

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

The iteration digraphs of finite commutative rings

Yangjiang WEI*, Gaohua TANG

School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, P.R. China

Received: 01.03.2015 • Accepted/Published Online: 28.05.2015	•	Printed: 30.11.2015
--	---	----------------------------

Abstract: For a finite commutative ring S (resp., a finite abelian group S) and a positive integer $k \ge 2$, we construct an iteration digraph G(S,k) whose vertex set is S and for which there is a directed edge from $a \in S$ to $b \in S$ if $b = a^k$. We generalize some previous results of the iteration digraphs from the ring \mathbb{Z}_n of integers modulo n to finite commutative rings, and establish a necessary and sufficient condition for $G(S, k_1)$ and $G(S, k_2)$ to be isomorphic for any finite abelian group S.

Key words: Iteration digraph, isomorphic component, isomorphic digraph

1. Introduction

In 1992, motivated by [6], Szalay investigated properties of the iteration digraph representing a dynamical system occurring in number theory [12]. Subsequently, Rogers' published paper [7] concerned the graph of the square mapping on the prime fields, which was a topic appended as a kind of postscript to his talks on discrete dynamical systems. In recent years, there has been growing interest in the iteration digraphs associated with the ring \mathbb{Z}_n of integers modulo n, the quotient ring of polynomials over finite fields, and the ring of Gaussian integers modulo n, etc. (e.g., see [1, 3, 4, 11, 13, 14, 15]).

We describe this iteration digraph below. Let S be a finite commutative ring (resp., a finite abelian group). The graph G(S,k) $(k \ge 2$ is a positive integer) is a digraph whose vertices are the elements of S and for which there is a directed edge from $a \in S$ to $b \in S$ if $b = a^k$. In this paper, we generalize some previous results of iteration digraphs from \mathbb{Z}_n to finite commutative rings and establish a necessary and sufficient condition for $G(S, k_1)$ and $G(S, k_2)$ to be isomorphic for any finite abelian group S.

A component of a digraph is a directed subgraph that is a maximal connected subgraph of the associated undirected graph. If α is a vertex of a component in G(S, k), we use $\operatorname{Com}_{S}(\alpha)$ to denote this component.

Suppose α is a vertex of G(S, k). The in-degree of α , denoted by $\operatorname{indeg}_S(\alpha)$, is the number of directed edges entering α . We will simply write $\operatorname{indeg}(\alpha)$ when it is understood that α is a vertex in G(S, k).

Cycles of length t are called t-cycles, and cycles of length one are called *fixed points*. For an *isolated* fixed point α , the in-degree and out-degree (i.e. the number of edges leaving α) are both one. Suppose that α is a vertex in G(S,k); α is said to be of height $h \ge 0$, if h is the minimal nonnegative integer such that α^{k^h}

^{*}Correspondence: gus02@163.com

²⁰¹⁰ AMS Mathematics Subject Classification: 05C05; 11A07; 13M05.

This research was supported by the National Natural Science Foundation of China (11161006, 11461010), and the Guangxi Natural Science Foundation (2014GXNSFAA118005).

is a cycle vertex. If the maximal height of all vertices in a component is λ , then we say that this component has height λ . Attached to each cycle vertex α of G(S,k) is a tree $T_S(\alpha)$ whose root is α and whose additional vertices are the noncycle vertices β for which $\beta^{k^i} = \alpha$ for some positive integers *i*, but $\beta^{k^{i-1}}$ is not a cycle vertex.

Further, if R is a ring, let U(R) denote the unit group of R and D(R) the zero-divisor set of R. For $\alpha \in U(R)$, $o(\alpha)$ denotes the multiplicative order of α in R. If $R = \mathbb{Z}_n$, then we write $\operatorname{ord}_n \alpha$ instead of $o(\alpha)$. Moreover, we specify two particular subdigraphs $G_1(R, k)$ and $G_2(R, k)$ of G(R, k), i.e. $G_1(R, k)$ is induced by all the vertices of U(R), and $G_2(R, k)$ is induced by all the vertices of D(R).

This paper is organized as follows. After this introduction, we obtain some results in Section 2 on cycles and components of G(R, k) for finite commutative rings R. These results generalize the work [15] on the digraph associated to the square mapping. In Section 3, we employ the digraphs products to explore the symmetric digraphs and obtain results parallel to those of Somer and Křížek [10]. Section 4 gives a necessary and sufficient condition for $G(H, k_1)$ and $G(H, k_2)$ to be isomorphic, where H is a finite abelian group. This result extends the work in [1] for the multiplicative group of a prime field \mathbb{F}_p .

2. Cycles and components

The exponent $\exp(H)$ of a finite group H is the least positive integer n such that $g^n = 1$ for all $g \in H$. By the finite group theories, it is easy to show that if H is abelian; then there exists an element $g \in H$ such that $o(g) = \exp(H)$. In papers [9, 10, 11], the Carmichael lambda-function $\lambda(n)$ played the key role in the structure of $G(\mathbb{Z}_n, k)$. In fact, the function $\lambda(n)$ is equal to $\exp(U(\mathbb{Z}_n))$. Throughout this paper, we simply write $\lambda(R)$ instead of $\exp(U(R))$, where R is a ring.

It is well known that if R is a finite commutative ring with identity 1, then R can be uniquely expressed as a direct sum of local rings:

$$R = R_1 \oplus \dots \oplus R_s, \quad s \ge 1 \tag{2.1}$$

where R_i is a local ring for $i = 1, \ldots, s$.

Lemma 2.1 ([5, Theorem 2]) Let R be a finite local ring with identity element 1 that is not necessarily commutative. Let M be the unique maximal ideal of R. Then $|R| = p^{nr}$, $|M| = p^{(n-1)r}$, $M^n = \{0\}$, and $\operatorname{char}(R) = p^k$, where $\operatorname{char}(R)$ is the characteristic of R, p is a prime, n, r, k are positive integers, and $1 \leq k \leq n$.

Note by Lemma 2.1 that if n = 1, then R is the field \mathbb{F}_{p^r} with $|\mathbb{F}_{p^r}| = p^r$.

Since the unit group of a finite commutative ring is a product of some cyclic groups, we give some results concerning the iteration digraphs of cyclic groups that have been shown in paper [8].

Lemma 2.2 Let $k \ge 2$ be an integer. Let $C_n = \langle a \rangle$ be a cyclic group with o(a) = n. Suppose gcd(n,k) = d. Then in $G(C_n,k)$ we have the following conclusions.

- 1. For $a^x \in C_n$, indeg $(a^x) > 0$ if and only if $d \mid x$.
- 2. If $d \mid x$, then $indeg(a^x) = d$.

