Turk J Math
(2016) 40: 161-165
(C) TÜBİTAK
doi:10.3906/mat-1505-4

An extension of Cline's formula for a generalized Drazin inverse

Haifeng LIAN, Qingping ZENG*
College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R. China

| Received: 02.05.2015 | Accepted/Published Online: 08.08 .2015 | Final Version: 01.01 .2016 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this note we give an answer to a question recently posed by Zeng and Zhong, to note that Cline's formula for a generalized Drazin inverse extends to the case when $a b a=a c a$. Cline's formula for a pseudo Drazin inverse is also presented in this case.

Key words: Cline's formula, generalized Drazin inverse, pseudo Drazin inverse, quasinilpotent

1. Introduction

Let R be an associative ring with identity 1 , and R^{-1} and $J(R)$ denote, respectively, invertible group and Jacobson radical of R. For $a \in R$, the commutant and double commutant of a are defined by

$$
\operatorname{comm}(a)=\{x \in R, a x=x a\}
$$

and

$$
\operatorname{comm}^{2}(a)=\{x \in R, x y=y x \text { for all } y \in \operatorname{comm}(a)\} .
$$

Drazin [3] introduced the notion of a Drazin inverse in a ring in 1958. An element $a \in R$ is said to be Drazin invertible if there exist $b \in R$ and $k \in \mathbb{N}$ such that

$$
b \in \operatorname{comm}(a), b a b=b \text { and } a^{k} b a=a^{k} .
$$

In this case b is unique if it exists and is called a Drazin inverse of a, denoted by $b=a^{D}$, and the least nonnegative integer k satisfying $a^{k} b a^{k}=a^{k}$ is called the Drazin index $i(a)$ of a. According to Drazin [[3], Theorem 1], $a^{D} \in \operatorname{comm}^{2}(a)$.

Following Harte [4], an element $a \in R$ is said to be quasinilpotent if $1+a x$ is invertible for all $x \in \operatorname{comm}(a)$. Using this concept, Koliha and Patrício [6] introduced the notion of a generalized Drazin inverse in a ring in 2002. An element $a \in R$ is said to be generalized Drazin invertible if there exists $b \in R$ such that

$$
\begin{equation*}
b \in \operatorname{comm}^{2}(a), b a b=b \text { and } a b a-a \text { is quasinilpotent. } \tag{1.1}
\end{equation*}
$$

[^0]In this case b is unique if it exists and is called a generalized Drazin inverse of a, denoted by $b=a^{g D}$. Moreover, in the Banach algebra case, the condition $b \in \operatorname{comm}^{2}(a)$ in (1.1) can be weaken as $b \in \operatorname{comm}(a)$ (see [[5], Theorem 4.4]).

In 2012, Wang and Chen [9] introduced an intermedium between Drazin inverse and generalized Drazin inverse. An element $a \in R$ is said to be pseudo Drazin invertible if there exist $b \in R$ and $k \in \mathbb{N}$ such that

$$
\begin{equation*}
b \in \operatorname{comm}^{2}(a), b a b=b \text { and } a^{k} b a-a^{k} \in J(R) . \tag{1.2}
\end{equation*}
$$

In this case b is unique if it exists and is called a pseudo Drazin inverse of a, denoted by $b=a^{p D}$, and the least nonnegative integer k satisfying $a^{k} b a-a^{k} \in J(R)$ is called the pseudo Drazin index $i(a)$ of a. Moreover, in the Banach algebra case, the condition $b \in \operatorname{comm}^{2}(a)$ in (1.2) can be weakened as $b \in \operatorname{comm}(a)$ (see [[9], Remark 5.1]).

In 1965, Cline [1] showed that if $a b$ is Drazin invertible then so is $b a$ and in this case

$$
(b a)^{D}=b\left((a b)^{D}\right)^{2} a .
$$

This equation is now known as Cline's formula. It plays an important role in finding the Drazin inverse of a sum of two elements and that of a block matrix (see [8]). Generalizations of Cline's formula for generalized Drazin inverse and pseudo Drazin inverse were recently proved in [7] and [9], respectively. Their proof relied on the bridge "quasipolar" and "pseudopolar", respectively.

As extensions of Jacobson's lemma, in 2013 Corach et al. [2]] firstly investigated common properties of $a c-1$ and $b a-1$ in the algebraic viewpoint and also obtained some interesting topological analogues under the assumption

$$
a b a=a c a,
$$

where $a, b, c \in R$. Recently, Zeng and Zhong [10] extended Cline's formula for the Drazin inverse in a ring to the case when $a b a=a c a$. However, Cline's formula for a generalized Drazin inverse in this case was established only in the setting of Banach algebra, and in a ring it left open at that time.

In this note, we establish Cline's formula for the generalized Drazin inverse in a ring in the case when $a b a=a c a$, answering a question posed in [[10], Question 2.15]. We also present Cline's formula for the pseudo Drazin inverse in this case. The proofs for the general case are more direct and slightly more technical than those in [7] and/or [9] for the special case $b=c$.

