Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $872-883$
(C) TÜBITTAK
doi:10.3906/mat-1503-2

The iteration digraphs of finite commutative rings

Yangjiang WEI*, Gaohua TANG
School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, P.R. China

Received: 01.03.2015 • Accepted/Published Online: 28.05.2015 • Printed: 30.11 .2015

Abstract

For a finite commutative ring S (resp., a finite abelian group S) and a positive integer $k \geqslant 2$, we construct an iteration digraph $G(S, k)$ whose vertex set is S and for which there is a directed edge from $a \in S$ to $b \in S$ if $b=a^{k}$. We generalize some previous results of the iteration digraphs from the ring \mathbb{Z}_{n} of integers modulo n to finite commutative rings, and establish a necessary and sufficient condition for $G\left(S, k_{1}\right)$ and $G\left(S, k_{2}\right)$ to be isomorphic for any finite abelian group S.

Key words: Iteration digraph, isomorphic component, isomorphic digraph

1. Introduction

In 1992, motivated by [6], Szalay investigated properties of the iteration digraph representing a dynamical system occurring in number theory [12]. Subsequently, Rogers' published paper [7] concerned the graph of the square mapping on the prime fields, which was a topic appended as a kind of postscript to his talks on discrete dynamical systems. In recent years, there has been growing interest in the iteration digraphs associated with the ring \mathbb{Z}_{n} of integers modulo n, the quotient ring of polynomials over finite fields, and the ring of Gaussian integers modulo n, etc. (e.g., see $[1,3,4,11,13,14,15]$).

We describe this iteration digraph below. Let S be a finite commutative ring (resp., a finite abelian group). The graph $G(S, k)(k \geqslant 2$ is a positive integer) is a digraph whose vertices are the elements of S and for which there is a directed edge from $a \in S$ to $b \in S$ if $b=a^{k}$. In this paper, we generalize some previous results of iteration digraphs from \mathbb{Z}_{n} to finite commutative rings and establish a necessary and sufficient condition for $G\left(S, k_{1}\right)$ and $G\left(S, k_{2}\right)$ to be isomorphic for any finite abelian group S.

A component of a digraph is a directed subgraph that is a maximal connected subgraph of the associated undirected graph. If α is a vertex of a component in $G(S, k)$, we use $\operatorname{Com}_{S}(\alpha)$ to denote this component.

Suppose α is a vertex of $G(S, k)$. The in-degree of α, denoted by indeg ${ }_{S}(\alpha)$, is the number of directed edges entering α. We will simply write $\operatorname{indeg}(\alpha)$ when it is understood that α is a vertex in $G(S, k)$.

Cycles of length t are called t-cycles, and cycles of length one are called fixed points. For an isolated fixed point α, the in-degree and out-degree (i.e. the number of edges leaving α) are both one. Suppose that α is a vertex in $G(S, k) ; \alpha$ is said to be of height $h \geqslant 0$, if h is the minimal nonnegative integer such that $\alpha^{k^{h}}$

[^0]is a cycle vertex. If the maximal height of all vertices in a component is λ, then we say that this component has height λ. Attached to each cycle vertex α of $G(S, k)$ is a tree $T_{S}(\alpha)$ whose root is α and whose additional vertices are the noncycle vertices β for which $\beta^{k^{i}}=\alpha$ for some positive integers i, but $\beta^{k^{i-1}}$ is not a cycle vertex.

Further, if R is a ring, let $\mathrm{U}(R)$ denote the unit group of R and $\mathrm{D}(R)$ the zero-divisor set of R. For $\alpha \in \mathrm{U}(R), o(\alpha)$ denotes the multiplicative order of α in R. If $R=\mathbb{Z}_{n}$, then we write $\operatorname{ord}_{n} \alpha$ instead of $o(\alpha)$. Moreover, we specify two particular subdigraphs $G_{1}(R, k)$ and $G_{2}(R, k)$ of $G(R, k)$, i.e. $G_{1}(R, k)$ is induced by all the vertices of $\mathrm{U}(R)$, and $G_{2}(R, k)$ is induced by all the vertices of $\mathrm{D}(R)$.

This paper is organized as follows. After this introduction, we obtain some results in Section 2 on cycles and components of $G(R, k)$ for finite commutative rings R. These results generalize the work [15] on the digraph associated to the square mapping. In Section 3, we employ the digraphs products to explore the symmetric digraphs and obtain results parallel to those of Somer and Křížek [10]. Section 4 gives a necessary and sufficient condition for $G\left(H, k_{1}\right)$ and $G\left(H, k_{2}\right)$ to be isomorphic, where H is a finite abelian group. This result extends the work in [1] for the multiplicative group of a prime field \mathbb{F}_{p}.

2. Cycles and components

The exponent $\exp (H)$ of a finite group H is the least positive integer n such that $g^{n}=1$ for all $g \in H$. By the finite group theories, it is easy to show that if H is abelian; then there exists an element $g \in H$ such that $o(g)=\exp (H)$. In papers [9, 10, 11], the Carmichael lambda-function $\lambda(n)$ played the key role in the structure of $G\left(\mathbb{Z}_{n}, k\right)$. In fact, the function $\lambda(n)$ is equal to $\exp \left(\mathrm{U}\left(\mathbb{Z}_{n}\right)\right)$. Throughout this paper, we simply write $\lambda(R)$ instead of $\exp (\mathrm{U}(R))$, where R is a ring.

It is well known that if R is a finite commutative ring with identity 1 , then R can be uniquely expressed as a direct sum of local rings:

$$
\begin{equation*}
R=R_{1} \oplus \cdots \oplus R_{s}, \quad s \geqslant 1 \tag{2.1}
\end{equation*}
$$

where R_{i} is a local ring for $i=1, \ldots, s$.

Lemma 2.1 ([5, Theorem 2]) Let R be a finite local ring with identity element 1 that is not necessarily commutative. Let M be the unique maximal ideal of R. Then $|R|=p^{n r},|M|=p^{(n-1) r}, M^{n}=\{0\}$, and $\operatorname{char}(R)=p^{k}$, where char (R) is the characteristic of R, p is a prime, n, r, k are positive integers, and $1 \leqslant k \leqslant n$.

Note by Lemma 2.1 that if $n=1$, then R is the field $\mathbb{F}_{p^{r}}$ with $\left|\mathbb{F}_{p^{r}}\right|=p^{r}$.
Since the unit group of a finite commutative ring is a product of some cyclic groups, we give some results concerning the iteration digraphs of cyclic groups that have been shown in paper [8].

Lemma 2.2 Let $k \geqslant 2$ be an integer. Let $C_{n}=\langle a\rangle$ be a cyclic group with $o(a)=n$. Suppose $\operatorname{gcd}(n, k)=d$. Then in $G\left(C_{n}, k\right)$ we have the following conclusions.

1. For $a^{x} \in C_{n}, \operatorname{indeg}\left(a^{x}\right)>0$ if and only if $d \mid x$.
2. If $d \mid x$, then indeg $\left(a^{x}\right)=d$.
3. $G\left(C_{n}, k\right)$ has exactly one component if and only if $q \mid k$ for any prime factor q of n.

A digraph is regular if all its vertices have the same in-degree, while the digraph $G(R, k)$ is said to be semiregular if there exists a positive integer d such that each vertex of $G(R, k)$ has either in-degree 0 or d.

