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Abstract: Let H be a finite dimensional Hopf algebra over a field k and A/B be a right H -Galois extension. In

this note the relationship of cotorsion dimensions between A and B will be studied. We prove that r.cot.D(A) ≤
r.cot.D(B) + l.D(H) . Moreover, we give some sufficient conditions for which r.cot.D(A) = r.cot.D(B) . As applications,

we obtain some results about cotorsion dimension of the smash product.
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1. Introduction and preliminaries

Throughout this paper, k denotes a fixed field, and we will always work over k . The tensor product ⊗ = ⊗k

and Hom is always assumed to be over k . For an algebra A , denote by Mod-A the category of right A -modules.

We write MA to indicate a right A-module. For an A -module M , let pd(M) and id(M) denote the projective

dimension and the injective dimension of M , respectively. We refer the reader to [12] for details about Hopf

algebras.

The definition of Hopf–Galois extension has its roots in the Chase–Harrison–Rosenberg approach to

Galois theory for groups acting on commutative rings (see [2]). In 1969 Chase and Sweedler extended these

ideas to coaction of a Hopf algebra H acting on a commutative k -algebra, for k a commutative ring (see [3]);

the general definition appeared in [8] in 1981. Hopf–Galois extensions also generalize strongly graded algebras

(here H is a group algebra) and certain inseparable field extensions (here the Hopf algebra is the restricted

enveloping algebra of a restricted Lie algebra), twisted group rings R ∗G of a group G acting on a ring R , and
so on.

Let H be a Hopf algebra over a field k and A be a right H -comodule algebra, i.e. A is a k -algebra

together with an H -comodule structure ρA : A → A⊗H (with notation a 7→ a0⊗a1 ) such that ρA is an algebra

map. Let B be the subalgebra of the H -coinvariant elements, B := AcoH := {a ∈ A| ρA(a) = a ⊗ 1} . Then

the extension A/B is called right H -Galois if the map β : A⊗B A → A⊗H , given by a⊗B b 7→ (a⊗ 1)ρ(b),

is bijective. For more details and unexplained concepts we refer the reader to [12].

Let R be a ring. For any right R -module M , the cotorsion dimension cd(M) of M is defined to be

the smallest integer n ⩾ 0 such that Extn+1
R (F,M) = 0 for any flat right R -module F . If there is no such
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n , set cd(M) = ∞ . The right global cotorsion dimension r.cot.D(R) of R is defined as the supremum of the

cotorsion dimensions of right R -modules (see [11]).

Recall from [6] that M is called cotorsion if Ext1R(F,M) = 0 for any flat right R -module F , i.e.

cd(M) = 0. So the cotorsion dimension of M measures how far away a module is from being cotorsion. The class

of cotorsion modules contains all pure-injective (hence injective) modules. Using it, some new characterizations

of right perfect rings and von Neumann regular rings can be given (see [10]).

The aim of this paper is to study the relationship of cotorsion dimensions of Hopf–Galois extensions. We

will prove the following two main results:

1. Let A/B be a right H -Galois extension for a finite dimensional Hopf algebra H . Then

r.cot.D(A) ≤ r.cot.D(B) + l.D(H).

2. Let H be a finite dimensional Hopf algebra that is semisimple as well as its dual H∗ (here H∗ =

Hom(H, k)), and A/B be a right faithfully flat H -Galois extension. Then

r.cot.D(A) = r.cot.D(B).

2. The main results, and their proof and corollaries

Let A/B be a right H -Galois extension. Consider the following two functors:

−⊗B A : Mod-B → Mod-A, M 7→ M ⊗B A,

(−)B : Mod-A → Mod-B, MA 7→ MB ,

where (−)B is the restriction functor.

Lemma 2.1 Let A/B be a right H -Galois extension for a finite dimensional Hopf algebra H . Then (− ⊗B

A, (−)B) and ((−)B ,−⊗B A) are both adjoint pairs.

Proof By adjoint isomorphism theorem, (−⊗BA, (−)B) is an adjoint pair. By Theorem 5 in [5], ((−)B ,−⊗BA)

is also an adjoint pair. 2

Remark 2.2 Let (F,G) be an adjoint pair of functors of abelian categories. Then F is right exact and G is

left exact. If G is exact, then F preserves projective objects; if F is exact, then G preserves injective objects.

Thus, by Lemma 2.1, the above functors − ⊗B A and (−)B are both exact, and so they preserve projective

objects and injective objects.

By Lemma 2.1 and the Remark, we immediately get the following lemma.

Lemma 2.3 Let A/B be a right H -Galois extension for a finite dimensional Hopf algebra H and P be a right

A-module. Then:

(1) PA being projective implies PB and P ⊗B A are both projective;

(2) PA being injective implies PB and P ⊗B A are both injective;
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(3) PA being flat implies PB and P ⊗B A are both flat.

Lemma 2.4 (Lemma 3.1 of [9]) Let A/B be a right H -Galois extension for a semisimple Hopf algebra H .