3. $G(C_n, k)$ has exactly one component if and only if $q \mid k$ for any prime factor q of n.

A digraph is regular if all its vertices have the same in-degree, while the digraph G(R, k) is said to be semiregular if there exists a positive integer d such that each vertex of G(R, k) has either in-degree 0 or d.

Theorem 2.3 For any finite commutative ring R and $k \ge 2$, $G_1(R, k)$ is regular or semiregular. In particular, if $U(R) = C_{n_1} \times \cdots \times C_{n_t}$, where C_{n_i} is a cyclic group with order n_i , and $gcd(n_i, k) = d_i$ for $i \in \{1, \ldots, t\}$, $t \ge 1$. Then for $\alpha \in U(R)$, $indeg(\alpha) = 0$ or $d_1 \cdots d_t$.

Proof Let $\alpha = (a_1, \ldots, a_t) \in U(R)$, where $a_i \in C_{n_i}$ for $i \in \{1, \ldots, t\}$. If $indeg(\alpha) > 0$; then $indeg_{C_{n_i}}(a_i) > 0$ for $i \in \{1, \ldots, t\}$, and hence

$$\operatorname{indeg}_{R}(\alpha) = \operatorname{indeg}_{C_{n_{1}}}(a_{1}) \times \cdots \times \operatorname{indeg}_{C_{n_{t}}}(a_{t}) = d_{1} \cdots d_{t}$$

by Lemma 2.2. Therefore, if $d_1 = \cdots = d_t = 1$, then $\operatorname{indeg}_R(\alpha) = 1$ and $G_1(R, k)$ is regular. Otherwise, $G_1(R, k)$ is semiregular.

Let Γ_i be a subdigraph of $G(S, k_i)$, i = 1, 2. We say that $\Gamma_1 \cong \Gamma_2$ if there exists a mapping f from the vertex set of Γ_1 to that of Γ_2 for which f satisfies the following conditions:

- 1. f is one-to-one and onto.
- 2. f sends vertices of height h into vertices of the same height h.
- 3. f is edge-preserving, that is, $[f(a)]^{k_2} = f(a^{k_2})$ for $a \in \Gamma_1$.

Similarly to the proof of Theorem 29 of [3], we have the following theorem.

Theorem 2.4 Let R be a finite commutative ring. Let $\beta \in U(R)$ be a cycle vertex of G(R,k) for $k \ge 2$. Then the tree $T_R(1)$ is isomorphic to the tree $T_R(\beta)$.

Proof Let $i \ge 0$ be an integer. Let β_i be the unique vertex in $G_1(R, k)$ that is in the same cycle as β and such that $\beta_i^{k^i} = \beta$, i.e. β_i is the cycle vertex *i* vertices before β . We define the mapping *f* from $T_R(1)$ into $T_R(\beta)$ by $f(\alpha) = \alpha \beta_h$ for any vertex α with height $h \ge 1$ in $T_R(1)$. It is easy to show that the mapping *f* is one-to-one and onto. Further,

$$[f(\alpha)]^k = (\alpha\beta_h)^k = \alpha^k \beta_h^k = \alpha^k \beta_{h-1} = f(\alpha^k),$$

where $\beta_h^k = \beta_{h-1}$ is derived by the uniqueness of β_h , while $f(\alpha^k) = \alpha^k \beta_{h-1}$ because the height of α^k is h-1. Thus the mapping f is edge-preserving and hence the tree $T_R(1)$ is isomorphic to the tree $T_R(\beta)$.

Theorem 2.5 Let R be a finite commutative ring. Let u be the largest divisor of $\lambda(R)$ relatively prime to $k \ge 2$.

- 1. The vertex α is a cycle vertex in $G_1(R,k)$ if and only if $gcd(o(\alpha),k) = 1$.
- 2. The vertex α is a cycle vertex in $G_1(R,k)$ if and only if $o(\alpha) \mid u$.

Proof (1) If α lies on a *t*-cycle, then *t* is the least positive integer such that $\alpha^{k^t} = \alpha$. Therefore, $o(\alpha) | (k^t - 1)$ and clearly $gcd(o(\alpha), k) = 1$. Conversely, if $gcd(o(\alpha), k) = 1$, then there is a least positive integer *t* such that $k^t \equiv 1 \pmod{o(\alpha)}$, and hence $\alpha^{k^t} = \alpha$. Thus α lies on a *t*-cycle.

(2) Let $\lambda(R) = uv$. Then for any prime factor q of v, we have $q \mid k$. If $gcd(o(\alpha), k) = 1$, then $gcd(o(\alpha), v) = 1$. It is obvious that $o(\alpha) \mid u$ since $o(\alpha) \mid \lambda(R)$. Conversely, if $o(\alpha) \mid u$, then $gcd(o(\alpha), k) = 1$. Therefore, by (1) above, case (2) holds.

Theorem 2.6 Let R be a finite commutative ring and $k \ge 2$.

- 1. The element 0 is an isolated fixed point in G(R, k) if and only if R is a direct sum of fields.
- 2. The identity 1 is an isolated fixed point in G(R, k) if and only if $gcd(\lambda(R), k) = 1$.
- **Proof** Let R be as in (2.1).

(1) Suppose $\alpha = (a_1, \ldots, a_s) \in R$ satisfies $\alpha^k = 0$. Then 0 is an isolated fixed point in G(R, k) if and only if indeg R(0) = 1, if and only if $a_i^k = 0$ and indeg $R_i a_i = 1$, if and only if R_i is a field for $i \in \{1, \ldots, s\}$.

(2) Suppose that $gcd(\lambda(R), k) = 1$. Then $gcd(\lambda(R_i), k) = 1$ for each $i \in \{1, \ldots, s\}$. Then for $\alpha \in U(R_i)$, $gcd(o(\alpha), k) = 1$. By Theorem 2.5, α lies on a *t*-cycle in $G(R_i, k)$ for some $t \ge 1$. Therefore, $indeg_R(1) = 1$. The converse is clear.

Theorem 2.7 Let R be a finite commutative ring and $k \ge 2$.

- 1. $G_1(R,k)$ is regular if and only if $gcd(\lambda(R),k) = 1$.
- 2. $G_1(R,k)$ is semiregular if and only if $gcd(\lambda(R),k) > 1$.
- 3. $G_2(R,k)$ is regular if and only if R is a direct sum of $s \ge 2$ fields with $gcd(\lambda(R),k) = 1$, or R is a field.
- 4. G(R,k) is regular if and only if R is a direct sum of $s \ge 1$ fields and $gcd(\lambda(R),k) = 1$.

