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Abstract: For a finite commutative ring S (resp., a finite abelian group S ) and a positive integer k ⩾ 2, we construct

an iteration digraph G(S, k) whose vertex set is S and for which there is a directed edge from a ∈ S to b ∈ S if

b = ak . We generalize some previous results of the iteration digraphs from the ring Zn of integers modulo n to finite

commutative rings, and establish a necessary and sufficient condition for G(S, k1) and G(S, k2) to be isomorphic for any

finite abelian group S .

Key words: Iteration digraph, isomorphic component, isomorphic digraph

1. Introduction

In 1992, motivated by [6], Szalay investigated properties of the iteration digraph representing a dynamical

system occurring in number theory [12]. Subsequently, Rogers’ published paper [7] concerned the graph of the

square mapping on the prime fields, which was a topic appended as a kind of postscript to his talks on discrete

dynamical systems. In recent years, there has been growing interest in the iteration digraphs associated with

the ring Zn of integers modulo n , the quotient ring of polynomials over finite fields, and the ring of Gaussian

integers modulo n , etc. (e.g., see [1, 3, 4, 11, 13, 14, 15]).

We describe this iteration digraph below. Let S be a finite commutative ring (resp., a finite abelian

group). The graph G(S, k) (k ⩾ 2 is a positive integer) is a digraph whose vertices are the elements of

S and for which there is a directed edge from a ∈ S to b ∈ S if b = ak . In this paper, we generalize

some previous results of iteration digraphs from Zn to finite commutative rings and establish a necessary and

sufficient condition for G(S, k1) and G(S, k2) to be isomorphic for any finite abelian group S .

A component of a digraph is a directed subgraph that is a maximal connected subgraph of the associated

undirected graph. If α is a vertex of a component in G(S, k), we use ComS(α) to denote this component.

Suppose α is a vertex of G(S, k). The in-degree of α , denoted by indegS(α), is the number of directed

edges entering α . We will simply write indeg(α) when it is understood that α is a vertex in G(S, k).

Cycles of length t are called t-cycles, and cycles of length one are called fixed points . For an isolated

fixed point α , the in-degree and out-degree (i.e. the number of edges leaving α) are both one. Suppose that

α is a vertex in G(S, k); α is said to be of height h ⩾ 0, if h is the minimal nonnegative integer such that αkh
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is a cycle vertex. If the maximal height of all vertices in a component is λ , then we say that this component

has height λ . Attached to each cycle vertex α of G(S, k) is a tree TS(α) whose root is α and whose additional

vertices are the noncycle vertices β for which βki

= α for some positive integers i , but βki−1

is not a cycle

vertex.

Further, if R is a ring, let U(R) denote the unit group of R and D(R) the zero-divisor set of R . For

α ∈ U(R), o(α) denotes the multiplicative order of α in R . If R = Zn , then we write ordnα instead of o(α).

Moreover, we specify two particular subdigraphs G1(R, k) and G2(R, k) of G(R, k), i.e. G1(R, k) is induced

by all the vertices of U(R), and G2(R, k) is induced by all the vertices of D(R).

This paper is organized as follows. After this introduction, we obtain some results in Section 2 on cycles

and components of G(R, k) for finite commutative rings R . These results generalize the work [15] on the digraph

associated to the square mapping. In Section 3, we employ the digraphs products to explore the symmetric

digraphs and obtain results parallel to those of Somer and Kř́ıžek [10]. Section 4 gives a necessary and sufficient

condition for G(H, k1) and G(H, k2) to be isomorphic, where H is a finite abelian group. This result extends

the work in [1] for the multiplicative group of a prime field Fp .

2. Cycles and components

The exponent exp(H) of a finite group H is the least positive integer n such that gn = 1 for all g ∈ H .

By the finite group theories, it is easy to show that if H is abelian; then there exists an element g ∈ H such

that o(g) = exp(H). In papers [9, 10, 11], the Carmichael lambda -function λ(n) played the key role in the

structure of G(Zn, k). In fact, the function λ(n) is equal to exp(U(Zn)). Throughout this paper, we simply

write λ(R) instead of exp(U(R)), where R is a ring.

It is well known that if R is a finite commutative ring with identity 1, then R can be uniquely expressed

as a direct sum of local rings:

R = R1 ⊕ · · · ⊕Rs, s ⩾ 1 (2.1)

where Ri is a local ring for i = 1, . . . , s .

Lemma 2.1 ([5, Theorem 2]) Let R be a finite local ring with identity element 1 that is not necessarily

commutative. Let M be the unique maximal ideal of R . Then |R| = pnr , |M | = p(n−1)r , Mn = {0} , and
char(R) = pk , where char(R) is the characteristic of R , p is a prime, n , r , k are positive integers, and

1 ⩽ k ⩽ n .

Note by Lemma 2.1 that if n = 1, then R is the field Fpr with |Fpr | = pr .

Since the unit group of a finite commutative ring is a product of some cyclic groups, we give some results

concerning the iteration digraphs of cyclic groups that have been shown in paper [8].