Then for any right A-module M , M is an A-direct summand of M ⊗B A .

The following lemma gives another equivalent definition of the right global cotorsion dimension of a ring

R proved in Theorem 7.2.5 of [11].

Lemma 2.5 Let R be a ring. Then

r.cot.D(R) = sup{pd(F )|F is a flat rightR-module}.

Lemma 2.6 Let A/B be a right H -Galois extension for a semisimple Hopf algebra H . Then for any flat right

A-module F , pd(FA) = pd(FB) .

Proof First, by Lemma 2.2 and the Remark, any projective resolution of FA is also a projective resolution of

FB . It follows that pd(FB) ≤ pd(FA).

Conversely, we may assume that pd(FB) = n < ∞ , and let P be a projective resolution of FB of length

n . Then by Lemma 2.2 and the Remark, P ⊗B A is a projective resolution of F ⊗B A as a right A -module.

This implies pd((F ⊗B A)A) ≤ pd(FB). Also by Lemma 2.3, F is an A -direct summand of F ⊗B A , and it

follows that pd(FA) ≤ pd((F ⊗B A)A). Thus, pd(FA) ≤ pd(FB). The proof is completed. 2

Combining Lemma 2.4 and Lemma 2.5, we immediately obtain the following result.

Proposition 2.7 Let A/B be a right H -Galois extension for a semisimple Hopf algebra H . Then

r.cot.D(A) ≤ r.cot.D(B).

Now we want to discuss when the right global cotorsion dimension of A is equal to that of B .

First we introduce the definitions of smash products. Let H be a Hopf algebra and A be a left H -module

algebra, i.e. A is a k -algebra together with an H -module structure · : H⊗A → A (with notation h⊗a 7→ h ·a)
such that h · (ab) = (h1 · a)(h2 · b) and h · 1 = ε(h)1 , for all a, b ∈ A and h ∈ H . Then the smash product

algebra A#H is the set A⊗H as a vector space, with multiplication

(a#h)(b#k) = a(h1 · b)#h2k2

for a, b ∈ A, h, k ∈ H . Here we write a#h for the element a⊗ h (see [12]).

In [4], the authors discussed the cotorsion dimension of the smash product A#H . Let H be a finite

dimensional Hopf algebra and A be a left H -module algebra. They proved that

l.cot.D(A#H) ≤ l.cot.D(A) + r.D(H),

where l.cot.D(A) is the left global cotorsion dimension of A and r.D(H) is the right global dimension of H .

Let A#H be a smash product. It is well known that A#H/A is a right H -Galois extension (see [12]).

In the following, we prove that the above result is also true for the Hopf–Galois extension and we give the right

version.
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Theorem 2.8 Let A/B be a right H -Galois extension for a finite dimensional Hopf algebra H . Then

r.cot.D(A) ≤ r.cot.D(B) + l.D(H).

Proof Compared to Proposition 2.6, we mainly discuss the left global dimension of H : l.D(H). Since H is

finite dimensional, by Theorem 2.1.3 of [12] H is a Frobenius algebra. It follows that the projective modules

of H and injective modules of H coincide. So for any H -module M , pd(M) = 0 or∞ . Indeed, let P be a

projective resolution of M of length n , denoting

P : 0−→Pn
dn−→ · · · d2−→ P1

d1−→ P0
d0−→ M−→0.

Set Ki = Kerdi (the kernel of di), i = 0, . . . , n− 1. Consider the short exact sequence

0−→Pn
dn−→ Pn−1 −→ Kn−1 −→ 0.

Since Pn is injective, this sequence is split; that is, Pn−1
∼= Pn ⊕Kn−1 , and Pn−1 is also injective, so one can

get that Kn−1 is injective (the category of injective modules is closed under the direct summands). Similarly,

we get that Ki, i = 0, . . . , n− 1 are all injective (hence projective). Consequently, one can obtain the following

short exact sequence:

0−→K0−→P0
d0−→ M−→0,

with K0, P0 projective. Thus, pd(M) = 0.

From all of the above, l.D(H) = 0 or∞ . If l.D(H) = 0, then H is semisimple and this theorem is just

Proposition 2.6. If l.D(H) = ∞ , then this theorem is obviously satisfied. The proof is completed. 2

Now we give a duality theorem of Hopf–Galois extensions. Let H be a finite dimensional Hopf algebra.

Then a right H -comodule algebra A corresponds to a left H∗ -module algebra A via f ⇀ a = a0 < f, a1 >

(see [12]). Thus, A and H∗ form a smash product algebra A#H∗ . Let A/B be a right H -Galois extension

for a finite dimensional Hopf algebra H . From Theorem 8.3.3 of [12], there is a canonical isomorphism between

the smash product algebra A#H∗ and the endomorphism algebra EndAB ; that is, A#H∗ ∼= EndAB , where

the right B -module action on A is the multiplication.

Lemma 2.9 Let A/B be a right H -Galois extension for a finite dimensional Hopf algebra H . If A/B is

faithfully flat, then A#H∗ is Morita equivalent to B .