Theorem 2.3 For any finite commutative ring R and $k \geqslant 2, G_{1}(R, k)$ is regular or semiregular. In particular, if $\mathrm{U}(R)=C_{n_{1}} \times \cdots \times C_{n_{t}}$, where $C_{n_{i}}$ is a cyclic group with order n_{i}, and $\operatorname{gcd}\left(n_{i}, k\right)=d_{i}$ for $i \in\{1, \ldots, t\}$, $t \geqslant 1$. Then for $\alpha \in \mathrm{U}(R), \operatorname{indeg}(\alpha)=0$ or $d_{1} \cdots d_{t}$.
Proof Let $\alpha=\left(a_{1}, \ldots, a_{t}\right) \in \mathrm{U}(R)$, where $a_{i} \in C_{n_{i}}$ for $i \in\{1, \ldots, t\}$. If indeg $(\alpha)>0$; then $\operatorname{indeg}_{C_{n_{i}}}\left(a_{i}\right)>0$ for $i \in\{1, \ldots, t\}$, and hence

$$
\operatorname{indeg}_{R}(\alpha)=\operatorname{indeg}_{C_{n_{1}}}\left(a_{1}\right) \times \cdots \times \operatorname{indeg}_{C_{n_{t}}}\left(a_{t}\right)=d_{1} \cdots d_{t}
$$

by Lemma 2.2. Therefore, if $d_{1}=\cdots=d_{t}=1$, then $\operatorname{indeg}_{R}(\alpha)=1$ and $G_{1}(R, k)$ is regular. Otherwise, $G_{1}(R, k)$ is semiregular.

Let Γ_{i} be a subdigraph of $G\left(S, k_{i}\right), i=1,2$. We say that $\Gamma_{1} \cong \Gamma_{2}$ if there exists a mapping f from the vertex set of Γ_{1} to that of Γ_{2} for which f satisfies the following conditions:

1. f is one-to-one and onto.
2. f sends vertices of height h into vertices of the same height h.
3. f is edge-preserving, that is, $[f(a)]^{k_{2}}=f\left(a^{k_{2}}\right)$ for $a \in \Gamma_{1}$.

Similarly to the proof of Theorem 29 of [3], we have the following theorem.
Theorem 2.4 Let R be a finite commutative ring. Let $\beta \in \mathrm{U}(R)$ be a cycle vertex of $G(R, k)$ for $k \geqslant 2$. Then the tree $T_{R}(1)$ is isomorphic to the tree $T_{R}(\beta)$.
Proof Let $i \geqslant 0$ be an integer. Let β_{i} be the unique vertex in $G_{1}(R, k)$ that is in the same cycle as β and such that $\beta_{i}^{k^{i}}=\beta$, i.e. β_{i} is the cycle vertex i vertices before β. We define the mapping f from $T_{R}(1)$ into $T_{R}(\beta)$ by $f(\alpha)=\alpha \beta_{h}$ for any vertex α with height $h \geqslant 1$ in $T_{R}(1)$. It is easy to show that the mapping f is one-to-one and onto. Further,

$$
[f(\alpha)]^{k}=\left(\alpha \beta_{h}\right)^{k}=\alpha^{k} \beta_{h}^{k}=\alpha^{k} \beta_{h-1}=f\left(\alpha^{k}\right),
$$

where $\beta_{h}^{k}=\beta_{h-1}$ is derived by the uniqueness of β_{h}, while $f\left(\alpha^{k}\right)=\alpha^{k} \beta_{h-1}$ because the height of α^{k} is $h-1$. Thus the mapping f is edge-preserving and hence the tree $T_{R}(1)$ is isomorphic to the tree $T_{R}(\beta)$.

Theorem 2.5 Let R be a finite commutative ring. Let u be the largest divisor of $\lambda(R)$ relatively prime to $k \geqslant 2$ 。

1. The vertex α is a cycle vertex in $G_{1}(R, k)$ if and only if $\operatorname{gcd}(o(\alpha), k)=1$.
2. The vertex α is a cycle vertex in $G_{1}(R, k)$ if and only if $o(\alpha) \mid u$.

Proof (1) If α lies on a t-cycle, then t is the least positive integer such that $\alpha^{k^{t}}=\alpha$. Therefore, $o(\alpha) \mid\left(k^{t}-1\right)$ and clearly $\operatorname{gcd}(o(\alpha), k)=1$. Conversely, if $\operatorname{gcd}(o(\alpha), k)=1$, then there is a least positive integer t such that $k^{t} \equiv 1(\bmod o(\alpha))$, and hence $\alpha^{k^{t}}=\alpha$. Thus α lies on a t-cycle.
(2) Let $\lambda(R)=u v$. Then for any prime factor q of v, we have $q \mid k$. If $\operatorname{gcd}(o(\alpha), k)=1$, then $\operatorname{gcd}(o(\alpha), v)=1$. It is obvious that $o(\alpha) \mid u$ since $o(\alpha) \mid \lambda(R)$. Conversely, if $o(\alpha) \mid u$, then $\operatorname{gcd}(o(\alpha), k)=1$. Therefore, by (1) above, case (2) holds.

Theorem 2.6 Let R be a finite commutative ring and $k \geqslant 2$.

1. The element 0 is an isolated fixed point in $G(R, k)$ if and only if R is a direct sum of fields.
2. The identity 1 is an isolated fixed point in $G(R, k)$ if and only if $\operatorname{gcd}(\lambda(R), k)=1$.

Proof Let R be as in (2.1).
(1) Suppose $\alpha=\left(a_{1}, \ldots, a_{s}\right) \in R$ satisfies $\alpha^{k}=0$. Then 0 is an isolated fixed point in $G(R, k)$ if and only if $\operatorname{indeg}_{R}(0)=1$, if and only if $a_{i}^{k}=0$ and $\operatorname{indeg}_{R_{i}} a_{i}=1$, if and only if R_{i} is a field for $i \in\{1, \ldots, s\}$.
(2) Suppose that $\operatorname{gcd}(\lambda(R), k)=1$. Then $\operatorname{gcd}\left(\lambda\left(R_{i}\right), k\right)=1$ for each $i \in\{1, \ldots, s\}$. Then for $\alpha \in \mathrm{U}\left(R_{i}\right)$, $\operatorname{gcd}(o(\alpha), k)=1$. By Theorem 2.5, α lies on a t-cycle in $G\left(R_{i}, k\right)$ for some $t \geqslant 1$. Therefore, indeg $R(1)=1$. The converse is clear.

Theorem 2.7 Let R be a finite commutative ring and $k \geqslant 2$.

1. $G_{1}(R, k)$ is regular if and only if $\operatorname{gcd}(\lambda(R), k)=1$.
2. $G_{1}(R, k)$ is semiregular if and only if $\operatorname{gcd}(\lambda(R), k)>1$.
3. $G_{2}(R, k)$ is regular if and only if R is a direct sum of $s \geqslant 2$ fields with $\operatorname{gcd}(\lambda(R), k)=1$, or R is a field.
4. $G(R, k)$ is regular if and only if R is a direct sum of $s \geqslant 1$ fields and $\operatorname{gcd}(\lambda(R), k)=1$.

