T . π(V ) contains

[y] . Moreover, since V is closed, π(V ) is closed in X /T . Thus, X /T − π(V ) is an open subset that

contains [x] . Therefore, X /T − π(V ) and π(V ) are disjoint open sets of X /T containing [x] and [y] ,

respectively.

(iii) In (i), we saw that π is a closed map, and also in (ii), we showed that T (x) = π−1([x]) is compact for

each x ∈ x . Thus, π is a proper map.

(iv) This follows easily from continuity of π and (iii).

(v) This follows from Theorem 2.13 and (iii).

2

Definition 2.16 Let (X,T, λ) be a T -space. The generalized action λ is called proper if the map λ̂ : T ×X →

X ×X defined by λ̂(t, x) = (tx, x) is a proper map.

Theorem 2.17 Let (X,T, λ) be a T -space. The generalized action λ is proper if and only if for every compact

subset Y of X , the set YT = {t ∈ T | tY ∩ Y ̸= ∅} is compact.

Proof Suppose that the mapping λ̂ is proper and Y ⊂ X is compact. We see that YT = P (λ̂−1(Y × Y )),

where P : T × X → T is the projection map. Thus, YT is compact. Conversely, suppose that YT is com-

pact, where Y is a compact subset of X . If Z ⊂ X × X is compact, and Y := π1(Z) ∪ π2(Z) ⊂ X , where

π1, π2 : X ×X → X are the projections on the first and second components, respectively, then Y is compact.

Moreover, λ̂−1(Z) ⊂ λ̂−1(Y × Y ) ⊂ YT × Y . Since X ×X is Hausdorff and Z is compact, then Z is a closed

subset of X×X . Thus, λ̂−1(Z) is closed by continuity and it is also a closed subset of the compact set YT ×Y .

Thus, Z is compact and λ is proper. 2

Corollary 2.18 Let (X,T, λ) be a T -space. If T is compact, then the generalized action λ is proper.
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Corollary 2.19 Let (X,T, λ) be a T -space. If λ is proper, then:

(i) The stabilizer Tx is compact, where x ∈ X ;

(ii) The orbit map ρx is proper, where x ∈ X .

Corollary 2.20 Let (X,T, λ) be a T -space. If λ is proper, then T (x) is a closed subset of X and the quotient

space X /T is Hausdorff.

Example 2.21 Let X = R2 and let T be the generalized group of Example 2.3 that acts on X by

(r1e
iθ1).(r2e

iθ2) = r1r2e
iθ2 .

The equivalence class [x] is the set all reiθ0 such that r > 0 , where x = r0e
iθ0 ∈ R2 − {(0, 0)} and

[(0, 0)] = {(0, 0)} . Moreover, for x = r1e
iθ1 and y = r2e

iθ2 , [x] = [y] if and only if θ1 = θ2 . Thus,

Y = X /T ≃ S1
∪
{(0, 0)} , which is not a Hausdorff space with the quotient topology.

Now let X be a topological space that the group G acts on by the action λ . Then (X,G, λ) is called a

G -space. We know that locally connectedness is preserved by the orbit space of a G -space; that is, if X is a

locally connected space with a continuous action of a topological group G , then the orbit space Y := X /G ,

given with the quotient topology, is also locally connected. However, this property is not true for T -spaces, but

we can show that if the generalized action of the generalized group T on X is perfect, then locally connectedness

is preserved.

Theorem 2.22 Suppose that (X,T, λ) is a T -space and λ is perfect. If X is locally connected, then Y :=

X /T is also locally connected.

Proof We know that X is locally connected if and only if every open subset U ⊆ X can be decomposed into

a disjoint union of open connected subspaces of X [19]. Now we consider the projection map π : X → X /T .

Let V be an open subset of Y := X /T and consider the inverse image π−1(V ) that is open in X . Since X

is locally connected, π−1(V ) is decomposed into a disjoint union of connected components of X . As λ is a

perfect generalized action of T on X , we can define a natural generalized action of T on the set of connected

components of X . The image of each component of X under π is the same within an orbit in Y . Thus,

π(π−1(V )) = V is decomposed into a disjoint union of open connected subsets of Y . Hence, Y is locally

connected.