Proof By the above, A#H∗ ∼= EndAB . Since A/B is right faithfully flat, by [12] or the right version of

Theorem 2.6 in [1], we obtain that A is a right B -progenerator. Hence, A#H∗ is Morita equivalent to B . 2

Note that there are many examples of faithfully flat Hopf–Galois extensions (cf. [14]). For example, the

smash product extension A#H/A is a right faithfully flat H -Galois extension. In [14], the author studied the

representation theory of the faithfully flat Hopf–Galois extension.

Now we obtain the main result as follows.

Theorem 2.10 Let H be a finite dimensional Hopf algebra that is semisimple as well as its dual H∗ , and

A/B be a right faithfully flat H -Galois extension. Then:

(1) r.cot.D(A) = r.cot.D(B) .
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(2) A is right perfect if and only if so is B .

Proof

(1) First, by Proposition 2.6, r.cot.D(A) ≤ r.cot.D(B).

Next we consider the smash product algebra A#H∗ . Since A#H∗/A is a right H∗ -Galois extension,

combining the semisimplicity of H∗ , we have r.cot.D(A#H∗) ≤ r.cot.D(A). Since A/B is faithfully flat,

by Lemma 2.8, A#H∗ is Morita equivalent to B . It follows that r.cot.D(B) = r.cot.D(A#H∗). Then

r.cot.D(B) = r.cot.D(A#H∗) ≤ r.cot.D(A) ≤ r.cot.D(B).

Therefore, r.cot.D(A) = r.cot.D(B).

(2) It immediately follows from (1) since A is right perfect if and only if r.cot.D(A) = 0 by Corollary 7.2.7 of

[11].

2

Let A#H be a smash product. Then A#H/A is a right faithfully flat H -Galois extension, and so we

have the following corollary.

Corollary 2.11 Let H be a finite dimensional Hopf algebra that is semisimple as well as its dual H∗ , and

A#H be a smash product. Then

r.cot.D(A#H) = r.cot.D(A).

Note that the result of the above corollary is also true for the crossed product A#σH , which are

generalizations of the smash products (for the definition of the crossed product, see Definition 7.1.1 of [12]),

since the crossed product extension A#σH/A is also a right faithfully flat H -Galois extension (see [14]).

Let A/B be a right H -Galois extension. We now give another sufficient condition for which r.cot.D(A) =

r.cot.D(B) using separable functor.

Now we recall the definition of a separable functor. Let C and D be two categories and F : C → D be a

covariant functor. F induces a natural transformation

F : HomC(·, ·) → HomD(F (·), F (·)); FC,C′(f) = F (f).

We say that F is a separable functor if F splits, i.e. we have a natural transformation

P : HomD(F (·), F (·)) → HomC(·, ·)

such that
P ◦ F = 1HomC(·,·),

the identity natural transformation on HomC(·, ·). The more explicit form of the definition can be found in [13]

in which separable functors were first introduced.

The terminology comes from the fact that, for a ring extension R → S , the restriction functor (−)R is

separable if and only if the extension S/R is separable.

Lemma 2.12 Let A/B be a right H -Galois extension for a finite dimensional Hopf algebra H . If −⊗B A is

separable, then for any right B -module M , M is a B -direct summand of M ⊗B A .
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Proof Consider the adjoint pair (−⊗BA, (−)B). If the functor −⊗BA is separable, then we obtain by Propo-

sition 5 of [7] that the natural map ηM : MB → (M⊗BA)B is a split monomorphism for every M ∈ Mod-B . 2

Proposition 2.13 Let A/B be a right H -Galois extension for a semisimple Hopf algebra H . If − ⊗B A is

separable, then

r.cot.D(A) = r.cot.D(B).

Proof First, by Proposition 2.6, r.cot.D(A) ≤ r.cot.D(B).

Next we prove that r.cot.D(B) ≤ r.cot.D(A). For this, by Lemma 2.2 and Lemma 2.4 we only need

to show that for any flat right B -module F , pd(FB) = pd((F ⊗B A)A). It is clear that pd((F ⊗B A)B) ≤
pd((F ⊗B A)A) and pd((F ⊗B A)A) ≤ pd(FB) by Lemma 2.2 and the Remark. Also by Lemma 2.11, F is a

B -direct summand of F ⊗B A , and it follows that pd(FB) ≤ pd((F ⊗B A)B). The proof is completed. 2

Finally, we remark here that the left global cotorsion dimension and the right global cotorsion dimension

of a finite dimensional Hopf algebra H are both equal to 0. Indeed, since H is finite dimensional, it follows

that H is left and right Noetherian and id(HH) = id(HH) = 0 (note that H is a Frobenius algebra, and so

the projective modules of H and injective modules of H coincide). Hence, H is a 0-Gorenstein algebra. By

Proposition 7.2.12 of [11], l.cot.D(H) = r.cot.D(H) = 0.
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