Proof By Theorems 2.3 and 2.5, we derive (1) and (2).

Now suppose that $G_2(R, k)$ is regular. Let R be as in (2.1). Then for $\alpha \in D(R)$, we have indeg $R(\alpha) = 1$. If there exists $i \in \{1, \ldots, s\}$ such that R_i is not a field, without loss of generality, we assume that R_1 is not a field. Then there exists $0 \neq a \in D(R_1)$ such that $a^k = 0$. Therefore, $\alpha = (a, 0, \ldots, 0) \in D(R)$. Then $\alpha^k = 0$, and hence indeg R(0) > 1, which implies that $G_2(R, k)$ is not regular, a contradiction. Thus we assume that each R_i is a field for $i \in \{1, \ldots, s\}$, $s \ge 1$. If s = 1, clearly $G_2(R, k)$ is regular. If $s \ge 2$ but $gcd(\lambda(R), k) > 1$, then there exists a prime p such that $p \mid \lambda(R)$ and $p \mid k$. Therefore, we have an element $b_t \in U(R_t)$ for some $t \in \{1, \ldots, s\}$ with $o(b_t) = p$. Hence $b_t^p = b_t^k = 1$. For convenience, let t = 1 and $\beta = (1, 0, \ldots, 0) \in D(R)$. It is clear that indeg $R(\beta) > 1$ since $(b_1, 0, \ldots, 0)^k = \beta$. Therefore, $G_2(R, k)$ is not regular, a contradiction, and so we derive that $gcd(\lambda(R), k) = 1$. The converse of case (3) is clear.

Finally, note that G(R, k) is regular if and only if both $G_1(R, k)$ and $G_2(R, k)$ are regular. Therefore, case (4) follows from cases (1) and (3).

By Theorem 2.3, for any finite commutative ring R and $k \ge 2$, $G_1(R, k)$ is either regular or semiregular, and, by Theorem 2.7, we characterize all regular digraphs $G_2(R, k)$. However, the semiregularity of $G_2(R, k)$ is not easy to obtain (e.g., see Theorem 4.4 of [9] and Theorem 4.2 of [13]). In the following theorem, we present a condition when $G_2(R, k)$ is semiregular.

Theorem 2.8 Let R be a finite commutative local ring with unique maximal ideal M and char(R) = p^t for some odd prime p. If $2 \mid k$, then $G_2(R, k)$ is semiregular if and only if $\alpha^k = 0$ for $\alpha \in M$.

Proof Suppose that $G_2(R, k)$ is semiregular. If there exists $b \in M$ such that $b^k = c \neq 0$, then $indeg(c) \ge 1$. Consider the solutions in R of the equation $x^k = c$. We see that whenever $y^k = c$ for $y \in M$, then $(-y)^k = c$ since $2 \mid k$. Moreover, if -y = y, then 2y = 0, which contradicts the fact that the characteristic of R is odd. Thus $-y \neq y$. Further, 0 is not a solution of $x^k = c$, and so the number of solutions of this equation is even, i.e. indeg(c) is even. On the other hand, 0 is a solution of the equation $x^k = 0$. Similarly, whenever $z^k = 0$ for $0 \neq z \in M$, then $(-z)^k = 0$ with $-z \neq z$. Therefore, the number of solutions of the equation $x^k = 0$ is odd. Consequently, indeg(0) is odd. Hence, $indeg(0) \neq indeg(c)$. Therefore, $G_2(R,k)$ is not semiregular, which is a contradiction. This implies that for $a \in M$, $a^k = 0$. The converse is obvious.

Theorem 2.9 Let R be a finite commutative ring. If $G_2(R,k)$ contains a t-cycle $(t \ge 2)$, then $G_1(R,k)$ also contains a t-cycle.

Proof Let R be as in (2.1). If $G_2(R,k)$ contains a t-cycle $(t \ge 2)$, then it is obvious that $s \ge 2$. Suppose that $\alpha = (a_1, \ldots, a_s)$ lies on a t-cycle of $G_2(R,k)$, where $a_i \in D(R_i)$ or $U(R_i)$. Then a_i lies on a t_i -cycle of $G(R_i,k)$ for $i \in \{1,\ldots,s\}$. For convenience, we can suppose that $a_1 = \cdots = a_m = 0$, where $s - 1 \ge m \ge 1$, while $a_j \in U(R_j)$ for $j \in \{m+1,\ldots,s\}$. It is evident that $\operatorname{lcm}[t_1,\ldots,t_s] = t$. Since $t_1 = \cdots = t_m = 1$, we have $\operatorname{lcm}[t_{m+1},\ldots,t_s] = t$. Let $\beta = (b_1,\ldots,b_s)$, where $b_1 = \cdots = b_m = 1$, while $b_j = a_j$ for $j \in \{m+1,\ldots,s\}$. Clearly, $\beta \in U(R)$ and β lies on a t-cycle of $G_1(R,k)$.

Recall that the Carmichael lambda-function $\lambda(n)$ is defined as follows: $\lambda(1) = \lambda(2) = 1$, $\lambda(4) = 2$, $\lambda(2^k) = 2^{k-2}$ for $k \ge 3$, $\lambda(p^k) = (p-1)p^{k-1}$ for any odd prime p and $k \ge 1$, $\lambda(p_1^{k_1} \cdots p_r^{k_r}) = \lim[\lambda(p_1^{k_1}), \ldots, \lambda(p_r^{k_r})]$, where p_1, \ldots, p_r are distinct primes and $k_i \ge 1$ for $i \in \{1, \ldots, r\}$. Let L(G(R, k)) denote the length of the longest cycle in G(R, k). In the following theorem, we obtain $\max_{k\ge 2} L(G(R, k))$ via $\lambda(n)$, where $n = \lambda(R)$.

Theorem 2.10 Let R be a finite commutative ring. Then $\max_{k \ge 2} L(G(R,k)) = \lambda(\lambda(R))$.

Proof By Theorem 2.9, $L(G(R,k)) = L(G_1(R,k))$. Further, let u be the largest divisor of $\lambda(R)$ relatively prime to k. Then there is an element $g \in U(R)$ with o(g) = u. By Theorem 2.5, g lies on a t-cycle. Then $u \mid (k^t - 1)$. Let $\gamma \in U(R)$ be a cycle vertex. Then by Theorem 2.5 again, $o(\gamma) \mid u$. Assume that γ lies on a m-cycle. Then m is the least positive integer for which $k^m \equiv 1 \pmod{o(\gamma)}$. Since $o(\gamma) \mid u$, we have $o(\gamma) \mid u \mid (k^t - 1)$. Hence, $m \mid t$ and so we can conclude that $L(G_1(R, k)) = \operatorname{ord}_u k$.