2

Let C(X) be the set of all continuous maps on X . We define the mapping λ̃ : T → C(X) by t 7→ λt ,

where λt(x) = tx . Define Kerλ = {t ∈ T |λ̃(t) = idX} . As shown in [6], if λ is perfect then C(X) is a

topological generalized group and so λ̃ is a generalized group homomorphism. Moreover, we can see that Kerλ

is a closed generalized subgroup of T .

Finding relations between groups and generalized groups and constructing new generalized groups with

respect to a group are the most important problems in generalized groups theory. It is shown that if G is a

generalized group then G is a disjoint union of groups, i.e. G =
∪̇

a∈G Ga such that Ga = {g ∈ G| e(g) = e(a)}
[16]. Furthermore, Araujo and Konieczny characterized generalized groups by Rees matrix semigroups [2]. In

the following, we introduce a new method for constructing a generalized group from a group.
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Theorem 2.23 Let G be a group. Then the set T := G×G by the multiplication

(s1, t1)(s2, t2) = (s1, t1s2t2)

is a generalized group. Moreover, if G is a topological group, then T is also a topological generalized group.

Proof

(s, t).(s, s−1) = (s, tss−1) = (s, te) = (s, t) = (s, et) = (s, s−1st) = (s, s−1).(s, t)

and thus e((s, t)) = (s, s−1). Moreover, we have

(s, t).(s, s−1t−1s−1) = (s, tss−1t−1s−1)

= (s, tet−1s−1)

= (s, tt−1s−1)

= (s, es−1)

= (s, s−1)

= e((s, t)).

Also:

(s, s−1t−1s−1).(s, t) = (s, s−1t−1s−1st)

= (s, s−1t−1et)

= (s, s−1t−1t)

= (s, s−1e)

= (s, s−1)

= e((s, t)).

Thus, (s, t)−1 = (s, s−1t−1s−1) and G × G is a generalized group. If G is a topological group, then the

generalized group operations m1 and m2 for G × G are also continuous. Therefore, G × G is a topological

generalized group.

2

The above topological generalized group T is called the induced topological generalized group of the

topological group G . We can see that e(T ) = {(t, t−1)| t ∈ G} (See the Figure). We are able to construct

generalized groups from groups with this method.

Example 2.24 Let G be the euclidean space R . Suppose that T := R2 . Using Theorem 2.23, we can say that

T is a topological generalized group such that for each (a, b), (c, d) ∈ T ,

(a, b).(c, d) = (a, b+ c+ d) ,

e((a, b)) = (a,−a) and (a, b)−1 = (a,−2a− b) .
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Figure. The induced topological generalized group.

Example 2.25 Let G be the unit circle S1 . If we consider torus as the product space of two circles, then

using Theorem 2.23, the torus T2 = S1 × S1 is a topological generalized group.

Corollary 2.26 For any positive integer n , there is a topological generalized group T such that Card(e(T )) =
n .

Proof In Theorem 2.23, if we consider G := Zn , then T = G × G is a generalized group such that

Card(e(T )) = n . 2

Example 2.27 Let G be the group {0, θ, θ2, θ3} where θ is the 90 degrees counterclockwise rotation of the

xy -plane. The induced topological generalized group of G has 16 members and Card(e(T )) = 4 .

Now suppose that the topological group G acts continuously on a topological space X . We can define a

continuous generalized action of T on X . If the action of G on X is λ , then we define λ̄ by

λ̄((s, t), x) = λ(st, x).

We can easily show that λ̄ is a continuous generalized action.

Theorem 2.28 Let G be a group that acts on X by λ and let T be the induced generalized group of G .

(i) If λ is transitive, then λ̄ is also transitive;

(ii) e(T ) ⊆ Tx for each x ∈ X (that is, λ̄ is perfect);

(iii) Gx ×Gx ⊆ Tx for each x ∈ X .

Proof

(i) Suppose x, y are two elements of X . Since λ is transitive, there is s ∈ G such that λ(s, x) = y . Hence,

λ̄((s, e), x) = λ(se, x) = λ(s, x) = y , and so λ̄ is transitive.
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(ii) We can show easily that (s, s−1) ∈ Tx for each s ∈ G and for each x ∈ X . Thus, e(T ) ⊆ Tx for each

x ∈ X , and so λ̄ is perfect.