Lemma 2.2 Let k ⩾ 2 be an integer. Let Cn = ⟨a⟩ be a cyclic group with o(a) = n . Suppose gcd(n, k) = d .

Then in G(Cn, k) we have the following conclusions.

1. For ax ∈ Cn , indeg(a
x) > 0 if and only if d |x .

2. If d |x , then indeg(ax) = d .
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3. G(Cn, k) has exactly one component if and only if q | k for any prime factor q of n .

A digraph is regular if all its vertices have the same in-degree, while the digraph G(R, k) is said to be

semiregular if there exists a positive integer d such that each vertex of G(R, k) has either in-degree 0 or d .

Theorem 2.3 For any finite commutative ring R and k ⩾ 2 , G1(R, k) is regular or semiregular. In particular,

if U(R) = Cn1 × · · · × Cnt , where Cni is a cyclic group with order ni , and gcd(ni, k) = di for i ∈ {1, . . . , t} ,
t ⩾ 1 . Then for α ∈ U(R) , indeg(α) = 0 or d1 · · · dt .

Proof Let α = (a1, . . . , at) ∈ U(R), where ai ∈ Cni for i ∈ {1, . . . , t} . If indeg(α) > 0; then indegCni
(ai) > 0

for i ∈ {1, . . . , t} , and hence

indegR(α) = indegCn1
(a1)× · · · × indegCnt

(at) = d1 · · · dt

by Lemma 2.2. Therefore, if d1 = · · · = dt = 1, then indegR(α) = 1 and G1(R, k) is regular. Otherwise,

G1(R, k) is semiregular. 2

Let Γi be a subdigraph of G(S, ki), i = 1, 2. We say that Γ1
∼= Γ2 if there exists a mapping f from the

vertex set of Γ1 to that of Γ2 for which f satisfies the following conditions:

1. f is one-to-one and onto.

2. f sends vertices of height h into vertices of the same height h .

3. f is edge-preserving, that is, [f(a)]k2 = f(ak2) for a ∈ Γ1 .

Similarly to the proof of Theorem 29 of [3], we have the following theorem.

Theorem 2.4 Let R be a finite commutative ring. Let β ∈ U(R) be a cycle vertex of G(R, k) for k ⩾ 2 . Then

the tree TR(1) is isomorphic to the tree TR(β) .

Proof Let i ⩾ 0 be an integer. Let βi be the unique vertex in G1(R, k) that is in the same cycle as β and

such that βki

i = β , i.e. βi is the cycle vertex i vertices before β . We define the mapping f from TR(1) into

TR(β) by f(α) = αβh for any vertex α with height h ⩾ 1 in TR(1). It is easy to show that the mapping f is

one-to-one and onto. Further,

[f(α)]k = (αβh)
k = αkβk

h = αkβh−1 = f(αk),

where βk
h = βh−1 is derived by the uniqueness of βh , while f(αk) = αkβh−1 because the height of αk is h− 1.

Thus the mapping f is edge-preserving and hence the tree TR(1) is isomorphic to the tree TR(β). 2

Theorem 2.5 Let R be a finite commutative ring. Let u be the largest divisor of λ(R) relatively prime to

k ⩾ 2 .

1. The vertex α is a cycle vertex in G1(R, k) if and only if gcd(o(α), k) = 1.

2. The vertex α is a cycle vertex in G1(R, k) if and only if o(α) |u .
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Proof (1) If α lies on a t-cycle, then t is the least positive integer such that αkt

= α . Therefore, o(α) | (kt−1)

and clearly gcd(o(α), k) = 1. Conversely, if gcd(o(α), k) = 1, then there is a least positive integer t such that

kt ≡ 1 (mod o(α)), and hence αkt

= α . Thus α lies on a t -cycle.

(2) Let λ(R) = uv . Then for any prime factor q of v , we have q | k . If gcd(o(α), k) = 1, then

gcd(o(α), v) = 1. It is obvious that o(α) |u since o(α) |λ(R). Conversely, if o(α) |u , then gcd(o(α), k) = 1.

Therefore, by (1) above, case (2) holds. 2

Theorem 2.6 Let R be a finite commutative ring and k ⩾ 2 .

1. The element 0 is an isolated fixed point in G(R, k) if and only if R is a direct sum of fields.

2. The identity 1 is an isolated fixed point in G(R, k) if and only if gcd(λ(R), k) = 1.

Proof Let R be as in (2.1).

(1) Suppose α = (a1, . . . , as) ∈ R satisfies αk = 0. Then 0 is an isolated fixed point in G(R, k) if and

only if indegR(0) = 1, if and only if aki = 0 and indegRiai = 1, if and only if Ri is a field for i ∈ {1, . . . , s} .
(2) Suppose that gcd(λ(R), k) = 1. Then gcd(λ(Ri), k) = 1 for each i ∈ {1, . . . , s} . Then for α ∈ U(Ri),

gcd(o(α), k) = 1. By Theorem 2.5, α lies on a t-cycle in G(Ri, k) for some t ⩾ 1. Therefore, indegR(1) = 1.