Proof By Theorems 2.3 and 2.5, we derive (1) and (2).
Now suppose that $G_{2}(R, k)$ is regular. Let R be as in (2.1). Then for $\alpha \in \mathrm{D}(R)$, we have indeg $R(\alpha)=1$. If there exists $i \in\{1, \ldots, s\}$ such that R_{i} is not a field, without loss of generality, we assume that R_{1} is not a field. Then there exists $0 \neq a \in \mathrm{D}\left(R_{1}\right)$ such that $a^{k}=0$. Therefore, $\alpha=(a, 0, \ldots, 0) \in \mathrm{D}(R)$. Then $\alpha^{k}=0$, and hence $\operatorname{indeg}_{R}(0)>1$, which implies that $G_{2}(R, k)$ is not regular, a contradiction. Thus we assume that each R_{i} is a field for $i \in\{1, \ldots, s\}, s \geqslant 1$. If $s=1$, clearly $G_{2}(R, k)$ is regular. If $s \geqslant 2$ but $\operatorname{gcd}(\lambda(R), k)>1$, then there exists a prime p such that $p \mid \lambda(R)$ and $p \mid k$. Therefore, we have an element $b_{t} \in \mathrm{U}\left(R_{t}\right)$ for some $t \in\{1, \ldots, s\}$ with $o\left(b_{t}\right)=p$. Hence $b_{t}^{p}=b_{t}^{k}=1$. For convenience, let $t=1$ and $\beta=(1,0, \ldots, 0) \in \mathrm{D}(R)$. It is clear that $\operatorname{indeg}_{R}(\beta)>1$ since $\left(b_{1}, 0, \ldots, 0\right)^{k}=\beta$. Therefore, $G_{2}(R, k)$ is not regular, a contradiction, and so we derive that $\operatorname{gcd}(\lambda(R), k)=1$. The converse of case (3) is clear.

Finally, note that $G(R, k)$ is regular if and only if both $G_{1}(R, k)$ and $G_{2}(R, k)$ are regular. Therefore, case (4) follows from cases (1) and (3).

WEI and TANG/Turk J Math

By Theorem 2.3, for any finite commutative ring R and $k \geqslant 2, G_{1}(R, k)$ is either regular or semiregular, and, by Theorem 2.7, we characterize all regular digraphs $G_{2}(R, k)$. However, the semiregularity of $G_{2}(R, k)$ is not easy to obtain (e.g., see Theorem 4.4 of [9] and Theorem 4.2 of [13]). In the following theorem, we present a condition when $G_{2}(R, k)$ is semiregular.

Theorem 2.8 Let R be a finite commutative local ring with unique maximal ideal M and $\operatorname{char}(R)=p^{t}$ for some odd prime p. If $2 \mid k$, then $G_{2}(R, k)$ is semiregular if and only if $\alpha^{k}=0$ for $\alpha \in M$.
Proof Suppose that $G_{2}(R, k)$ is semiregular. If there exists $b \in M$ such that $b^{k}=c \neq 0$, then indeg $(c) \geqslant 1$. Consider the solutions in R of the equation $x^{k}=c$. We see that whenever $y^{k}=c$ for $y \in M$, then $(-y)^{k}=c$ since $2 \mid k$. Moreover, if $-y=y$, then $2 y=0$, which contradicts the fact that the characteristic of R is odd. Thus $-y \neq y$. Further, 0 is not a solution of $x^{k}=c$, and so the number of solutions of this equation is even, i.e. $\operatorname{indeg}(c)$ is even. On the other hand, 0 is a solution of the equation $x^{k}=0$. Similarly, whenever $z^{k}=0$ for $0 \neq z \in M$, then $(-z)^{k}=0$ with $-z \neq z$. Therefore, the number of solutions of the equation $x^{k}=0$ is odd. Consequently, $\operatorname{indeg}(0)$ is odd. Hence, $\operatorname{indeg}(0) \neq \operatorname{indeg}(c)$. Therefore, $G_{2}(R, k)$ is not semiregular, which is a contradiction. This implies that for $a \in M, a^{k}=0$. The converse is obvious.

Theorem 2.9 Let R be a finite commutative ring. If $G_{2}(R, k)$ contains a t-cycle $(t \geqslant 2)$, then $G_{1}(R, k)$ also contains a t-cycle.
Proof Let R be as in (2.1). If $G_{2}(R, k)$ contains a t-cycle $(t \geqslant 2)$, then it is obvious that $s \geqslant 2$. Suppose that $\alpha=\left(a_{1}, \ldots, a_{s}\right)$ lies on a t-cycle of $G_{2}(R, k)$, where $a_{i} \in \mathrm{D}\left(R_{i}\right)$ or $\mathrm{U}\left(R_{i}\right)$. Then a_{i} lies on a t_{i}-cycle of $G\left(R_{i}, k\right)$ for $i \in\{1, \ldots, s\}$. For convenience, we can suppose that $a_{1}=\cdots=a_{m}=0$, where $s-1 \geqslant m \geqslant 1$, while $a_{j} \in \mathrm{U}\left(R_{j}\right)$ for $j \in\{m+1, \ldots, s\}$. It is evident that $\operatorname{lcm}\left[t_{1}, \ldots, t_{s}\right]=t$. Since $t_{1}=\cdots=t_{m}=1$, we have $\operatorname{lcm}\left[t_{m+1}, \ldots, t_{s}\right]=t$. Let $\beta=\left(b_{1}, \ldots, b_{s}\right)$, where $b_{1}=\cdots=b_{m}=1$, while $b_{j}=a_{j}$ for $j \in\{m+1, \ldots, s\}$. Clearly, $\beta \in \mathrm{U}(R)$ and β lies on a t-cycle of $G_{1}(R, k)$.

Recall that the Carmichael lambda-function $\lambda(n)$ is defined as follows: $\lambda(1)=\lambda(2)=1, \lambda(4)=$ $2, \lambda\left(2^{k}\right)=2^{k-2}$ for $k \geqslant 3, \lambda\left(p^{k}\right)=(p-1) p^{k-1}$ for any odd prime p and $k \geqslant 1, \lambda\left(p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}\right)=$ $\operatorname{lcm}\left[\lambda\left(p_{1}^{k_{1}}\right), \ldots, \lambda\left(p_{r}^{k_{r}}\right)\right]$, where p_{1}, \ldots, p_{r} are distinct primes and $k_{i} \geqslant 1$ for $i \in\{1, \ldots, r\}$. Let $L(G(R, k))$ denote the length of the longest cycle in $G(R, k)$. In the following theorem, we obtain $\max _{k \geqslant 2} L(G(R, k))$ via $\lambda(n)$, where $n=\lambda(R)$.

Theorem 2.10 Let R be a finite commutative ring. Then $\max _{k \geqslant 2} L(G(R, k))=\lambda(\lambda(R))$.
Proof By Theorem 2.9, $L(G(R, k))=L\left(G_{1}(R, k)\right)$. Further, let u be the largest divisor of $\lambda(R)$ relatively prime to k. Then there is an element $g \in \mathrm{U}(R)$ with $o(g)=u$. By Theorem 2.5, g lies on a t-cycle. Then $u \mid\left(k^{t}-1\right)$. Let $\gamma \in \mathrm{U}(R)$ be a cycle vertex. Then by Theorem 2.5 again, $o(\gamma) \mid u$. Assume that γ lies on a m-cycle. Then m is the least positive integer for which $k^{m} \equiv 1(\bmod o(\gamma))$. Since $o(\gamma) \mid u$, we have $o(\gamma)|u|\left(k^{t}-1\right)$. Hence, $m \mid t$ and so we can conclude that $L\left(G_{1}(R, k)\right)=\operatorname{ord}_{u} k$.

Let $n=\lambda(R)$. By the properties of the exponent of finite groups, it is well known that there is a positive integer $z \in \mathrm{U}\left(\mathbb{Z}_{n}\right)$ such that $\operatorname{ord}_{n} z=\lambda(n)$. Hence, by the argument above, $L\left(G_{1}(R, z)\right)=\operatorname{ord}_{n} z=\lambda(n)=$ $\lambda(\lambda(R))$ since $\operatorname{gcd}(z, n)=\operatorname{gcd}(z, \lambda(R))=1$.