(iii) It is obvious that if (s, t) ∈ Gx ×Gx for some x ∈ X , then (s, t) ∈ Tx .

2

Note that if λ is effective (resp. free), then λ̄ need not be effective (resp. free). However, we can see

that x ∼ y under λ if and only if x ∼ y under λ̄ , and so X /G = X /T .

3. Maps on T-spaces

Now let us consider the maps of T -spaces. First we recall the notion of transitivity of maps on a topological

space. Let X be a topological space and let f : X → X be a continuous mapping. Then the mapping f is

called (topologically) transitive if for every pair of nonempty open subsets U and V of X, there is some n ∈ N
such that fn(U)∩ V ̸= ∅ . Moreover, if X is compact, then f is transitive if and only if f is onto and there is

a point in X with dense orbit [8].

Definition 3.1 Let (X,T, λ) be a T -space. Suppose f : X → X is a continuous map. The map f is called

T -transitive if for every pair of nonempty open subsets U and V in X , there is some positive integer n and

t ∈ T such that tfn(U) ∩ V ̸= ∅ .

We can see that if λ is not trivial and f is a transitive map, then f is T -transitive. However, the

following example shows that each T -transitive map need not be transitive.

Example 3.2 Let X be the topological space [−1, 1] with the topology generated by a euclidean metric. The

topological generalized group T = {±1} with the multiplication s · t = s|t| acts on X by the generalized action

tx = t|x| , where t ∈ T and x ∈ X . Then f : X → X is defined by

f(x) =

{ √
x if 0 ≤ x ≤ 1

−
√
|x| if −1 ≤ x ≤ 0.

We can see that f is T -transitive but it is not transitive.

Definition 3.3 Let (X,T, λ) and (Y, T, µ) be two T -spaces. A continuous map f : X → Y is called:

(i) T -equivariant if f(λ(t, x)) = µ(t, f(x)) for t ∈ T and x ∈ X , or briefly, f(tx) = tf(x) ;

(ii) T -pseudoequivariant if f(T (x)) = T (f(x)) for x ∈ X .

If f : X → Y is a T -equivariant between two T -spaces X and Y , then Tx ⊆ Tf(x) for each x ∈ X . Moreover,

an T -equivariant map is clearly T -pseudoequivariant but the converse is not true. The following example shows

this.

Example 3.4 Let X and Y be two euclidean spaces R and T = {±1} . Then T with the multiplication

s · t = s|t| is a topological generalized group. We define actions λ, θ : T × R → R by λ(t, x) = t|x| and

θ(t, x) = tx , respectively. Now we see that the identity map on R is a T -pseudoequivariant map that is not

T -equivariant.
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Theorem 3.5 Let (X, d) be a compact metric space with no isolated point and let (X,T, λ) be a T -space for

which λ is perfect. Suppose that f : X → X is a T -pseudoequivariant onto map. Then f is T -transitive if

and only if there exists x ∈ X such that {t · fn(x) | t ∈ T, n > o} is dense in X .

Proof Suppose that f is T -transitive. By using the Baire category theorem and the fact that λ is perfect,

we can see that there is some x such that {t · fn(x) | t ∈ T, n > o} is dense in X . Conversely, suppose that

{tfn(x) | t ∈ T, n > o} is dense in X for some x ∈ X . Let U and V be two nonempty open subsets of X .

Then there are s, t ∈ T and m,n ∈ N such that sfm(x) ∈ U and tfn(x) ∈ V . We assume that m < n . Since

λ is perfect, then x ∈ f−m(s−1U). Thus, fn(x) ∈ fn−m(s−1U). Moreover, since f is T -pseudoequivariant,

then there is r ∈ T such that fn−m(s−1U) = rfn−m(U). Thus, fn(x) ∈ rfn−m(U) and tfn(x) ∈ trfn−m(U).

Therefore, tfn(x) ∈ t
′
fp(U) ∩ V , where t

′
= tr ∈ T and p = n−m ∈ N , and so f is T -transitive. 2

It may be that T -transitivity is not preserved by topological conjugacy. Now we introduce topological

T -conjugacy that can preserve T -transitivity.

Definition 3.6 Let (X,T, λ) and (Y, T, θ) be two T -spaces. Moreover, let f : X → X and g : Y → Y be two

continuous maps. We say f is topologically T -conjugate to g if there is a T -pseudoequivariant homeomorphism

h : X → Y such that h ◦ f = g ◦ h .