The converse is clear. 2

Theorem 2.7 Let R be a finite commutative ring and k ⩾ 2 .

1. G1(R, k) is regular if and only if gcd(λ(R), k) = 1.

2. G1(R, k) is semiregular if and only if gcd(λ(R), k) > 1.

3. G2(R, k) is regular if and only if R is a direct sum of s ⩾ 2 fields with gcd(λ(R), k) = 1, or R is a field.

4. G(R, k) is regular if and only if R is a direct sum of s ⩾ 1 fields and gcd(λ(R), k) = 1.

Proof By Theorems 2.3 and 2.5, we derive (1) and (2).

Now suppose that G2(R, k) is regular. Let R be as in (2.1). Then for α ∈ D(R), we have indegR(α) = 1.

If there exists i ∈ {1, . . . , s} such that Ri is not a field, without loss of generality, we assume that R1 is not a

field. Then there exists 0 ̸= a ∈ D(R1) such that ak = 0. Therefore, α = (a, 0, . . . , 0) ∈ D(R). Then αk = 0,

and hence indegR(0) > 1, which implies that G2(R, k) is not regular, a contradiction. Thus we assume that

each Ri is a field for i ∈ {1, . . . , s} , s ⩾ 1. If s = 1, clearly G2(R, k) is regular. If s ⩾ 2 but gcd(λ(R), k) > 1,

then there exists a prime p such that p |λ(R) and p | k . Therefore, we have an element bt ∈ U(Rt) for some

t ∈ {1, . . . , s} with o(bt) = p . Hence bpt = bkt = 1. For convenience, let t = 1 and β = (1, 0, . . . , 0) ∈ D(R). It

is clear that indegR(β) > 1 since (b1, 0, . . . , 0)
k = β . Therefore, G2(R, k) is not regular, a contradiction, and

so we derive that gcd(λ(R), k) = 1. The converse of case (3) is clear.

Finally, note that G(R, k) is regular if and only if both G1(R, k) and G2(R, k) are regular. Therefore,

case (4) follows from cases (1) and (3). 2
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By Theorem 2.3, for any finite commutative ring R and k ⩾ 2, G1(R, k) is either regular or semiregular,

and, by Theorem 2.7, we characterize all regular digraphs G2(R, k). However, the semiregularity of G2(R, k) is

not easy to obtain (e.g., see Theorem 4.4 of [9] and Theorem 4.2 of [13]). In the following theorem, we present

a condition when G2(R, k) is semiregular.

Theorem 2.8 Let R be a finite commutative local ring with unique maximal ideal M and char(R) = pt for

some odd prime p . If 2 | k , then G2(R, k) is semiregular if and only if αk = 0 for α ∈ M .

Proof Suppose that G2(R, k) is semiregular. If there exists b ∈ M such that bk = c ̸= 0, then indeg(c) ⩾ 1.

Consider the solutions in R of the equation xk = c . We see that whenever yk = c for y ∈ M , then (−y)k = c

since 2 | k . Moreover, if −y = y , then 2y = 0, which contradicts the fact that the characteristic of R is odd.

Thus −y ̸= y . Further, 0 is not a solution of xk = c , and so the number of solutions of this equation is even,

i.e. indeg(c) is even. On the other hand, 0 is a solution of the equation xk = 0. Similarly, whenever zk = 0 for

0 ̸= z ∈ M , then (−z)k = 0 with −z ̸= z . Therefore, the number of solutions of the equation xk = 0 is odd.

Consequently, indeg(0) is odd. Hence, indeg(0) ̸= indeg(c). Therefore, G2(R, k) is not semiregular, which is a

contradiction. This implies that for a ∈ M , ak = 0. The converse is obvious. 2

Theorem 2.9 Let R be a finite commutative ring. If G2(R, k) contains a t-cycle (t ⩾ 2) , then G1(R, k) also

contains a t-cycle.

Proof Let R be as in (2.1). If G2(R, k) contains a t -cycle (t ⩾ 2), then it is obvious that s ⩾ 2. Suppose

that α = (a1, . . . , as) lies on a t -cycle of G2(R, k), where ai ∈ D(Ri) or U(Ri). Then ai lies on a ti -cycle of

G(Ri, k) for i ∈ {1, . . . , s} . For convenience, we can suppose that a1 = · · · = am = 0, where s − 1 ⩾ m ⩾ 1,

while aj ∈ U(Rj) for j ∈ {m+1, . . . , s} . It is evident that lcm[t1, . . . , ts] = t . Since t1 = · · · = tm = 1, we have

lcm[tm+1, . . . , ts] = t . Let β = (b1, . . . , bs), where b1 = · · · = bm = 1, while bj = aj for j ∈ {m + 1, . . . , s} .
Clearly, β ∈ U(R) and β lies on a t -cycle of G1(R, k). 2

Recall that the Carmichael lambda-function λ(n) is defined as follows: λ(1) = λ(2) = 1, λ(4) =

2, λ(2k) = 2k−2 for k ⩾ 3, λ(pk) = (p − 1)pk−1 for any odd prime p and k ⩾ 1, λ(pk1
1 · · · pkr

r ) =

lcm[λ(pk1
1 ), . . . , λ(pkr

r )] , where p1, . . . , pr are distinct primes and ki ⩾ 1 for i ∈ {1, . . . , r} . Let L(G(R, k))

denote the length of the longest cycle in G(R, k). In the following theorem, we obtain max
k⩾2

L(G(R, k)) via

λ(n), where n = λ(R).