Now let $k \geqslant 2$ be an arbitrary integer. Then $L\left(G_{1}(R, k)\right)=\operatorname{ord}_{u} k$, where u is the largest divisor of $\lambda(R)$ relatively prime to k. Thus t is the least positive integer such that $k^{t} \equiv 1(\bmod u)$. Moreover, since $k \in \mathrm{U}\left(\mathbb{Z}_{u}\right)$, we have $k^{\lambda(u)} \equiv 1(\bmod u)$. Therefore, we derive that $t \mid \lambda(u)$. Note that $u \mid \lambda(R)$. Thus we have $t|\lambda(u)| \lambda(\lambda(R))$. The assertion now follows.

3. Digraphs products and symmetric digraphs

Given two digraphs Γ_{1} and Γ_{2}, let $\Gamma_{1} \times \Gamma_{2}$ denote the digraph whose vertices are the ordered pairs $\left(a_{1}, a_{2}\right)$, where a_{i} is an arbitrary vertex of Γ_{i} for $i=1,2$. In addition, there is a directed edge in $\Gamma_{1} \times \Gamma_{2}$ from $\left(a_{1}, a_{2}\right)$ to $\left(b_{1}, b_{2}\right)$ if and only if there is a directed edge in Γ_{1} from a_{1} to b_{1} and there is a directed edge in Γ_{2} from a_{2} to b_{2}. In general, if $S \cong S_{1} \oplus \cdots \oplus S_{t}$, where S, S_{1}, \ldots, S_{t} are rings (or groups), then $G(S, k) \cong G\left(S_{1}, k\right) \times \cdots \times G\left(S_{t}, k\right)$. In this section, we employ the digraphs products as the key tool and obtain results parallel to the work of Somer and Křižek, et al.

Lemma 3.1 Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{1}^{*}$, and Γ_{2}^{*} be digraphs with $\Gamma_{1} \cong \Gamma_{1}^{*}, \Gamma_{2} \cong \Gamma_{2}^{*}$. Then $\Gamma_{1} \times \Gamma_{2} \cong \Gamma_{1}^{*} \times \Gamma_{2}^{*}$.
Proof Let f_{m} be the digraph isomorphism from Γ_{m} onto Γ_{m}^{*}, where $m=1,2$. We define the mapping F from $\Gamma_{1} \times \Gamma_{2}$ into $\Gamma_{1}^{*} \times \Gamma_{2}^{*}$ by

$$
F((a, b))=\left(f_{1}(a), f_{2}(b)\right)
$$

where (a, b) is an arbitrary vertex of $\Gamma_{1} \times \Gamma_{2}, a \in \Gamma_{1}$ and $b \in \Gamma_{2}$. It is easy to check that F is a digraph isomorphism from $\Gamma_{1} \times \Gamma_{2}$ into $\Gamma_{1}^{*} \times \Gamma_{2}^{*}$.

Let $M \geqslant 2$ be an integer. The digraph Γ is said to be symmetric of order M if its set of components can be partitioned into subsets of size M, each containing M isomorphic components. Paper [10] investigated the symmetric digraphs of $G\left(\mathbb{Z}_{n}, k\right)$. Now we generalize some results and improve their proofs from [10].

Theorem 3.2 Suppose that $R=R_{1} \oplus R_{2}$, where R_{1} and R_{2} are finite commutative rings. Let $k \geqslant 2$ and $M \geqslant 2$ be integers. Let $J\left(R_{1}, k\right)$ be a disjoint union of exactly M distinct components of $G\left(R_{1}, k\right)$ such that these components are all isomorphic. Let $L\left(R_{2}, k\right)$ be a disjoint union of components of $G\left(R_{2}, k\right)$. Then $J\left(R_{1}, k\right) \times L\left(R_{2}, k\right)$ is a disjoint union of components of $G(R, k)=G\left(R_{1}, k\right) \times G\left(R_{2}, k\right)$ that is symmetric of order M.
Proof Suppose that the M isomorphic components in $J\left(R_{1}, k\right)$ are J_{1}, \ldots, J_{M} with $J_{i} \cong J_{t}$ for $i, t \in$ $\{1, \ldots, M\}$ and each cycle in $J\left(R_{1}, k\right)$ is an s-cycle. Let L be any component of $L\left(R_{2}, k\right)$ with a d-cycle. Then $J\left(R_{1}, k\right) \times L \cong \bigcup_{i=1}^{M}\left(J_{i} \times L\right)$. Clearly, there are exactly

$$
\frac{s d}{\operatorname{lcm}[s, d]}=\operatorname{gcd}(s, d)
$$

components in each subdigraph $J_{i} \times L$ for $i \in\{1, \ldots, M\}$. By Lemma 3.1, $J_{i} \times L \cong J_{t} \times L$ for $i, t \in\{1, \ldots, M\}$, which implies that for each component $\mathbb{A}_{i, r}$ in $J_{i} \times L$, where $r=1, \ldots, \operatorname{gcd}(s, d)$, there exists a component $\mathbb{A}_{t, r}$ in $J_{t} \times L$ so that $\mathbb{A}_{i, r} \cong \mathbb{A}_{t, r}$. Hence, $\mathbb{A}_{1, r} \cong \mathbb{A}_{2, r} \cong \cdots \cong \mathbb{A}_{M, r}$. Therefore, $J\left(R_{1}, k\right) \times L$ is symmetric of order M, and hence $J\left(R_{1}, k\right) \times L\left(R_{2}, k\right)$ is symmetric of order M.

Theorems 5.1 and 5.7 of [10] determined the symmetric digraph of order M associated to \mathbb{Z}_{n} for various integers $M \geqslant 2$ when n was given. Similarly, we have the following results for finite commutative rings.

Theorem 3.3 Let $R=R_{1} \oplus R_{2}$, where R_{1} and R_{2} are finite commutative rings.

1. Suppose that R_{1} is a local ring with unique maximal ideal M such that $\left|R_{1}\right|=2|M|=2^{n}, n \geqslant 1$. Then $G(R, k)$ is symmetric of order 2 if one of the following conditions hold.
(a) $n \leqslant 2 \leqslant k$ and $2 \mid k$.
(b) $n=3$ and $4 \mid k$.
(c) $n \geqslant 4$ and $2^{n-2} \mid k$.
2. Suppose that R_{1} is a local ring with unique maximal ideal M such that $\left|R_{1}\right|=p|M|=p^{n}$, p is an odd prime, $n \geqslant 1$. Suppose further that $(p-1) \mid(k-1)$ and $p^{n-1} \mid k$. Then $G(R, k)$ is symmetric of order p.
3. Suppose that $R_{1}=\mathbb{F}_{p_{1}^{t_{1}}} \oplus \cdots \oplus \mathbb{F}_{p_{s}^{t_{s}}}$, where p_{1}, \ldots, p_{s} are primes, t_{1}, \ldots, t_{s} and s are positive integers. Suppose further that $\prod_{i=1}^{s}\left(p_{i}^{t_{i}}-1\right) \mid(k-1)$. Then $G(R, k)$ is symmetric of order $p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}$.
4. Suppose that $R_{1}=R_{0} \oplus \mathbb{F}_{p_{1}^{t_{1}}} \oplus \cdots \oplus \mathbb{F}_{p_{s}^{t_{s}}}$, where R_{0} is a local ring with unique maximal ideal M, $\left|R_{0}\right|=p_{0}|M|=p_{0}^{n}, p_{0}$ is an odd prime, $n \geqslant 2, t_{1}, \ldots, t_{s}$ and s are positive integers, p_{1}, \ldots, p_{s} are primes such that $p_{0} \neq p_{i}$ and $p_{0} \nmid p_{i}^{t_{i}}-1$ for $i \in\{1, \ldots, s\}$. Then there is a positive integer k such that

$$
\begin{equation*}
k \equiv 1\left(\bmod \left(p_{0}-1\right) \prod_{i=1}^{s}\left(p_{i}^{t_{i}}-1\right)\right), \quad k \equiv 0\left(\bmod p_{0}^{n-1}\right) \tag{3.1}
\end{equation*}
$$