2. Main results

We start with the following well-known Jacobson's lemma.
Lemma 2.1 (Jacobson's lemma) Let $a, b \in R$. Then

$$
1+a b \text { is invertible } \Longleftrightarrow 1+b a \text { is invertible. }
$$

In this case, we have $(1+b a)^{-1}=1-b(1+a b)^{-1} a$.
Lemma 2.2 Suppose that $a, b, c \in R$ satisfy $a b a=a c a$. Then
$a c$ is quasinilpotent $\Longleftrightarrow b a$ is quasinilpotent.

Proof Suppose that $a c$ is quasinilpotent. Then for all $x \in \operatorname{comm}(a c), 1+x a c$ is invertible. Let $y \in \operatorname{comm}(b a)$. Since

$$
\left(a y^{3} b a c\right)(a c)=\left(a y^{3} b a b\right)(a c)=\left(a b a y^{3} b\right)(a c)=(a c)\left(a y^{3} b a c\right)
$$

$1+\left(a y^{3} b a c\right)(a c)$ is invertible. Therefore, by Lemma 2.1, we have

$$
(1+y b a)\left(1-y b a+y^{2} b a b a\right)=1+y^{3} b a b a b a=1+y^{3} b a c a c a
$$

is invertible. Noting that $1+y b a$ commutes with $1-y b a+y^{2} b a b a$, we see that $1+y b a$ is invertible. Consequently, $b a$ is quasinilpotent.

For the special case " $b=c$ ", the previous paragraph shows that if $a b$ is quasinilpotent, then $b a$ is quasinilpotent. Then interchanging a and b, we find an equivalence statement: $a b$ is quasinilpotent if and only if $b a$ is quasinilpotent, for any $a, b \in R$.

Now suppose that $b a$ is quasinilpotent. Then $a b$ is quasinilpotent. Interchanging b and c in the first paragraph of this proof, we infer that $c a$ is quasinilpotent. Therefore, $a c$ is quasinilpotent.

We are now ready to answer Question 2.15 in [10] affirmatively.
Theorem 2.3 Suppose that $a, b, c \in R$ satisfy $a b a=a c a$. Then
ac is generalized Drazin invertible $\Longleftrightarrow b a$ is generalized Drazin invertible.
In this case, we have $(b a)^{g D}=b\left((a c)^{g D}\right)^{2} a$ and $(a c)^{g D}=a\left((b a)^{g D}\right)^{2} c$.
Proof Suppose that $a c$ is generalized Drazin invertible and let $d=(a c)^{g D}$. Then

$$
d \in \operatorname{comm}^{2}(a c), d(a c) d=d \text { and }(a c) d(a c)-a c \text { is quasinilpotent. }
$$

Put

$$
e=b d^{2} a
$$

In order to prove that $e=(b a)^{g D}$, it needs to be shown that

$$
\text { (i) } e \in \operatorname{comm}^{2}(b a) \text {, (ii) } e(b a) e=e \text { and (iii) }(b a) e(b a)-b a \text { is quasinilpotent. }
$$

(i) Let $f \in \operatorname{comm}(b a)$. Then we have

$$
\begin{equation*}
f e=f b d^{2} a=f b\left(a c a c d^{4}\right) a=f b a b a c d^{4} a=b a b a f c d^{4} a=b(a c a f c) d^{4} a \tag{2.1}
\end{equation*}
$$

Since

$$
a c(a c a f c)=a b a b a f c=a f b a b a c=a f b a c a c=a b a f c a c=(a c a f c) a c
$$

and $d \in \operatorname{comm}^{2}(a c)$,

$$
\begin{equation*}
(a c a f c) d=d(a c a f c) \tag{2.2}
\end{equation*}
$$

Therefore, putting (2.2) into (2.1), we get

$$
\begin{aligned}
f e & =b(a c a f c) d^{4} a=b d^{4}(a c a f c) a \\
& =b d^{4} a b a f c a=b d^{4} a f b a c a \\
& =b d^{4} a f b a b a=b d^{4} a b a b a f \\
& =b d^{4} a c a c a f=b d^{2} a f \\
& =e f
\end{aligned}
$$

(ii) We have $e(b a) e=b d^{2} a(b a) b d^{2} a=b d^{2} a b a b a c d^{3} a=b d^{2}(a c)^{3} d^{3} a=b d^{2} a=e$.
(iii) Let $p=1-a c d$. Then $p a c$ is quasinilpotent. Note that

$$
\begin{aligned}
b a-(b a)^{2} e & =b a-b a b a b d^{2} a=b a-b a b a b a c d^{2} d a \\
& =b a-b a c a c a c d^{2} d a=b(1-a c d) a \\
& =b p a
\end{aligned}
$$

Since $a b p a=a b(1-a c d) a=a c(1-a c d) a=a c p a,(p a) b(p a)=(p a) c(p a)$. Therefore, by Lemma 2.2, we conclude that $b a-(b a)^{2} e$ is quasinilpotent. Consequently,

$$
\begin{equation*}
(b a)^{g D}=b\left((a c)^{g D}\right)^{2} a \tag{2.3}
\end{equation*}
$$