Let $n = \lambda(R)$. By the properties of the exponent of finite groups, it is well known that there is a positive integer $z \in U(\mathbb{Z}_n)$ such that $\operatorname{ord}_n z = \lambda(n)$. Hence, by the argument above, $L(G_1(R, z)) = \operatorname{ord}_n z = \lambda(n) = \lambda(\lambda(R))$ since $\operatorname{gcd}(z, n) = \operatorname{gcd}(z, \lambda(R)) = 1$. Now let $k \ge 2$ be an arbitrary integer. Then $L(G_1(R, k)) = \operatorname{ord}_u k$, where u is the largest divisor of $\lambda(R)$ relatively prime to k. Thus t is the least positive integer such that $k^t \equiv 1 \pmod{u}$. Moreover, since $k \in U(\mathbb{Z}_u)$, we have $k^{\lambda(u)} \equiv 1 \pmod{u}$. Therefore, we derive that $t \mid \lambda(u)$. Note that $u \mid \lambda(R)$. Thus we have $t \mid \lambda(u) \mid \lambda(\lambda(R))$. The assertion now follows. \Box

3. Digraphs products and symmetric digraphs

Given two digraphs Γ_1 and Γ_2 , let $\Gamma_1 \times \Gamma_2$ denote the digraph whose vertices are the ordered pairs (a_1, a_2) , where a_i is an arbitrary vertex of Γ_i for i = 1, 2. In addition, there is a directed edge in $\Gamma_1 \times \Gamma_2$ from (a_1, a_2) to (b_1, b_2) if and only if there is a directed edge in Γ_1 from a_1 to b_1 and there is a directed edge in Γ_2 from a_2 to b_2 . In general, if $S \cong S_1 \oplus \cdots \oplus S_t$, where S, S_1, \ldots, S_t are rings (or groups), then $G(S,k) \cong G(S_1,k) \times \cdots \times G(S_t,k)$. In this section, we employ the digraphs products as the key tool and obtain results parallel to the work of Somer and Křížek, et al.

Lemma 3.1 Let Γ_1 , Γ_2 , Γ_1^* , and Γ_2^* be digraphs with $\Gamma_1 \cong \Gamma_1^*$, $\Gamma_2 \cong \Gamma_2^*$. Then $\Gamma_1 \times \Gamma_2 \cong \Gamma_1^* \times \Gamma_2^*$.

Proof Let f_m be the digraph isomorphism from Γ_m onto Γ_m^* , where m = 1, 2. We define the mapping F from $\Gamma_1 \times \Gamma_2$ into $\Gamma_1^* \times \Gamma_2^*$ by

$$F((a,b)) = (f_1(a), f_2(b)),$$

where (a, b) is an arbitrary vertex of $\Gamma_1 \times \Gamma_2$, $a \in \Gamma_1$ and $b \in \Gamma_2$. It is easy to check that F is a digraph isomorphism from $\Gamma_1 \times \Gamma_2$ into $\Gamma_1^* \times \Gamma_2^*$.

Let $M \ge 2$ be an integer. The digraph Γ is said to be symmetric of order M if its set of components can be partitioned into subsets of size M, each containing M isomorphic components. Paper [10] investigated the symmetric digraphs of $G(\mathbb{Z}_n, k)$. Now we generalize some results and improve their proofs from [10].

Theorem 3.2 Suppose that $R = R_1 \oplus R_2$, where R_1 and R_2 are finite commutative rings. Let $k \ge 2$ and $M \ge 2$ be integers. Let $J(R_1, k)$ be a disjoint union of exactly M distinct components of $G(R_1, k)$ such that these components are all isomorphic. Let $L(R_2, k)$ be a disjoint union of components of $G(R_2, k)$. Then $J(R_1, k) \times L(R_2, k)$ is a disjoint union of components of $G(R, k) = G(R_1, k) \times G(R_2, k)$ that is symmetric of order M.

Proof Suppose that the M isomorphic components in $J(R_1, k)$ are J_1, \ldots, J_M with $J_i \cong J_t$ for $i, t \in \{1, \ldots, M\}$ and each cycle in $J(R_1, k)$ is an *s*-cycle. Let L be any component of $L(R_2, k)$ with a *d*-cycle. Then $J(R_1, k) \times L \cong \bigcup_{i=1}^{M} (J_i \times L)$. Clearly, there are exactly

$$\frac{sd}{\operatorname{lcm}[s,d]} = \gcd(s,d)$$

components in each subdigraph $J_i \times L$ for $i \in \{1, ..., M\}$. By Lemma 3.1, $J_i \times L \cong J_t \times L$ for $i, t \in \{1, ..., M\}$, which implies that for each component $\mathbb{A}_{i,r}$ in $J_i \times L$, where $r = 1, ..., \operatorname{gcd}(s, d)$, there exists a component $\mathbb{A}_{t,r}$ in $J_t \times L$ so that $\mathbb{A}_{i,r} \cong \mathbb{A}_{t,r}$. Hence, $\mathbb{A}_{1,r} \cong \mathbb{A}_{2,r} \cong \cdots \cong \mathbb{A}_{M,r}$. Therefore, $J(R_1, k) \times L$ is symmetric of order M, and hence $J(R_1, k) \times L(R_2, k)$ is symmetric of order M.

Theorems 5.1 and 5.7 of [10] determined the symmetric digraph of order M associated to \mathbb{Z}_n for various integers $M \ge 2$ when n was given. Similarly, we have the following results for finite commutative rings.

Theorem 3.3 Let $R = R_1 \oplus R_2$, where R_1 and R_2 are finite commutative rings.