Moreover, $G(R, k)$ is symmetric of order $p_{0} p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}$.
Proof (1) If $n=1$, then $R_{1}=\mathbb{F}_{2}$. Therefore, $G\left(R_{1}, k\right)$ is symmetric of order 2 for $k \geqslant 2$. If $n=2$, then $R_{1}=\mathbb{Z}_{4}$ if $\operatorname{char}\left(R_{1}\right)=2^{2}$. Otherwise, if $\operatorname{char}\left(R_{1}\right)=2$, then by Theorem 3 of [5], R_{1} is isomorphic to the ring of upper triangular matrices R^{*} over \mathbb{F}_{2}, where

$$
R^{*}=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\}
$$

Obviously, $R^{*} \cong \mathbb{Z}_{2}[x] /\left\langle x^{2}\right\rangle$ and R^{*} is commutative. Hence, for $\alpha \in R_{1}$, either $\alpha^{k}=0$ or $\alpha^{k}=1$ if $2 \mid k$. Thus $G\left(R_{1}, k\right)$ has precisely two components, one with fixed point 0 and the other with fixed point 1 , and both components are isomorphic. By Theorem 3.2, part (a) of case (1) holds.

Now suppose $n=3$ and $4 \mid k$. Clearly $\alpha^{k}=0$ or $\alpha^{k}=1$ for $\alpha \in R_{1}$ since $|M|=\left|\mathrm{U}\left(R_{1}\right)\right|=4$. By Theorem 3.2, part (b) of case (1) holds.

We now prove part (c) of case (1). Suppose that $n \geqslant 4$ and $2^{n-2} \mid k$. By assumption, $|M|=\left|\mathrm{U}\left(R_{1}\right)\right|=$ 2^{n-1}, and by Lemma 2.1, $M^{n}=\{0\}$. Note that $k \geqslant n$ since $n \geqslant 4$ and $2^{n-2} \mid k$. We see that $\alpha^{k}=0$ for $\alpha \in M$. Furthermore, by the work of Gilmer in [2], if $|S|=2^{t}$, where S is a local ring and $t \geqslant 4$, then $\mathrm{U}(S)$ is not a cyclic group. Thus $\mathrm{U}\left(R_{1}\right) \cong C_{2^{n_{1}}} \times \cdots \times C_{2^{n_{s}}}$, where $s \geqslant 2,1 \leqslant n_{i} \leqslant n-2, C_{2^{n_{i}}}$ is a cyclic group with order $2^{n_{i}}$ for $i \in\{1, \ldots, s\}$, and $n_{1}+\cdots+n_{s}=n-1$. Therefore, the exponent $\lambda\left(R_{1}\right)$ of $\mathrm{U}\left(R_{1}\right)$ is equal to 2^{n-t} for some $t \in\{2, \ldots, n-1\}$. It follows that $\beta^{2^{n-2}}=1$ for $\beta \in \mathrm{U}\left(R_{1}\right)$. Moreover, since $2^{n-2} \mid k$, we have
$\beta^{k}=1$ for $\beta \in \mathrm{U}\left(R_{1}\right)$. Thus $G\left(R_{1}, k\right)$ has precisely two components, and both components are isomorphic. Theorem 3.2 establishes part (c) of case (1).
(2) By hypothesis, $\left|\mathrm{U}\left(R_{1}\right)\right|=p^{n-1}(p-1)$. Therefore, $\mathrm{U}\left(\mathrm{R}_{1}\right) \cong H_{1} \times H_{2}$, where H_{1} and H_{2} are abelian groups, $\left|H_{1}\right|=p^{n-1}$ and $\left|H_{2}\right|=p-1$. Thus, $\alpha^{p^{n-1}}=1$, and hence $\alpha^{k}=1$ for $\alpha \in H_{1}$ since $p^{n-1} \mid k$. Therefore, $G\left(H_{1}, k\right)$ has exactly one component and indeg $H_{1}(1)=p^{n-1}$. On the other hand, for $\beta \in H_{2}$, $\beta^{p-1}=1$, and hence $\beta^{k}=\beta^{k-1} \beta=\beta$ since $(p-1) \mid(k-1)$. Thus we can conclude that each vertex of $G\left(H_{2}, k\right)$ is an isolated fixed point. By the definition of diagraphs products, we have

$$
G_{1}\left(R_{1}, k\right)=G\left(\mathrm{U}\left(\mathrm{R}_{1}\right), k\right) \cong G\left(H_{1}, k\right) \times G\left(H_{2}, k\right)
$$

Therefore, $G_{1}\left(R_{1}, k\right)$ has precisely $p-1$ components, each of them is of height 1 , and each cycle vertex is a fixed point with in-degree p^{n-1}. Moreover, by Lemma 2.1, $M^{n}=\{0\}$. Since $p^{n-1} \mid k$, we derive that $k>n$. Thus for $\gamma \in M, \gamma^{k}=0$, and so $\operatorname{indeg}_{R_{1}}(0)=|M|=p^{n-1}$. Hence we can see that $G\left(R_{1}, k\right)$ has precisely p components, and these components are all isomorphic. Therefore, case (2) follows by Theorem 3.2.
(3) It is obvious that $\alpha^{p_{i}^{t_{i}}-1}=1$ for $\alpha \in \mathbb{F}_{p_{i}^{t_{i}}} \backslash\{0\}$. Since $\prod_{i=1}^{s}\left(p_{i}^{t_{i}}-1\right) \mid(k-1)$, we have $\left(p_{i}^{t_{i}}-1\right) \mid(k-1)$ for $i \in\{1, \ldots, s\}$. Hence, $\alpha^{k}=\alpha^{k-1} \alpha=\alpha$ for $\alpha \in \mathbb{F}_{p_{i}^{t_{i}}} \backslash\{0\}$. Therefore, each vertex in $G\left(\mathbb{F}_{p_{i}^{t_{i}}}, k\right)$ is an isolated fixed point. Thus, each vertex in $G\left(R_{1}, k\right)$ is an isolated fixed point, and, by Theorem 3.2, case (3) holds.
(4) By assumption, $\operatorname{gcd}\left(p_{0}, p_{i}^{t_{i}}-1\right)=1$ for $i=1, \ldots, s$. Hence, by the Chinese Remainder Theorem, it is indeed possible to find a positive integer k such that (3.1) holds. Further, by the proof of $(2), G\left(R_{0}, k\right)$ has precisely p_{0} components, and these components are all isomorphic. Moreover, by (3) above, each vertex in $G\left(\mathbb{F}_{p_{1}^{t_{1}}} \oplus \cdots \oplus \mathbb{F}_{p_{s}^{t_{s}}}, k\right)$ is an isolated fixed point. Therefore, it is evident that $G\left(R_{1}, k\right)$ has precisely $p_{0} p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}$ components, and these components are all isomorphic. Thus this case follows by Theorem 3.2.

4. Isomorphic digraphs

Theorem 3.2 in paper [1] established a necessary and sufficient condition for $G\left(\mathbb{F}_{p}, k_{1}\right) \cong G\left(\mathbb{F}_{p}, k_{2}\right)$, where p is a prime. In this section, we extend Theorem 3.2 of [1] to any finite abelian group. Before proceeding further, we present the following propositions on the structure of iteration digraphs of finite groups.