Theorem 2.10 Let R be a finite commutative ring. Then max
k⩾2

L(G(R, k)) = λ(λ(R)) .

Proof By Theorem 2.9, L(G(R, k)) = L(G1(R, k)). Further, let u be the largest divisor of λ(R) relatively

prime to k . Then there is an element g ∈ U(R) with o(g) = u . By Theorem 2.5, g lies on a t -cycle. Then

u | (kt − 1). Let γ ∈ U(R) be a cycle vertex. Then by Theorem 2.5 again, o(γ) |u . Assume that γ lies

on a m -cycle. Then m is the least positive integer for which km ≡ 1 (mod o(γ)). Since o(γ) |u , we have

o(γ) |u | (kt − 1). Hence, m | t and so we can conclude that L(G1(R, k)) = orduk .

Let n = λ(R). By the properties of the exponent of finite groups, it is well known that there is a positive

integer z ∈ U(Zn) such that ordnz = λ(n). Hence, by the argument above, L(G1(R, z)) = ordnz = λ(n) =

λ(λ(R)) since gcd(z, n) = gcd(z, λ(R)) = 1.
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Now let k ⩾ 2 be an arbitrary integer. Then L(G1(R, k)) = orduk , where u is the largest divisor of

λ(R) relatively prime to k . Thus t is the least positive integer such that kt ≡ 1 (mod u). Moreover, since

k ∈ U(Zu), we have kλ(u) ≡ 1 (mod u). Therefore, we derive that t |λ(u). Note that u |λ(R). Thus we have

t |λ(u) |λ(λ(R)). The assertion now follows. 2

3. Digraphs products and symmetric digraphs

Given two digraphs Γ1 and Γ2 , let Γ1 × Γ2 denote the digraph whose vertices are the ordered pairs (a1, a2),

where ai is an arbitrary vertex of Γi for i = 1, 2. In addition, there is a directed edge in Γ1 × Γ2 from

(a1, a2) to (b1, b2) if and only if there is a directed edge in Γ1 from a1 to b1 and there is a directed edge

in Γ2 from a2 to b2 . In general, if S ∼= S1 ⊕ · · · ⊕ St , where S , S1 , . . . , St are rings (or groups), then

G(S, k) ∼= G(S1, k)×· · ·×G(St, k). In this section, we employ the digraphs products as the key tool and obtain

results parallel to the work of Somer and Kř́ıžek, et al.

Lemma 3.1 Let Γ1 , Γ2 , Γ∗
1 , and Γ∗

2 be digraphs with Γ1
∼= Γ∗

1 , Γ2
∼= Γ∗

2 . Then Γ1 × Γ2
∼= Γ∗

1 × Γ∗
2 .

Proof Let fm be the digraph isomorphism from Γm onto Γ∗
m , where m = 1, 2. We define the mapping F

from Γ1 × Γ2 into Γ∗
1 × Γ∗

2 by

F ((a, b)) = (f1(a), f2(b)),

where (a, b) is an arbitrary vertex of Γ1 × Γ2 , a ∈ Γ1 and b ∈ Γ2 . It is easy to check that F is a digraph

isomorphism from Γ1 × Γ2 into Γ∗
1 × Γ∗

2 . 2

Let M ⩾ 2 be an integer. The digraph Γ is said to be symmetric of order M if its set of components

can be partitioned into subsets of size M , each containing M isomorphic components. Paper [10] investigated

the symmetric digraphs of G(Zn, k). Now we generalize some results and improve their proofs from [10].

Theorem 3.2 Suppose that R = R1 ⊕ R2 , where R1 and R2 are finite commutative rings. Let k ⩾ 2 and

M ⩾ 2 be integers. Let J(R1, k) be a disjoint union of exactly M distinct components of G(R1, k) such

that these components are all isomorphic. Let L(R2, k) be a disjoint union of components of G(R2, k) . Then

J(R1, k) × L(R2, k) is a disjoint union of components of G(R, k) = G(R1, k) × G(R2, k) that is symmetric of

order M .

Proof Suppose that the M isomorphic components in J(R1, k) are J1, . . . , JM with Ji ∼= Jt for i, t ∈
{1, . . . ,M} and each cycle in J(R1, k) is an s -cycle. Let L be any component of L(R2, k) with a d-cycle.