- 1. Suppose that R_1 is a local ring with unique maximal ideal M such that $|R_1| = 2|M| = 2^n$, $n \ge 1$. Then G(R, k) is symmetric of order 2 if one of the following conditions hold.
 - (a) $n \leq 2 \leq k$ and $2 \mid k$.
 - (b) n = 3 and 4 | k.
 - (c) $n \ge 4$ and $2^{n-2} \mid k$.
- 2. Suppose that R_1 is a local ring with unique maximal ideal M such that $|R_1| = p|M| = p^n$, p is an odd prime, $n \ge 1$. Suppose further that (p-1) | (k-1) and $p^{n-1} | k$. Then G(R,k) is symmetric of order p.
- 3. Suppose that $R_1 = \mathbb{F}_{p_1^{t_1}} \oplus \cdots \oplus \mathbb{F}_{p_s^{t_s}}$, where p_1, \ldots, p_s are primes, t_1, \ldots, t_s and s are positive integers. Suppose further that $\prod_{i=1}^s (p_i^{t_i} - 1) | (k-1)$. Then G(R,k) is symmetric of order $p_1^{t_1} \cdots p_s^{t_s}$.
- 4. Suppose that $R_1 = R_0 \oplus \mathbb{F}_{p_1^{t_1}} \oplus \cdots \oplus \mathbb{F}_{p_s^{t_s}}$, where R_0 is a local ring with unique maximal ideal M, $|R_0| = p_0|M| = p_0^n$, p_0 is an odd prime, $n \ge 2, t_1, \ldots, t_s$ and s are positive integers, p_1, \ldots, p_s are primes such that $p_0 \ne p_i$ and $p_0 \ne p_i^{t_i} - 1$ for $i \in \{1, \ldots, s\}$. Then there is a positive integer k such that

$$k \equiv 1 \pmod{(p_0 - 1)} \prod_{i=1}^{s} (p_i^{t_i} - 1)), \quad k \equiv 0 \pmod{p_0^{n-1}}.$$
(3.1)

Moreover, G(R,k) is symmetric of order $p_0 p_1^{t_1} \cdots p_s^{t_s}$.

Proof (1) If n = 1, then $R_1 = \mathbb{F}_2$. Therefore, $G(R_1, k)$ is symmetric of order 2 for $k \ge 2$. If n = 2, then $R_1 = \mathbb{Z}_4$ if $char(R_1) = 2^2$. Otherwise, if $char(R_1) = 2$, then by Theorem 3 of [5], R_1 is isomorphic to the ring of upper triangular matrices R^* over \mathbb{F}_2 , where

$$R^* = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) \right\}.$$

Obviously, $R^* \cong \mathbb{Z}_2[x]/\langle x^2 \rangle$ and R^* is commutative. Hence, for $\alpha \in R_1$, either $\alpha^k = 0$ or $\alpha^k = 1$ if 2 | k. Thus $G(R_1, k)$ has precisely two components, one with fixed point 0 and the other with fixed point 1, and both components are isomorphic. By Theorem 3.2, part (a) of case (1) holds.

Now suppose n = 3 and 4 | k. Clearly $\alpha^k = 0$ or $\alpha^k = 1$ for $\alpha \in R_1$ since $|M| = |U(R_1)| = 4$. By Theorem 3.2, part (b) of case (1) holds.

We now prove part (c) of case (1). Suppose that $n \ge 4$ and $2^{n-2} | k$. By assumption, $|M| = |U(R_1)| = 2^{n-1}$, and by Lemma 2.1, $M^n = \{0\}$. Note that $k \ge n$ since $n \ge 4$ and $2^{n-2} | k$. We see that $\alpha^k = 0$ for $\alpha \in M$. Furthermore, by the work of Gilmer in [2], if $|S| = 2^t$, where S is a local ring and $t \ge 4$, then U(S) is not a cyclic group. Thus $U(R_1) \cong C_{2^{n_1}} \times \cdots \times C_{2^{n_s}}$, where $s \ge 2$, $1 \le n_i \le n-2$, $C_{2^{n_i}}$ is a cyclic group with order 2^{n_i} for $i \in \{1, \ldots, s\}$, and $n_1 + \cdots + n_s = n - 1$. Therefore, the exponent $\lambda(R_1)$ of $U(R_1)$ is equal to 2^{n-t} for some $t \in \{2, \ldots, n-1\}$. It follows that $\beta^{2^{n-2}} = 1$ for $\beta \in U(R_1)$. Moreover, since $2^{n-2} | k$, we have

 $\beta^k = 1$ for $\beta \in U(R_1)$. Thus $G(R_1, k)$ has precisely two components, and both components are isomorphic. Theorem 3.2 establishes part (c) of case (1).

(2) By hypothesis, $|U(R_1)| = p^{n-1}(p-1)$. Therefore, $U(R_1) \cong H_1 \times H_2$, where H_1 and H_2 are abelian groups, $|H_1| = p^{n-1}$ and $|H_2| = p - 1$. Thus, $\alpha^{p^{n-1}} = 1$, and hence $\alpha^k = 1$ for $\alpha \in H_1$ since $p^{n-1} | k$. Therefore, $G(H_1, k)$ has exactly one component and $\operatorname{indeg}_{H_1}(1) = p^{n-1}$. On the other hand, for $\beta \in H_2$, $\beta^{p-1} = 1$, and hence $\beta^k = \beta^{k-1}\beta = \beta$ since (p-1)|(k-1). Thus we can conclude that each vertex of $G(H_2, k)$ is an isolated fixed point. By the definition of diagraphs products, we have

$$G_1(R_1, k) = G(\mathbf{U}(\mathbf{R}_1), k) \cong G(H_1, k) \times G(H_2, k).$$

Therefore, $G_1(R_1, k)$ has precisely p-1 components, each of them is of height 1, and each cycle vertex is a fixed point with in-degree p^{n-1} . Moreover, by Lemma 2.1, $M^n = \{0\}$. Since $p^{n-1} | k$, we derive that k > n. Thus for $\gamma \in M$, $\gamma^k = 0$, and so $\operatorname{indeg}_{R_1}(0) = |M| = p^{n-1}$. Hence we can see that $G(R_1, k)$ has precisely p components, and these components are all isomorphic. Therefore, case (2) follows by Theorem 3.2.

(3) It is obvious that $\alpha^{p_i^{t_i}-1} = 1$ for $\alpha \in \mathbb{F}_{p_i^{t_i}} \setminus \{0\}$. Since $\prod_{i=1}^{s} (p_i^{t_i}-1) \mid (k-1)$, we have $(p_i^{t_i}-1) \mid (k-1)$ for $i \in \{1, \ldots, s\}$. Hence, $\alpha^k = \alpha^{k-1}\alpha = \alpha$ for $\alpha \in \mathbb{F}_{p_i^{t_i}} \setminus \{0\}$. Therefore, each vertex in $G(\mathbb{F}_{p_i^{t_i}}, k)$ is an isolated fixed point. Thus, each vertex in $G(R_1, k)$ is an isolated fixed point, and, by Theorem 3.2, case (3) holds.

(4) By assumption, $gcd(p_0, p_i^{t_i} - 1) = 1$ for i = 1, ..., s. Hence, by the Chinese Remainder Theorem, it is indeed possible to find a positive integer k such that (3.1) holds. Further, by the proof of (2), $G(R_0, k)$ has precisely p_0 components, and these components are all isomorphic. Moreover, by (3) above, each vertex in $G(\mathbb{F}_{p_1^{t_1}} \oplus \cdots \oplus \mathbb{F}_{p_s^{t_s}}, k)$ is an isolated fixed point. Therefore, it is evident that $G(R_1, k)$ has precisely $p_0 p_1^{t_1} \cdots p_s^{t_s}$ components, and these components are all isomorphic. Thus this case follows by Theorem 3.2.