Proposition 4.1 Suppose that $H=C_{n_{1}} \times \cdots \times C_{n_{s}}$ is a finite abelian group. Let $k_{2}>k_{1}$ be positive integers. Then $G\left(H, k_{1}\right)=G\left(H, k_{2}\right)$ if and only if $\operatorname{lcm}\left[n_{1}, \ldots, n_{s}\right]$ divides $k_{2}-k_{1}$.
Proof Let $C_{n_{i}}=\left\langle g_{i}\right\rangle$ for $i \in\{1, \ldots, s\}$. Let $g=\left(g_{1}, \ldots, g_{s}\right) \in H$. Then $o(g)=\operatorname{lcm}\left[n_{1}, \ldots, n_{s}\right]$. Assume that $G\left(H, k_{1}\right)=G\left(H, k_{2}\right)$. Then $g^{k_{1}}=g^{k_{2}}$. Hence, $o(g) \mid\left(k_{2}-k_{1}\right)$, i.e. $\operatorname{lcm}\left[n_{1}, \ldots, n_{s}\right] \mid\left(k_{2}-k_{1}\right)$.

Conversely, assume that $\operatorname{lcm}\left[n_{1}, \ldots, n_{s}\right] \mid\left(k_{2}-k_{1}\right)$. Then for $\beta=\left(g_{1}^{d_{1}}, \ldots, g_{s}^{d_{s}}\right) \in H$, where $1 \leqslant d_{i} \leqslant$ $n_{i}(i=1, \ldots, s)$, since $o(\beta) \mid o(g)$, we obtain $\beta^{o(g)}=1$. Accordingly, $\beta^{k_{2}-k_{1}}=1$, i.e. $\beta^{k_{1}}=\beta^{k_{2}}$. Thus $G\left(H, k_{1}\right)=G\left(H, k_{2}\right)$.

Proposition 4.2 Let C_{n} be a cyclic group with order n and $k \geqslant 2$.

1. Suppose $\operatorname{gcd}(n, k)=1$. Then $G\left(C_{n}, k\right)$ is the disjoint union

$$
G\left(C_{n}, k\right)=\bigcup_{d \mid n} \underbrace{\left(\sigma\left(\operatorname{ord}_{d} k\right) \cup \cdots \cup \sigma\left(\operatorname{ord}_{d} k\right)\right)}_{\varphi(d) / \operatorname{ord}_{d} k}
$$

where $\sigma(l)$ is the cycle of length l and $\varphi(d)$ is the Euler totient function.
2. Suppose that $\operatorname{gcd}(n, k)>1$ and $n=u v$, where u is the largest divisor of n relatively prime to k. Then

$$
G\left(C_{n}, k\right)=\bigcup_{d \mid u} \underbrace{\left.\left(\sigma\left(\operatorname{ord}_{d} k, T\left(C_{v}\right)\right)\right) \cup \cdots \cup \sigma\left(\operatorname{ord}_{d} k, T\left(C_{v}\right)\right)\right)}_{\varphi(d) / \operatorname{ord}_{d} k}
$$

where $\sigma\left(l, T\left(C_{v}\right)\right)$ consists of a cycle of length l with a copy of the tree $T\left(C_{v}\right)$ attached to each vertex, and $T\left(C_{v}\right)$ is isomorphic to the tree attached to the fixed point 1 in $G\left(C_{v}, k\right)$.

Proof (1) Let $C_{n}=\bigcup_{d \mid n} H_{d}$, where H_{d} is the set of elements with order d in $C_{n}, d \mid n$. Since $\operatorname{gcd}(n, k)=1$, we have $\operatorname{gcd}(d, k)=1$ for $d \mid n$. Therefore, for $g \in H_{d}, \operatorname{ord}_{d} k$ is the least positive integer such that $g^{k^{\text {ord }_{d} k}}=g$. This implies that each element of H_{d} lies on a cycle of length $\operatorname{ord}_{d} k$. Moreover, since $\left|H_{d}\right|=\varphi(d)$, the formula is established.
(2) Since u is the largest divisor of n relatively prime to $k, p \mid k$ for each prime factor p of v. By Lemma 2.2, the digraph $G\left(C_{v}, k\right)$ has exactly one component. Moreover, $C_{n} \cong C_{u} \times C_{v}$ since gcd $(u, v)=1$. Hence, $G\left(C_{n}, k\right) \cong G\left(C_{u}, k\right) \times G\left(C_{v}, k\right)$. By case (1) above, each vertex of $G\left(C_{u}, k\right)$ lies on a cycle. Thus by the definition of digraph products, the result follows.

Proposition 4.3

1. Suppose that $\Gamma_{1}=G\left(C_{p^{t}}, p^{\lambda}\right)$ and $\Gamma_{2}=G\left(C_{p^{t}}, p^{\lambda} m\right)$, where λ, t, and m are positive integers and p is a prime with $p \nmid m$. Then $\Gamma_{1} \cong \Gamma_{2}$.
2. Suppose that k_{1} and k_{2} are positive integers. If $p \mid k_{j}$ for any prime factor p of $n(j=1,2)$ and $\operatorname{gcd}\left(n, k_{1}\right)=\operatorname{gcd}\left(n, k_{2}\right)$, then $G\left(C_{n}, k_{1}\right) \cong G\left(C_{n}, k_{2}\right)$.

Proof (1) If $\lambda \geqslant t$, then $g^{p^{\lambda}}=g^{p^{\lambda} m}=1$ for $g \in C_{p^{t}}$. Accordingly, $\Gamma_{1} \cong \Gamma_{2}$. Now we assume that $1 \leqslant \lambda<t$. By Lemma 2.2 (3), Γ_{i} has exactly one component, and the indegree of any vertex of Γ_{i} is either 0 or p^{λ}, $i=1,2$. Let $C_{p^{t}}=\langle a\rangle$. In Γ_{1}, for $x \in\left\{1, \ldots, p^{t}\right\}$, the height of a^{x} is h if and only if h is the least positive integer for which $\left(a^{x}\right)^{p^{\lambda h}}=1$, i.e. $p^{t} \mid x p^{\lambda h}$. Analogously, in Γ_{2}, for $y \in\left\{1, \ldots, p^{t}\right\}$, the height of a^{y} is h if and only if h is the least positive integer for which $\left(a^{y}\right)^{p^{\lambda h} m^{h}}=1$, i.e. $p^{t} \mid y p^{\lambda h} m^{h}$. Since $p \nmid m$, we deduce that the height of a^{y} in Γ_{2} is h if and only if h is the least positive integer such that $p^{t} \mid y p^{\lambda h}$. Accordingly, the number of vertices with height h in Γ_{1} is equal to that of Γ_{2} for $h \geqslant 1$. Hence, $\Gamma_{1} \cong \Gamma_{2}$.
(2) By Lemma 2.2 (3), $G\left(C_{n}, k_{j}\right)$ has exactly one component, $j=1,2$. By hypothesis, one can assume that

$$
n=p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}, \quad k_{1}=p_{1}^{\lambda_{1}} \cdots p_{s}^{\lambda_{s}} m_{1}, \quad k_{2}=p_{1}^{l_{1}} \cdots p_{s}^{l_{s}} m_{2}
$$

where $p_{1}<\cdots<p_{s}$ are primes, $\operatorname{gcd}\left(n, m_{1}\right)=\operatorname{gcd}\left(n, m_{2}\right)=1, t_{i}, \lambda_{i}$ and l_{i} are positive integers for $i=1, \ldots, s$. Moreover, $\min \left\{t_{i}, \lambda_{i}\right\}=\min \left\{t_{i}, l_{i}\right\}$ for $i \in\{1, \ldots, s\}$.