Then J(R1, k)× L ∼=
M∪
i=1

(Ji × L). Clearly, there are exactly

sd

lcm[s, d]
= gcd(s, d)

components in each subdigraph Ji×L for i ∈ {1, . . . ,M} . By Lemma 3.1, Ji×L ∼= Jt×L for i, t ∈ {1, . . . ,M} ,
which implies that for each component Ai,r in Ji × L , where r = 1, . . . , gcd(s, d), there exists a component

At,r in Jt × L so that Ai,r
∼= At,r . Hence, A1,r

∼= A2,r
∼= · · · ∼= AM,r . Therefore, J(R1, k)× L is symmetric of

order M , and hence J(R1, k)× L(R2, k) is symmetric of order M . 2

Theorems 5.1 and 5.7 of [10] determined the symmetric digraph of order M associated to Zn for various

integers M ⩾ 2 when n was given. Similarly, we have the following results for finite commutative rings.
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Theorem 3.3 Let R = R1 ⊕R2 , where R1 and R2 are finite commutative rings.

1. Suppose that R1 is a local ring with unique maximal ideal M such that |R1| = 2|M | = 2n , n ⩾ 1. Then

G(R, k) is symmetric of order 2 if one of the following conditions hold.

(a) n ⩽ 2 ⩽ k and 2 | k .

(b) n = 3 and 4 | k .

(c) n ⩾ 4 and 2n−2 | k .

2. Suppose that R1 is a local ring with unique maximal ideal M such that |R1| = p|M | = pn , p is an odd

prime, n ⩾ 1. Suppose further that (p− 1) | (k− 1) and pn−1 | k . Then G(R, k) is symmetric of order p .

3. Suppose that R1 = F
p
t1
1
⊕ · · · ⊕ Fpts

s
, where p1, . . . , ps are primes, t1 , . . . , ts and s are positive integers.

Suppose further that
s∏

i=1

(ptii − 1) | (k − 1). Then G(R, k) is symmetric of order pt11 · · · ptss .

4. Suppose that R1 = R0 ⊕ F
p
t1
1

⊕ · · · ⊕ Fpts
s
, where R0 is a local ring with unique maximal ideal M ,

|R0| = p0|M | = pn0 , p0 is an odd prime, n ⩾ 2, t1 , . . . , ts and s are positive integers, p1, . . . , ps are

primes such that p0 ̸= pi and p0 ∤ ptii − 1 for i ∈ {1, . . . , s} . Then there is a positive integer k such that

k ≡ 1 (mod (p0 − 1)
s∏

i=1

(ptii − 1)), k ≡ 0 (mod pn−1
0 ). (3.1)

Moreover, G(R, k) is symmetric of order p0p
t1
1 · · · ptss .

Proof (1) If n = 1, then R1 = F2 . Therefore, G(R1, k) is symmetric of order 2 for k ⩾ 2. If n = 2, then

R1 = Z4 if char(R1) = 22 . Otherwise, if char(R1) = 2, then by Theorem 3 of [5], R1 is isomorphic to the ring

of upper triangular matrices R∗ over F2 , where

R∗ =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
0 0

)}
.

Obviously, R∗ ∼= Z2[x]/⟨x2⟩ and R∗ is commutative. Hence, for α ∈ R1 , either αk = 0 or αk = 1 if 2 | k .
Thus G(R1, k) has precisely two components, one with fixed point 0 and the other with fixed point 1, and both

components are isomorphic. By Theorem 3.2, part (a) of case (1) holds.

Now suppose n = 3 and 4 | k . Clearly αk = 0 or αk = 1 for α ∈ R1 since |M | = |U(R1)| = 4. By

Theorem 3.2, part (b) of case (1) holds.

We now prove part (c) of case (1). Suppose that n ⩾ 4 and 2n−2 | k . By assumption, |M | = |U(R1)| =
2n−1 , and by Lemma 2.1, Mn = {0} . Note that k ⩾ n since n ⩾ 4 and 2n−2 | k . We see that αk = 0 for

α ∈ M . Furthermore, by the work of Gilmer in [2], if |S| = 2t , where S is a local ring and t ⩾ 4, then U(S) is

not a cyclic group. Thus U(R1) ∼= C2n1 × · · · ×C2ns , where s ⩾ 2, 1 ⩽ ni ⩽ n− 2, C2ni is a cyclic group with

order 2ni for i ∈ {1, . . . , s} , and n1 + · · · + ns = n − 1. Therefore, the exponent λ(R1) of U(R1) is equal to

2n−t for some t ∈ {2, . . . , n− 1} . It follows that β2n−2

= 1 for β ∈ U(R1). Moreover, since 2n−2 | k , we have
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βk = 1 for β ∈ U(R1). Thus G(R1, k) has precisely two components, and both components are isomorphic.

Theorem 3.2 establishes part (c) of case (1).

(2) By hypothesis, |U(R1)| = pn−1(p− 1). Therefore, U(R1) ∼= H1 ×H2 , where H1 and H2 are abelian

groups, |H1| = pn−1 and |H2| = p − 1. Thus, αpn−1

= 1, and hence αk = 1 for α ∈ H1 since pn−1 | k .
Therefore, G(H1, k) has exactly one component and indegH1(1) = pn−1 . On the other hand, for β ∈ H2 ,

βp−1 = 1, and hence βk = βk−1β = β since (p − 1) | (k − 1). Thus we can conclude that each vertex of

G(H2, k) is an isolated fixed point. By the definition of diagraphs products, we have

G1(R1, k) = G(U(R1), k) ∼= G(H1, k)×G(H2, k).