4. Isomorphic digraphs

Theorem 3.2 in paper [1] established a necessary and sufficient condition for $G(\mathbb{F}_p, k_1) \cong G(\mathbb{F}_p, k_2)$, where p is a prime. In this section, we extend Theorem 3.2 of [1] to any finite abelian group. Before proceeding further, we present the following propositions on the structure of iteration digraphs of finite groups.

Proposition 4.1 Suppose that $H = C_{n_1} \times \cdots \times C_{n_s}$ is a finite abelian group. Let $k_2 > k_1$ be positive integers. Then $G(H, k_1) = G(H, k_2)$ if and only if $lcm[n_1, \ldots, n_s]$ divides $k_2 - k_1$.

Proof Let $C_{n_i} = \langle g_i \rangle$ for $i \in \{1, ..., s\}$. Let $g = (g_1, ..., g_s) \in H$. Then $o(g) = \text{lcm}[n_1, ..., n_s]$. Assume that $G(H, k_1) = G(H, k_2)$. Then $g^{k_1} = g^{k_2}$. Hence, $o(g) | (k_2 - k_1)$, i.e. $\text{lcm}[n_1, ..., n_s] | (k_2 - k_1)$.

Conversely, assume that $\operatorname{lcm}[n_1, \ldots, n_s] | (k_2 - k_1)$. Then for $\beta = (g_1^{d_1}, \ldots, g_s^{d_s}) \in H$, where $1 \leq d_i \leq n_i$ $(i = 1, \ldots, s)$, since $o(\beta) | o(g)$, we obtain $\beta^{o(g)} = 1$. Accordingly, $\beta^{k_2 - k_1} = 1$, i.e. $\beta^{k_1} = \beta^{k_2}$. Thus $G(H, k_1) = G(H, k_2)$.

Proposition 4.2 Let C_n be a cyclic group with order n and $k \ge 2$.

1. Suppose gcd(n,k) = 1. Then $G(C_n,k)$ is the disjoint union

$$G(C_n,k) = \bigcup_{d \mid n} \underbrace{(\sigma(\operatorname{ord}_d k) \cup \cdots \cup \sigma(\operatorname{ord}_d k))}_{\varphi(d)/\operatorname{ord}_d k},$$

where $\sigma(l)$ is the cycle of length l and $\varphi(d)$ is the Euler totient function.

2. Suppose that gcd(n,k) > 1 and n = uv, where u is the largest divisor of n relatively prime to k. Then

$$G(C_n,k) = \bigcup_{d \mid u} \underbrace{(\sigma(\operatorname{ord}_d k, T(C_v))) \cup \cdots \cup \sigma(\operatorname{ord}_d k, T(C_v)))}_{\varphi(d)/\operatorname{ord}_d k},$$

where $\sigma(l, T(C_v))$ consists of a cycle of length l with a copy of the tree $T(C_v)$ attached to each vertex, and $T(C_v)$ is isomorphic to the tree attached to the fixed point 1 in $G(C_v, k)$.

Proof (1) Let $C_n = \bigcup_{d \mid n} H_d$, where H_d is the set of elements with order d in C_n , $d \mid n$. Since gcd(n,k) = 1,

we have gcd(d,k) = 1 for $d \mid n$. Therefore, for $g \in H_d$, $ord_d k$ is the least positive integer such that $g^{k^{ord_d k}} = g$. This implies that each element of H_d lies on a cycle of length $ord_d k$. Moreover, since $|H_d| = \varphi(d)$, the formula is established.

(2) Since u is the largest divisor of n relatively prime to k, $p \mid k$ for each prime factor p of v. By Lemma 2.2, the digraph $G(C_v, k)$ has exactly one component. Moreover, $C_n \cong C_u \times C_v$ since gcd(u, v) = 1. Hence, $G(C_n, k) \cong G(C_u, k) \times G(C_v, k)$. By case (1) above, each vertex of $G(C_u, k)$ lies on a cycle. Thus by the definition of digraph products, the result follows.

Proposition 4.3

- 1. Suppose that $\Gamma_1 = G(C_{p^t}, p^{\lambda})$ and $\Gamma_2 = G(C_{p^t}, p^{\lambda}m)$, where λ, t , and m are positive integers and p is a prime with $p \nmid m$. Then $\Gamma_1 \cong \Gamma_2$.
- 2. Suppose that k_1 and k_2 are positive integers. If $p \mid k_j$ for any prime factor p of n (j = 1, 2) and $gcd(n, k_1) = gcd(n, k_2)$, then $G(C_n, k_1) \cong G(C_n, k_2)$.

Proof (1) If $\lambda \ge t$, then $g^{p^{\lambda}} = g^{p^{\lambda}m} = 1$ for $g \in C_{p^t}$. Accordingly, $\Gamma_1 \cong \Gamma_2$. Now we assume that $1 \le \lambda < t$. By Lemma 2.2 (3), Γ_i has exactly one component, and the indegree of any vertex of Γ_i is either 0 or p^{λ} , i = 1, 2. Let $C_{p^t} = \langle a \rangle$. In Γ_1 , for $x \in \{1, \ldots, p^t\}$, the height of a^x is h if and only if h is the least positive integer for which $(a^x)^{p^{\lambda h}} = 1$, i.e. $p^t | xp^{\lambda h}$. Analogously, in Γ_2 , for $y \in \{1, \ldots, p^t\}$, the height of a^y is h if and only if h is the least positive integer for which $(a^y)^{p^{\lambda h}} = 1$, i.e. $p^t | xp^{\lambda h}$. Analogously, in Γ_2 , for $y \in \{1, \ldots, p^t\}$, the height of a^y is h if and only if h is the least positive integer for which $(a^y)^{p^{\lambda h}m^h} = 1$, i.e. $p^t | yp^{\lambda h}m^h$. Since $p \nmid m$, we deduce that the height of a^y in Γ_2 is h if and only if h is the least positive integer such that $p^t | yp^{\lambda h}$. Accordingly, the number of vertices with height h in Γ_1 is equal to that of Γ_2 for $h \ge 1$. Hence, $\Gamma_1 \cong \Gamma_2$.