Theorem 3.7 Let (X,T, λ) and (Y, T, θ) be two perfect T -spaces. If the continuous mapping f : X → X is

topologically T -conjugate to the continuous mapping g : Y → Y , then f is T -transitive if and only if g is

T -transitive.

Proof Using Definitions 3.6 and 3.3, we can prove this theorem. 2

Theorem 3.8 Let X and Y be smooth manifolds and let T be a top space. Suppose that F : X → Y is a

smooth map that is equivariant with respect to a transitive perfect smooth generalized action λ of T on X and

a perfect smooth generalized action θ of T on Y . Then F has constant rank.

Proof Let x ∈ X . Since λ is transitive, then for any y ∈ X , there is some t ∈ T such that tx = y . Since

θt ◦ F = F ◦ λt for each t ∈ T , then we have θt∗ ◦ F∗ = F∗ ◦ λt∗ . The generalized actions λ and θ are perfect,

and then λt∗ and θt∗ are isomorphism. Thus, the rank F at y is the same as its rank at x . Thus, F has

constant rank. 2

4. Conclusion

In this paper, we introduced a simple method for constructing new generalized groups from groups. According

to this method, we could define a generalized group structure for the torus T2 . We also show that for each

positive integer n , there is a topological generalized group T such that Card(e(T )) = n . We obtain some results

about generalized actions and T -spaces such as group actions and G -spaces. For instance, locally connectedness

is preserved by the orbit space of a T -space such that its generalized action is perfect.
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[7] Güner N. A Borsuk-Ulak theorem for Heisenberg group actions. Turk J Math 2000; 24: 345–357.

[8] Kolyada S, Snoha L. Some aspects of topological transitivity a survey. In: Proceedings of ECIT-94. Graz, Austria:

Karl Franzens University, 1997, pp. 3–35.

[9] Lee JM. Introduction to Smooth Manifolds. New York, NY, USA: Springer-Verlag, 2003.

[10] Markley NG. Topological Groups: An Introduction. Hoboken, NJ, USA: Wiley, 2010.

[11] McCarty G. Topology: An Introduction with Application to Topological Groups. New York, NY, USA: McGraw-

Hill, 1967.

[12] Molaei MR. Generalized actions. In: Proceedings of the First International Conference on Geometry, Integrability,

and Quantization. Sofia, Bulgaria: Coral Press Scientific Publishing, 1999, pp.175–180.

[13] Molaei MR. Generalized groups. Buletinul Institului Polithnic Din Iasi 1999; 65: 21–24.

[14] Molaei MR. Topological generalized groups. International Journal of Pure and Applied Mathematics 2000; 9: 1055–

1060.

[15] Molaei MR. Top spaces. J Interdiscip Math 2004; 7: 173–181.

[16] Molaei MR. Mathematical Structures Based on Completely Simple Semigroups. Palm Harbor, FL, USA: Hadronic

Press, 2005.

[17] Molaei MR. Complete semi-dynamical systems. Journal of Dynamical Systems and Geometric Theories 2005; 3:

95–107.

[18] Molaei MR, Khadekar GS, Farhangdoost MR. On top spaces. Balkan J Geom Appl 2009; 11: 101–106.

[19] Munkres JR. Topology: A First Course. New Delhi, India: Prentice Hall of India, 1975.

[20] Tu LW. An Introduction to Manifolds. Berlin, Germany: Springer, 2010.

863

http://dx.doi.org/10.2991/978-94-91216-35-0
http://journals.tubitak.gov.tr/math/issues/mat-98-22-2/mat-22-2-7-e2202-07.pdf
http://journals.tubitak.gov.tr/math/issues/mat-00-24-4/mat-24-4-3-0006-3.pdf
http://dx.doi.org/10.1007/978-0-387-21752-9
http://dx.doi.org/10.7546/giq-1-2000-175-179
http://dx.doi.org/10.7546/giq-1-2000-175-179
http://dx.doi.org/10.1080/09720502.2004.10700367
http://dx.doi.org/10.1080/1726037X.2005.10698492
http://dx.doi.org/10.1080/1726037X.2005.10698492

	Introduction
	T-Spaces
	Maps on T-spaces
	Conclusion