Therefore, G1(R1, k) has precisely p − 1 components, each of them is of height 1, and each cycle vertex is a

fixed point with in-degree pn−1 . Moreover, by Lemma 2.1, Mn = {0} . Since pn−1 | k , we derive that k > n .

Thus for γ ∈ M , γk = 0, and so indegR1(0) = |M | = pn−1 . Hence we can see that G(R1, k) has precisely p

components, and these components are all isomorphic. Therefore, case (2) follows by Theorem 3.2.

(3) It is obvious that αp
ti
i −1 = 1 for α ∈ F

p
ti
i
\ {0} . Since

s∏
i=1

(ptii − 1) | (k− 1), we have (ptii − 1) | (k− 1)

for i ∈ {1, . . . , s} . Hence, αk = αk−1α = α for α ∈ F
p
ti
i
\ {0} . Therefore, each vertex in G(F

p
ti
i
, k) is an

isolated fixed point. Thus, each vertex in G(R1, k) is an isolated fixed point, and, by Theorem 3.2, case (3)

holds.

(4) By assumption, gcd(p0, p
ti
i − 1) = 1 for i = 1, . . . , s . Hence, by the Chinese Remainder Theorem,

it is indeed possible to find a positive integer k such that (3.1) holds. Further, by the proof of (2), G(R0, k)

has precisely p0 components, and these components are all isomorphic. Moreover, by (3) above, each vertex in

G(F
p
t1
1
⊕· · ·⊕Fpts

s
, k) is an isolated fixed point. Therefore, it is evident that G(R1, k) has precisely p0p

t1
1 · · · ptss

components, and these components are all isomorphic. Thus this case follows by Theorem 3.2. 2

4. Isomorphic digraphs

Theorem 3.2 in paper [1] established a necessary and sufficient condition for G(Fp, k1) ∼= G(Fp, k2), where p is

a prime. In this section, we extend Theorem 3.2 of [1] to any finite abelian group. Before proceeding further,

we present the following propositions on the structure of iteration digraphs of finite groups.

Proposition 4.1 Suppose that H = Cn1 × · · · ×Cns is a finite abelian group. Let k2 > k1 be positive integers.

Then G(H, k1) = G(H, k2) if and only if lcm[n1, . . . , ns] divides k2 − k1 .

Proof Let Cni = ⟨gi⟩ for i ∈ {1, . . . , s} . Let g = (g1, . . . , gs) ∈ H . Then o(g) = lcm[n1, . . . , ns] . Assume

that G(H, k1) = G(H, k2). Then gk1 = gk2 . Hence, o(g) | (k2 − k1), i.e. lcm[n1, . . . , ns] | (k2 − k1).

Conversely, assume that lcm[n1, . . . , ns] | (k2 − k1). Then for β = (gd1
1 , . . . , gds

s ) ∈ H , where 1 ⩽ di ⩽
ni (i = 1, . . . , s), since o(β) | o(g), we obtain βo(g) = 1. Accordingly, βk2−k1 = 1, i.e. βk1 = βk2 . Thus

G(H, k1) = G(H, k2). 2

Proposition 4.2 Let Cn be a cyclic group with order n and k ⩾ 2 .
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1. Suppose gcd(n, k) = 1. Then G(Cn, k) is the disjoint union

G(Cn, k) =
∪
d |n

(σ(orddk) ∪ · · · ∪ σ(orddk))︸ ︷︷ ︸
φ(d)/orddk

,

where σ(l) is the cycle of length l and φ(d) is the Euler totient function.

2. Suppose that gcd(n, k) > 1 and n = uv , where u is the largest divisor of n relatively prime to k . Then

G(Cn, k) =
∪
d |u

(σ(orddk, T (Cv))) ∪ · · · ∪ σ(orddk, T (Cv)))︸ ︷︷ ︸
φ(d)/orddk

,

where σ(l, T (Cv)) consists of a cycle of length l with a copy of the tree T (Cv) attached to each vertex,

and T (Cv) is isomorphic to the tree attached to the fixed point 1 in G(Cv, k).

Proof (1) Let Cn =
∪
d |n

Hd , where Hd is the set of elements with order d in Cn , d |n . Since gcd(n, k) = 1,

we have gcd(d, k) = 1 for d |n . Therefore, for g ∈ Hd , orddk is the least positive integer such that gk
orddk

= g .

This implies that each element of Hd lies on a cycle of length orddk . Moreover, since |Hd| = φ(d), the formula

is established.

(2) Since u is the largest divisor of n relatively prime to k , p | k for each prime factor p of v . By

Lemma 2.2, the digraph G(Cv, k) has exactly one component. Moreover, Cn
∼= Cu × Cv since gcd(u, v) = 1.