(2) By Lemma 2.2 (3), $G(C_n, k_j)$ has exactly one component, j = 1, 2. By hypothesis, one can assume that

$$n = p_1^{t_1} \cdots p_s^{t_s}, \quad k_1 = p_1^{\lambda_1} \cdots p_s^{\lambda_s} m_1, \quad k_2 = p_1^{l_1} \cdots p_s^{l_s} m_2,$$

880

where $p_1 < \cdots < p_s$ are primes, $gcd(n, m_1) = gcd(n, m_2) = 1$, t_i , λ_i and l_i are positive integers for $i = 1, \ldots, s$. Moreover, $\min\{t_i, \lambda_i\} = \min\{t_i, l_i\}$ for $i \in \{1, \ldots, s\}$.

It is obvious that $G(C_n, k_j) \cong G(C_{p_1^{t_1}}, k_j) \times \cdots \times G(C_{p_s^{t_s}}, k_j)$ for j = 1, 2. Therefore, if $G(C_{p_i^{t_i}}, k_1) \cong G(C_{p_i^{t_i}}, k_2)$ for $i = 1, \ldots, s$, then, by Lemma 3.1, one can deduce that $G(C_n, k_1) \cong G(C_n, k_2)$.

Indeed, since $\min\{t_i, \lambda_i\} = \min\{t_i, l_i\}$, one has $l_i \ge t_i$, provided that $\lambda_i \ge t_i$, and so $p_i^{t_i} | k_j$ for j = 1, 2and $i \in \{1, \ldots, s\}$. Thus, it follows from Proposition 4.1 that $G(C_{p_i^{t_i}}, k_1) = G(C_{p_i^{t_i}}, p_i^{t_i}) = G(C_{p_i^{t_i}}, k_2)$. On the other hand, if $\lambda_i < t_i$, then one has $l_i = \lambda_i$. Therefore, for $j = 1, 2, k_j \equiv p_i^{\lambda_i} n_{i,j} \pmod{p_i^{t_i}}$ for some $n_{i,j}$ with $p_i \nmid n_{i,j}$. By Proposition 4.1 again, one has $G(C_{p_i^{t_i}}, k_j) = G(C_{p_i^{t_i}}, p_i^{\lambda_i} n_{i,j})$. Moreover, by the result of above (1), clearly $G(C_{p_i^{t_i}}, p_i^{\lambda_i} n_{i,1}) \cong G(C_{p_i^{t_i}}, p_i^{\lambda_i} n_{i,2})$. Accordingly, we obtain $G(C_{p_i^{t_i}}, k_1) \cong G(C_{p_i^{t_i}}, k_2)$. \Box

Lemma 4.4 Suppose that

$$\prod_{i=1}^{s} \gcd(n_i, a) = \prod_{i=1}^{s} \gcd(n_i, b),$$
(4.1)

where n_1, \ldots, n_s , a, b, and s are positive integers. If $d \mid \text{gcd}(n_i, a)$ for some $i \in \{1, \ldots, s\}$, then $d \mid \text{gcd}(n_i, b)$. In particular, $\text{gcd}(n_i, a) = \text{gcd}(n_i, b)$ for $i \in \{1, \ldots, s\}$.

Proof Assume that

 $n_i = p_1^{t_{1,i}} \cdots p_k^{t_{k,i}}, \ a = p_1^{l_1} \cdots p_k^{l_k}, \ b = p_1^{h_1} \cdots p_k^{h_k},$

where $k \ge 1$, $i \in \{1, \ldots, s\}$, $p_1 < \cdots < p_k$ are primes, $t_{j,i}$, l_j , $h_j \ge 0$ for $j \in \{1, \ldots, k\}$ and $i \in \{1, \ldots, s\}$. Without loss of generality, we prove $d \mid \gcd(n_1, b)$ if $d \mid \gcd(n_1, a)$, and it suffices to show that $h_j \ge \min\{l_j, t_{j,1}\}$ for $j \in \{1, \ldots, k\}$. By way of contradiction, we suppose that $h_m < \min\{l_m, t_{m,1}\}$ for some $m \in \{1, \ldots, k\}$. For convenience, assume that $h_1 < \min\{l_1, t_{1,1}\}$. Then $h_1 < l_1$ and $h_1 < t_{1,1}$. Moreover, by (4.1), we have

$$\min\{l_1, t_{1,1}\} + \min\{l_1, t_{1,2}\} + \dots + \min\{l_1, t_{1,s}\}$$
$$= \min\{h_1, t_{1,1}\} + \min\{h_1, t_{1,2}\} + \dots + \min\{h_1, t_{1,s}\}.$$
(4.2)

By assumption, $\min\{l_1, t_{1,1}\} > h_1 = \min\{h_1, t_{1,1}\}$. Furthermore, for $\lambda \ge 2$, we have either

$$\min\{l_1, t_{1,\lambda}\} = l_1 > h_1 \ge \min\{h_1, t_{1,\lambda}\}$$

or

$$\min\{l_1, t_{1,\lambda}\} = t_{1,\lambda} \ge \min\{h_1, t_{1,\lambda}\}.$$

Hence

$$\min\{l_1, t_{1,\lambda}\} \ge \min\{h_1, t_{1,\lambda}\}$$

for $\lambda \in \{2, \ldots, s\}$, and note that

$$\min\{l_1, t_{1,1}\} > \min\{h_1, t_{1,1}\},\$$

which contradicts (4.2). Therefore, we derive that $h_j \ge \min\{l_j, t_{j,1}\}$ for $j \in \{1, \dots, k\}$. The result now holds immediately.

The following theorem extends Theorem 3.2 of [1] to any finite abelian group.

Theorem 4.5 Let $H = C_{n_1} \times \cdots \times C_{n_s}$, where C_{n_i} is a cyclic group with order $n_i \ge 2$ for $i \in \{1, \ldots, s\}$, $s \ge 1$. Then $G(H, k_1) \cong G(H, k_2)$ if and only if the following two conditions are satisfied for $i \in \{1, \ldots, s\}$.

- 1. $gcd(n_i, k_1) = gcd(n_i, k_2)$.
- 2. There exists a positive integer u_i such that n_i = u_iv_i, u_i is the largest divisor of n_i relatively prime to k₁ and is also the largest divisor of n_i relatively prime to k₂. Moreover, for any d | u_i, ord_dk₁ = ord_dk₂.
 Proof First, we prove the necessity of this theorem. Assume that G(H, k₁) ≅ G(H, k₂). By Lemma 2.2, the in-degree of 1 in each G(C_{n_i}, k_m) is equal to gcd(n_i, k_m), where m = 1, 2. Hence, in the digraph G(H, k_m),

the in-degree of 1 is $\prod_{i=1}^{s} \operatorname{gcd}(n_i, k_m)$. Since $G(H, k_1) \cong G(H, k_2)$, we have

$$\prod_{i=1}^{s} \gcd(n_i, k_1) = \prod_{i=1}^{s} \gcd(n_i, k_2).$$

By Lemma 4.4, $gcd(n_i, k_1) = gcd(n_i, k_2)$ for $i \in \{1, \ldots, s\}$. Thus the condition (1) holds and the first part of (2) follows from (1).