It is obvious that $G\left(C_{n}, k_{j}\right) \cong G\left(C_{p_{1}^{t_{1}}}, k_{j}\right) \times \cdots \times G\left(C_{p_{s}^{t_{s}}}, k_{j}\right)$ for $j=1,2$. Therefore, if $G\left(C_{p_{i}^{t_{i}}}, k_{1}\right) \cong$ $G\left(C_{p_{i}^{t_{i}}}, k_{2}\right)$ for $i=1, \ldots, s$, then, by Lemma 3.1, one can deduce that $G\left(C_{n}, k_{1}\right) \cong G\left(C_{n}, k_{2}\right)$.

Indeed, since $\min \left\{t_{i}, \lambda_{i}\right\}=\min \left\{t_{i}, l_{i}\right\}$, one has $l_{i} \geqslant t_{i}$, provided that $\lambda_{i} \geqslant t_{i}$, and so $p_{i}^{t_{i}} \mid k_{j}$ for $j=1,2$ and $i \in\{1, \ldots, s\}$. Thus, it follows from Proposition 4.1 that $G\left(C_{p_{i}^{t_{i}}}, k_{1}\right)=G\left(C_{p_{i}^{t_{i}},}, p_{i}^{t_{i}}\right)=G\left(C_{p_{i}^{t_{i}},}, k_{2}\right)$. On the other hand, if $\lambda_{i}<t_{i}$, then one has $l_{i}=\lambda_{i}$. Therefore, for $j=1,2, k_{j} \equiv p_{i}^{\lambda_{i}} n_{i, j}\left(\bmod p_{i}^{t_{i}}\right)$ for some $n_{i, j}$ with $p_{i} \nmid n_{i, j}$. By Proposition 4.1 again, one has $G\left(C_{p_{i}^{t_{i}}}, k_{j}\right)=G\left(C_{p_{i}^{t_{i}}}, p_{i}^{\lambda_{i}} n_{i, j}\right)$. Moreover, by the result of above (1), clearly $G\left(C_{p_{i}^{t_{i}}}, p_{i}^{\lambda_{i}} n_{i, 1}\right) \cong G\left(C_{p_{i}^{t_{i}}}, \lambda_{i}^{\lambda_{i}}\right) \cong G\left(C_{p_{i}^{t_{i}}}, p_{i}^{\lambda_{i}} n_{i, 2}\right)$. Accordingly, we obtain $G\left(C_{p_{i}^{t_{i}}}, k_{1}\right) \cong G\left(C_{p_{i}^{t_{i}}}, k_{2}\right)$.

Lemma 4.4 Suppose that

$$
\begin{equation*}
\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, a\right)=\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, b\right) \tag{4.1}
\end{equation*}
$$

where $n_{1}, \ldots, n_{s}, a, b$, and s are positive integers. If $d \mid \operatorname{gcd}\left(n_{i}, a\right)$ for some $i \in\{1, \ldots, s\}$, then $d \mid \operatorname{gcd}\left(n_{i}, b\right)$. In particular, $\operatorname{gcd}\left(n_{i}, a\right)=\operatorname{gcd}\left(n_{i}, b\right)$ for $i \in\{1, \ldots, s\}$.
Proof Assume that

$$
n_{i}=p_{1}^{t_{1, i}} \cdots p_{k}^{t_{k, i}}, \quad a=p_{1}^{l_{1}} \cdots p_{k}^{l_{k}}, \quad b=p_{1}^{h_{1}} \cdots p_{k}^{h_{k}}
$$

where $k \geqslant 1, i \in\{1, \ldots, s\}, p_{1}<\cdots<p_{k}$ are primes, $t_{j, i}, l_{j}, h_{j} \geqslant 0$ for $j \in\{1, \ldots, k\}$ and $i \in\{1, \ldots, s\}$. Without loss of generality, we prove $d \mid \operatorname{gcd}\left(n_{1}, b\right)$ if $d \mid \operatorname{gcd}\left(n_{1}, a\right)$, and it suffices to show that $h_{j} \geqslant \min \left\{l_{j}, t_{j, 1}\right\}$ for $j \in\{1, \ldots, k\}$. By way of contradiction, we suppose that $h_{m}<\min \left\{l_{m}, t_{m, 1}\right\}$ for some $m \in\{1, \ldots, k\}$. For convenience, assume that $h_{1}<\min \left\{l_{1}, t_{1,1}\right\}$. Then $h_{1}<l_{1}$ and $h_{1}<t_{1,1}$. Moreover, by (4.1), we have

$$
\begin{align*}
& \min \left\{l_{1}, t_{1,1}\right\}+\min \left\{l_{1}, t_{1,2}\right\}+\cdots+\min \left\{l_{1}, t_{1, s}\right\} \\
= & \min \left\{h_{1}, t_{1,1}\right\}+\min \left\{h_{1}, t_{1,2}\right\}+\cdots+\min \left\{h_{1}, t_{1, s}\right\} . \tag{4.2}
\end{align*}
$$

By assumption, $\min \left\{l_{1}, t_{1,1}\right\}>h_{1}=\min \left\{h_{1}, t_{1,1}\right\}$. Furthermore, for $\lambda \geqslant 2$, we have either

$$
\min \left\{l_{1}, t_{1, \lambda}\right\}=l_{1}>h_{1} \geqslant \min \left\{h_{1}, t_{1, \lambda}\right\}
$$

or

$$
\min \left\{l_{1}, t_{1, \lambda}\right\}=t_{1, \lambda} \geqslant \min \left\{h_{1}, t_{1, \lambda}\right\} .
$$

Hence

$$
\min \left\{l_{1}, t_{1, \lambda}\right\} \geqslant \min \left\{h_{1}, t_{1, \lambda}\right\}
$$

for $\lambda \in\{2, \ldots, s\}$, and note that

$$
\min \left\{l_{1}, t_{1,1}\right\}>\min \left\{h_{1}, t_{1,1}\right\},
$$

which contradicts (4.2). Therefore, we derive that $h_{j} \geqslant \min \left\{l_{j}, t_{j, 1}\right\}$ for $j \in\{1, \ldots, k\}$. The result now holds immediately.

The following theorem extends Theorem 3.2 of [1] to any finite abelian group.

Theorem 4.5 Let $H=C_{n_{1}} \times \cdots \times C_{n_{s}}$, where $C_{n_{i}}$ is a cyclic group with order $n_{i} \geqslant 2$ for $i \in\{1, \ldots, s\}$, $s \geqslant 1$. Then $G\left(H, k_{1}\right) \cong G\left(H, k_{2}\right)$ if and only if the following two conditions are satisfied for $i \in\{1, \ldots, s\}$.

1. $\operatorname{gcd}\left(n_{i}, k_{1}\right)=\operatorname{gcd}\left(n_{i}, k_{2}\right)$.
2. There exists a positive integer u_{i} such that $n_{i}=u_{i} v_{i}, u_{i}$ is the largest divisor of n_{i} relatively prime to k_{1} and is also the largest divisor of n_{i} relatively prime to k_{2}. Moreover, for any $d \mid u_{i}, \operatorname{ord}_{d} k_{1}=\operatorname{ord}_{d} k_{2}$. Proof First, we prove the necessity of this theorem. Assume that $G\left(H, k_{1}\right) \cong G\left(H, k_{2}\right)$. By Lemma 2.2, the in-degree of 1 in each $G\left(C_{n_{i}}, k_{m}\right)$ is equal to $\operatorname{gcd}\left(n_{i}, k_{m}\right)$, where $m=1,2$. Hence, in the digraph $G\left(H, k_{m}\right)$, the in-degree of 1 is $\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{m}\right)$. Since $G\left(H, k_{1}\right) \cong G\left(H, k_{2}\right)$, we have

$$
\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{1}\right)=\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{2}\right)
$$

By Lemma 4.4, $\operatorname{gcd}\left(n_{i}, k_{1}\right)=\operatorname{gcd}\left(n_{i}, k_{2}\right)$ for $i \in\{1, \ldots, s\}$. Thus the condition (1) holds and the first part of (2) follows from (1).