Hence, G(Cn, k) ∼= G(Cu, k) × G(Cv, k). By case (1) above, each vertex of G(Cu, k) lies on a cycle. Thus by

the definition of digraph products, the result follows. 2

Proposition 4.3

1. Suppose that Γ1 = G(Cpt , pλ) and Γ2 = G(Cpt , pλm) , where λ, t , and m are positive integers and p is a

prime with p ∤ m . Then Γ1
∼= Γ2 .

2. Suppose that k1 and k2 are positive integers. If p | kj for any prime factor p of n (j = 1, 2) and

gcd(n, k1) = gcd(n, k2) , then G(Cn, k1) ∼= G(Cn, k2) .

Proof (1) If λ ⩾ t , then gp
λ

= gp
λm = 1 for g ∈ Cpt . Accordingly, Γ1

∼= Γ2 . Now we assume that 1 ⩽ λ < t .

By Lemma 2.2 (3), Γi has exactly one component, and the indegree of any vertex of Γi is either 0 or pλ ,

i = 1, 2. Let Cpt = ⟨a⟩ . In Γ1 , for x ∈ {1, . . . , pt} , the height of ax is h if and only if h is the least positive

integer for which (ax)p
λh

= 1, i.e. pt |xpλh . Analogously, in Γ2 , for y ∈ {1, . . . , pt} , the height of ay is h if

and only if h is the least positive integer for which (ay)p
λhmh

= 1, i.e. pt | ypλhmh . Since p ∤ m , we deduce

that the height of ay in Γ2 is h if and only if h is the least positive integer such that pt | ypλh . Accordingly,

the number of vertices with height h in Γ1 is equal to that of Γ2 for h ⩾ 1. Hence, Γ1
∼= Γ2 .

(2) By Lemma 2.2 (3), G(Cn, kj) has exactly one component, j = 1, 2. By hypothesis, one can assume

that

n = pt11 · · · ptss , k1 = pλ1
1 · · · pλs

s m1, k2 = pl11 · · · plss m2,
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where p1 < · · · < ps are primes, gcd(n,m1) = gcd(n,m2) = 1, ti , λi and li are positive integers for i = 1, . . . , s .

Moreover, min{ti, λi} = min{ti, li} for i ∈ {1, . . . , s} .
It is obvious that G(Cn, kj) ∼= G(C

p
t1
1
, kj) × · · · × G(Cpts

s
, kj) for j = 1, 2. Therefore, if G(C

p
ti
i
, k1) ∼=

G(C
p
ti
i
, k2) for i = 1, . . . , s , then, by Lemma 3.1, one can deduce that G(Cn, k1) ∼= G(Cn, k2).

Indeed, since min{ti, λi} = min{ti, li} , one has li ⩾ ti , provided that λi ⩾ ti , and so ptii | kj for j = 1, 2

and i ∈ {1, . . . , s} . Thus, it follows from Proposition 4.1 that G(C
p
ti
i
, k1) = G(C

p
ti
i
, ptii ) = G(C

p
ti
i
, k2). On the

other hand, if λi < ti , then one has li = λi . Therefore, for j = 1, 2, kj ≡ pλi
i ni,j (mod ptii ) for some ni,j with

pi ∤ ni,j . By Proposition 4.1 again, one has G(C
p
ti
i
, kj) = G(C

p
ti
i
, pλi

i ni,j). Moreover, by the result of above (1),

clearly G(C
p
ti
i
, pλi

i ni,1) ∼= G(C
p
ti
i
, pλi

i ) ∼= G(C
p
ti
i
, pλi

i ni,2). Accordingly, we obtain G(C
p
ti
i
, k1) ∼= G(C

p
ti
i
, k2).

2

Lemma 4.4 Suppose that
s∏

i=1

gcd(ni, a) =

s∏
i=1

gcd(ni, b), (4.1)

where n1, . . . , ns , a , b , and s are positive integers. If d | gcd(ni, a) for some i ∈ {1, . . . , s} , then d | gcd(ni, b) .

In particular, gcd(ni, a) = gcd(ni, b) for i ∈ {1, . . . , s} .

Proof Assume that

ni = p
t1,i
1 · · · ptk,i

k , a = pl11 · · · plkk , b = ph1
1 · · · phk

k ,

where k ⩾ 1, i ∈ {1, . . . , s} , p1 < · · · < pk are primes, tj,i , lj , hj ⩾ 0 for j ∈ {1, . . . , k} and i ∈ {1, . . . , s} .
Without loss of generality, we prove d | gcd(n1, b) if d | gcd(n1, a), and it suffices to show that hj ⩾ min{lj , tj,1}
for j ∈ {1, . . . , k} . By way of contradiction, we suppose that hm < min{lm, tm,1} for some m ∈ {1, . . . , k} .
For convenience, assume that h1 < min{l1, t1,1} . Then h1 < l1 and h1 < t1,1 . Moreover, by (4.1), we have

min{l1, t1,1}+min{l1, t1,2}+ · · ·+min{l1, t1,s}

= min{h1, t1,1}+min{h1, t1,2}+ · · ·+min{h1, t1,s}. (4.2)

By assumption, min{l1, t1,1} > h1 = min{h1, t1,1} . Furthermore, for λ ⩾ 2, we have either

min{l1, t1,λ} = l1 > h1 ⩾ min{h1, t1,λ}

or
min{l1, t1,λ} = t1,λ ⩾ min{h1, t1,λ}.