Now consider the remainder part of (2). Let $E_{i,m}$ denote the set of length of cycles in $G(C_{n_i}, k_m)$. By Proposition 4.2, $E_{i,m} = \{ \operatorname{ord}_d k_m : d | u_i \}, m = 1, 2$. Further, let M_m denote the set of length of cycles in $G(H, k_m)$. Then it is evident that

$$M_m = \{ \text{lcm}[t_1, \dots, t_s] : t_i \in E_{i,m}, \ i \in \{1, \dots, s\} \}.$$
(4.3)

As the number of solutions in C_{n_i} of the equation $g^k = 1$ is equal to $gcd(n_i, k)$, the number of solutions in H of the equation $g^k = 1$ is equal to $\prod_{i=1}^{s} gcd(n_i, k)$. Similarly to Theorem 5.6 of [10], we obtain the number $A_t^{(m)}$ of t-cycles in $G(H, k_m)$:

$$A_t^{(m)} = \frac{1}{t} \left[\prod_{i=1}^s \gcd(n_i, k_m^t - 1) - \sum_{\substack{d \mid t \\ d \neq t}} dA_d^{(m)} \right], \ m = 1, 2.$$

Since $G(H, k_1) \cong G(H, k_2)$, it is obvious that $M_1 = M_2$ and $A_t^{(1)} = A_t^{(2)}$ for $t \in M$. Let $M_1 = M_2 = M$. As $1 \in M$, we derive that

$$\prod_{i=1}^{s} \gcd(n_i, k_1 - 1) = \prod_{i=1}^{s} \gcd(n_i, k_2 - 1).$$

By induction on the length of cycles we have

$$\prod_{i=1}^s \gcd(n_i,k_1^t-1) = \prod_{i=1}^s \gcd(n_i,k_2^t-1)$$

for $t \in M$. Now if $d \mid u_i$, then $gcd(d, k_m) = 1$ for m = 1, 2. Let $l_1 = ord_d k_1$ and $l_2 = ord_d k_2$. Then $l_1 \in E_{i,1}$ while $l_2 \in E_{i,2}$. Since each digraph $G(C_{n_i}, k_m)$ has cycles with length one, by (4.3), we see that $l_1, l_2 \in M$.

Therefore, we have

$$\prod_{i=1}^{s} \gcd(n_i, k_1^{l_1} - 1) = \prod_{i=1}^{s} \gcd(n_i, k_2^{l_1} - 1).$$

Note that $d | u_i, u_i | n_i$, and $d | (k_1^{l_1} - 1)$, clearly $d | \gcd(n_i, k_1^{l_1} - 1)$. By Lemma 4.4, $d | \gcd(n_i, k_2^{l_1} - 1)$. Thus $d | (k_2^{l_1} - 1)$, which implies that $l_2 | l_1$. Similarly, we derive that $l_1 | l_2$. Hence, $l_1 = l_2$, that is, $\operatorname{ord}_d k_1 = \operatorname{ord}_d k_2$ for $d | u_i$, establishing the necessity of this theorem.

Conversely, suppose the conditions (1) and (2) are satisfied. Note that $C_{n_i} \cong C_{u_i} \times C_{v_i}$, and then

$$G(H, k_m) \cong G(C_{u_1}, k_m) \times \dots \times G(C_{u_s}, k_m) \times G(C_{v_1}, k_m) \times \dots \times G(C_{v_s}, k_m)$$

for m = 1, 2. Since $gcd(u_i, k_1) = gcd(u_i, k_2) = 1$, by condition (2) and Proposition 4.2 (1), $G(C_{u_i}, k_1) \cong G(C_{u_i}, k_2)$. Further, it is clear that $gcd(v_i, k_1) = gcd(v_i, k_2)$ by condition (1), and $p \mid k_m$ for any prime factor p of v_i , m = 1, 2. Therefore, by Proposition 4.3, $G(C_{v_i}, k_1) \cong G(C_{v_i}, k_2)$. Hence, by Lemma 3.1, we conclude that $G(H, k_1) \cong G(H, k_2)$, as desired.

References

- [1] Deng G, Yuan P. Isomorphic digraphs from powers modulo p. Czech Math J 2011; 61: 771–779.
- [2] Gilmer RW Jr. Finite rings having a cyclic multiplicative group of units. Am J Math 1963; 85: 447–452.
- [3] Lucheta C, Miller E, Reiter C. Digraphs from powers modulo p. Fibonacci Quant 1996; 34: 226–239.
- [4] Meemark Y, Wiroonsri N. The digraph of the kth power mapping of the quotient ring of polynomials over finite fields. Finite Fields Th Appl 2012; 18: 179–191.
- [5] Raghavendran R. Finite associative rings. Compos Math 1969; 21: 195–229.
- [6] Robert F. Discrete Iterations. Springer Series in Comput Math Vol 6. Berlin, Germany: Springer-Verlag, 1986.
- [7] Rogers TD. The graph of the square mapping on the prime fields. Discrete Math 1996; 148: 317–324.
- [8] Sha M. Digraphs from endomorphisms of finite cyclic groups. ArXiV 2010.
- [9] Somer L, Křížek M. On semiregular digraphs of the congruence $x^k \equiv y \pmod{n}$. Comment Math Univ Carolin 2007; 48: 41–58.
- [10] Somer L, Křížek M. On symmetric digraphs of the congruence $x^k \equiv y \pmod{n}$. Discrete Math 2009; 309: 1999–2009.
- [11] Somer L, Křížek M. The structure of digraphs associted with the congruence $x^k \equiv y \pmod{n}$. Czech Math J 2011; 61: 337–358.
- [12] Szalay L. A discrete iteration in number theory. BDTF Tud Közl 1992; 8: 71–91 (in Hungarian).
- [13] Wei YJ, Nan JZ, Tang GH. The cubic mapping graph for the ring of Gaussian integers modulo n. Czech Math J 2011; 61: 1023–1036.
- [14] Wei YJ, Nan JZ, Tang GH. Structure of cubic mapping graph for the ring of Gaussian integers modulo n. Czech Math J 2012; 62: 527–539.
- [15] Wei YJ, Tang GH, Su HD. The square mapping graphs of finite commutative rings. Algebr Colloq 2012; 19: 569–580.