Now consider the remainder part of (2). Let $E_{i, m}$ denote the set of length of cycles in $G\left(C_{n_{i}}, k_{m}\right)$. By Proposition 4.2, $E_{i, m}=\left\{\operatorname{ord}_{d} k_{m}: d \mid u_{i}\right\}, m=1,2$. Further, let M_{m} denote the set of length of cycles in $G\left(H, k_{m}\right)$. Then it is evident that

$$
\begin{equation*}
M_{m}=\left\{\operatorname{lcm}\left[t_{1}, \ldots, t_{s}\right]: t_{i} \in E_{i, m}, i \in\{1, \ldots, s\}\right\} \tag{4.3}
\end{equation*}
$$

As the number of solutions in $C_{n_{i}}$ of the equation $g^{k}=1$ is equal to $\operatorname{gcd}\left(n_{i}, k\right)$, the number of solutions in H of the equation $g^{k}=1$ is equal to $\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k\right)$. Similarly to Theorem 5.6 of [10], we obtain the number $A_{t}^{(m)}$ of t-cycles in $G\left(H, k_{m}\right)$:

$$
A_{t}^{(m)}=\frac{1}{t}\left[\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{m}^{t}-1\right)-\sum_{\substack{d \mid t \\ d \neq t}} d A_{d}^{(m)}\right], m=1,2
$$

Since $G\left(H, k_{1}\right) \cong G\left(H, k_{2}\right)$, it is obvious that $M_{1}=M_{2}$ and $A_{t}^{(1)}=A_{t}^{(2)}$ for $t \in M$. Let $M_{1}=M_{2}=M$. As $1 \in M$, we derive that

$$
\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{1}-1\right)=\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{2}-1\right)
$$

By induction on the length of cycles we have

$$
\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{1}^{t}-1\right)=\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{2}^{t}-1\right)
$$

for $t \in M$. Now if $d \mid u_{i}$, then $\operatorname{gcd}\left(d, k_{m}\right)=1$ for $m=1,2$. Let $l_{1}=\operatorname{ord}_{d} k_{1}$ and $l_{2}=\operatorname{ord}_{d} k_{2}$. Then $l_{1} \in E_{i, 1}$ while $l_{2} \in E_{i, 2}$. Since each digraph $G\left(C_{n_{i}}, k_{m}\right)$ has cycles with length one, by (4.3), we see that $l_{1}, l_{2} \in M$.

Therefore, we have

$$
\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{1}^{l_{1}}-1\right)=\prod_{i=1}^{s} \operatorname{gcd}\left(n_{i}, k_{2}^{l_{1}}-1\right)
$$

Note that $d\left|u_{i}, u_{i}\right| n_{i}$, and $d \mid\left(k_{1}^{l_{1}}-1\right)$, clearly $d \mid \operatorname{gcd}\left(n_{i}, k_{1}^{l_{1}}-1\right)$. By Lemma 4.4, $d \mid \operatorname{gcd}\left(n_{i}, k_{2}^{l_{1}}-1\right)$. Thus $d \mid\left(k_{2}^{l_{1}}-1\right)$, which implies that $l_{2} \mid l_{1}$. Similarly, we derive that $l_{1} \mid l_{2}$. Hence, $l_{1}=l_{2}$, that is, $\operatorname{ord}_{d} k_{1}=\operatorname{ord}_{d} k_{2}$ for $d \mid u_{i}$, establishing the necessity of this theorem.

Conversely, suppose the conditions (1) and (2) are satisfied. Note that $C_{n_{i}} \cong C_{u_{i}} \times C_{v_{i}}$, and then

$$
G\left(H, k_{m}\right) \cong G\left(C_{u_{1}}, k_{m}\right) \times \cdots \times G\left(C_{u_{s}}, k_{m}\right) \times G\left(C_{v_{1}}, k_{m}\right) \times \cdots \times G\left(C_{v_{s}}, k_{m}\right)
$$

for $m=1,2$. Since $\operatorname{gcd}\left(u_{i}, k_{1}\right)=\operatorname{gcd}\left(u_{i}, k_{2}\right)=1$, by condition (2) and Proposition 4.2 (1), $G\left(C_{u_{i}}, k_{1}\right) \cong$ $G\left(C_{u_{i}}, k_{2}\right)$. Further, it is clear that $\operatorname{gcd}\left(v_{i}, k_{1}\right)=\operatorname{gcd}\left(v_{i}, k_{2}\right)$ by condition (1), and $p \mid k_{m}$ for any prime factor p of $v_{i}, m=1,2$. Therefore, by Proposition $4.3, G\left(C_{v_{i}}, k_{1}\right) \cong G\left(C_{v_{i}}, k_{2}\right)$. Hence, by Lemma 3.1, we conclude that $G\left(H, k_{1}\right) \cong G\left(H, k_{2}\right)$, as desired.

References

[1] Deng G, Yuan P. Isomorphic digraphs from powers modulo p. Czech Math J 2011; 61: 771-779.
[2] Gilmer RW Jr. Finite rings having a cyclic multiplicative group of units. Am J Math 1963; 85: 447-452.
[3] Lucheta C, Miller E, Reiter C. Digraphs from powers modulo p. Fibonacci Quant 1996; 34: 226-239.
[4] Meemark Y, Wiroonsri N. The digraph of the k th power mapping of the quotient ring of polynomials over finite fields. Finite Fields Th Appl 2012; 18: 179-191.
[5] Raghavendran R. Finite associative rings. Compos Math 1969; 21: 195-229.
[6] Robert F. Discrete Iterations. Springer Series in Comput Math Vol 6. Berlin, Germany: Springer-Verlag, 1986.
[7] Rogers TD. The graph of the square mapping on the prime fields. Discrete Math 1996; 148: 317-324.
[8] Sha M. Digraphs from endomorphisms of finite cyclic groups. ArXiV 2010.
[9] Somer L, Křižek M. On semiregular digraphs of the congruence $x^{k} \equiv y(\bmod n)$. Comment Math Univ Carolin 2007; 48: 41-58.
[10] Somer L, Křižek M. On symmetric digraphs of the congruence $x^{k} \equiv y(\bmod n)$. Discrete Math 2009; 309: 1999-2009.
[11] Somer L, Křížek M. The structure of digraphs associted with the congruence $x^{k} \equiv y(\bmod n)$. Czech Math J 2011; 61: 337-358.
[12] Szalay L. A discrete iteration in number theory. BDTF Tud Közl 1992; 8: 71-91 (in Hungarian).
[13] Wei YJ, Nan JZ, Tang GH. The cubic mapping graph for the ring of Gaussian integers modulo n. Czech Math J 2011; 61: 1023-1036.
[14] Wei YJ, Nan JZ, Tang GH. Structure of cubic mapping graph for the ring of Gaussian integers modulo n. Czech Math J 2012; 62: 527-539.
[15] Wei YJ, Tang GH, Su HD. The square mapping graphs of finite commutative rings. Algebr Colloq 2012; 19: 569-580.

[^0]: *Correspondence: gus02@163.com
 2010 AMS Mathematics Subject Classification: 05C05; 11A07; 13M05.
 This research was supported by the National Natural Science Foundation of China (11161006, 11461010), and the Guangxi Natural Science Foundation (2014GXNSFAA118005).