Hence
min{l1, t1,λ} ⩾ min{h1, t1,λ}

for λ ∈ {2, . . . , s} , and note that

min{l1, t1,1} > min{h1, t1,1},

which contradicts (4.2). Therefore, we derive that hj ⩾ min{lj , tj,1} for j ∈ {1, . . . , k} . The result now holds

immediately. 2

The following theorem extends Theorem 3.2 of [1] to any finite abelian group.
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Theorem 4.5 Let H = Cn1 × · · · × Cns , where Cni is a cyclic group with order ni ⩾ 2 for i ∈ {1, . . . , s} ,
s ⩾ 1 . Then G(H, k1) ∼= G(H, k2) if and only if the following two conditions are satisfied for i ∈ {1, . . . , s} .

1. gcd(ni, k1) = gcd(ni, k2).

2. There exists a positive integer ui such that ni = uivi , ui is the largest divisor of ni relatively prime to

k1 and is also the largest divisor of ni relatively prime to k2 . Moreover, for any d |ui , orddk1 = orddk2 .

Proof First, we prove the necessity of this theorem. Assume that G(H, k1) ∼= G(H, k2). By Lemma 2.2, the

in-degree of 1 in each G(Cni , km) is equal to gcd(ni, km), where m = 1, 2. Hence, in the digraph G(H, km),

the in-degree of 1 is
s∏

i=1

gcd(ni, km). Since G(H, k1) ∼= G(H, k2), we have

s∏
i=1

gcd(ni, k1) =
s∏

i=1

gcd(ni, k2).

By Lemma 4.4, gcd(ni, k1) = gcd(ni, k2) for i ∈ {1, . . . , s} . Thus the condition (1) holds and the first part of

(2) follows from (1).

Now consider the remainder part of (2). Let Ei,m denote the set of length of cycles in G(Cni , km). By

Proposition 4.2, Ei,m = {orddkm : d |ui} , m = 1, 2. Further, let Mm denote the set of length of cycles in

G(H, km). Then it is evident that

Mm =
{
lcm[t1, . . . , ts] : ti ∈ Ei,m, i ∈ {1, . . . , s}

}
. (4.3)

As the number of solutions in Cni of the equation gk = 1 is equal to gcd(ni, k), the number of solutions in H

of the equation gk = 1 is equal to
s∏

i=1

gcd(ni, k). Similarly to Theorem 5.6 of [10], we obtain the number A
(m)
t

of t-cycles in G(H, km):

A
(m)
t =

1

t

 s∏
i=1

gcd(ni, k
t
m − 1)−

∑
d | t
d ̸=t

dA
(m)
d

 , m = 1, 2.

Since G(H, k1) ∼= G(H, k2), it is obvious that M1 = M2 and A
(1)
t = A

(2)
t for t ∈ M . Let M1 = M2 = M . As

1 ∈ M , we derive that
s∏

i=1

gcd(ni, k1 − 1) =
s∏

i=1

gcd(ni, k2 − 1).

By induction on the length of cycles we have

s∏
i=1

gcd(ni, k
t
1 − 1) =

s∏
i=1

gcd(ni, k
t
2 − 1)

for t ∈ M . Now if d |ui , then gcd(d, km) = 1 for m = 1, 2. Let l1 = orddk1 and l2 = orddk2 . Then l1 ∈ Ei,1

while l2 ∈ Ei,2 . Since each digraph G(Cni , km) has cycles with length one, by (4.3), we see that l1, l2 ∈ M .
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Therefore, we have
s∏

i=1

gcd(ni, k
l1
1 − 1) =

s∏
i=1

gcd(ni, k
l1
2 − 1).

Note that d |ui , ui |ni , and d | (kl11 − 1), clearly d | gcd(ni, k
l1
1 − 1). By Lemma 4.4, d | gcd(ni, k

l1
2 − 1). Thus

d | (kl12 − 1), which implies that l2 | l1 . Similarly, we derive that l1 | l2 . Hence, l1 = l2 , that is, orddk1 = orddk2

for d |ui , establishing the necessity of this theorem.

Conversely, suppose the conditions (1) and (2) are satisfied. Note that Cni
∼= Cui × Cvi , and then

G(H, km) ∼= G(Cu1 , km)× · · · ×G(Cus , km)×G(Cv1 , km)× · · · ×G(Cvs , km)

for m = 1, 2. Since gcd(ui, k1) = gcd(ui, k2) = 1, by condition (2) and Proposition 4.2 (1), G(Cui , k1)
∼=

G(Cui , k2). Further, it is clear that gcd(vi, k1) = gcd(vi, k2) by condition (1), and p | km for any prime factor

p of vi , m = 1, 2. Therefore, by Proposition 4.3, G(Cvi , k1)
∼= G(Cvi , k2). Hence, by Lemma 3.1, we conclude

that G(H, k1) ∼= G(H, k2), as desired. 2
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