For the special case " $b=c$ ", (2.3) shows that

$$
(b a)^{g D}=b\left((a b)^{g D}\right)^{2} a \text { and }(c a)^{g D}=c\left((a c)^{g D}\right)^{2} a
$$

for any $a, b, c \in R$. Then interchanging a and b, and a and c in the above formulae, we find that

$$
\begin{equation*}
(a b)^{g D}=a\left((b a)^{g D}\right)^{2} b \text { and }(a c)^{g D}=a\left((c a)^{g D}\right)^{2} c \tag{2.4}
\end{equation*}
$$

Now interchanging b and c in (2.3), we infer that

$$
\begin{equation*}
(c a)^{g D}=c\left((a b)^{g D}\right)^{2} a . \tag{2.5}
\end{equation*}
$$

Therefore, taking (2.4) and (2.5) together, we get

$$
\begin{aligned}
(a c)^{g D} & =a\left((c a)^{g D}\right)^{2} c=a c\left((a b)^{g D}\right)^{2} a c\left((a b)^{g D}\right)^{2} a c \\
& =a c a\left((b a)^{g D}\right)^{2} b a\left((b a)^{g D}\right)^{2} b a c a\left((b a)^{g D}\right)^{2} b a\left((b a)^{g D}\right)^{2} b a c \\
& =a\left((b a)^{g D}\right)^{2} c
\end{aligned}
$$

This completes the proof.

Theorem 2.4 Suppose that $a, b, c \in R$ satisfy $a b a=a c a$. Then

$$
\text { ac is pseudo Drazin invertible } \Longleftrightarrow \text { ba is pseudo Drazin invertible. }
$$

In this case, we have
(1) $|i(a c)-i(b a)| \leq 1$;
(2) $(b a)^{p D}=b\left((a c)^{p D}\right)^{2} a$ and $(a c)^{p D}=a\left((b a)^{p D}\right)^{2} c$ 。

Proof Let d be the pseudo Drazin inverse of $a c$ and let $k=i(a c)$. Then

$$
d \in \operatorname{comm}^{2}(a c), d(a c) d=d \text { and }(a c)^{k} d(a c)-(a c)^{k} \in J(R)
$$

Put

$$
e=b d^{2} a
$$

As in the proof of Theorem 2.3, we get $e \in \operatorname{comm}^{2}(b a)$ and $e(b a) e=e$. Moreover, since $(a c)^{k} d(a c)-(a c)^{k} \in$ $J(R)$,

$$
\begin{aligned}
(b a)^{k+1} e(b a)-(b a)^{k+1} & =(b a)^{k+1} b d^{2} a b a-(b a)^{k+1} \\
& =(b a)^{k+1} b d^{2} a c a-b(a c)^{k} a \\
& =(b a)^{k+1} b a c d^{2} a-b(a c)^{k} a \\
& =b(a c)^{k+1} a c d^{2} a-b(a c)^{k} a \\
& =b(a c)^{k+1} d a-b(a c)^{k} a \\
& =b\left((a c)^{k} d(a c)-(a c)^{k}\right) a \in J(R)
\end{aligned}
$$

Therefore, $b a$ is pseudo Drazin invertible, $(b a)^{p D}=b\left((a c)^{p D}\right)^{2} a$, and $i(b a) \leq i(a c)+1$.
By similar arguments as above, one can show that if $b a$ is pseudo Drazin invertible, then $a c$ is pseudo Drazin invertible, $(a c)^{p D}=a\left((b a)^{p D}\right)^{2} c$, and $i(a c) \leq i(b a)+1$.

References

[1] Cline RE. An application of representation for the generalized inverse of a matrix. MRC Technical Report 592, 1965.
[2] Corach G, Duggal BP, Harte RE. Extensions of Jacobson's lemma. Commun Algebra 2013; 41: 520-531.
[3] Drazin MP. Pseudo-inverses in associative rings and semigroups. Am Math Mon 1958; 65: 506-514.
[4] Harte RE. On quasinilpotents in rings. Panamer Math J 1991; 1: 10-16.
[5] Koliha JJ. A generalized Drazin inverse. Glasgow Math J 1996; 38: 367-381.
[6] Koliha JJ, Patrício P. Elements of rings with equal spectral idempotents. J Aust Math Soc 2002; 72: 137-152.
[7] Liao YH, Chen JL, Cui J. Cline's formula for the generalized Drazin inverse. B Malays Math Sci So (2) 2014; 37: 37-42.
[8] Patrício P, Hartwig RE. Some additive results on Drazin inverses. Appl Math Comput 2009; 215: 530-538.
[9] Wang Z, Chen JL. Pseudo Drazin inverses in associative rings and Banach algebras. Linear Algebra Appl 2012; 437: 1332-1345.
[10] Zeng QP, Zhong HJ. New results on common properties of the products $A C$ and BA. J Math Anal Appl 2015; 427: 830-840.

[^0]: *Correspondence: zqpping2003@163.com
 This work has been supported by the National Natural Science Foundation of China (11401097, 11171066, 11201071, 11301077, 11301078, 11302052).
 2010 AMS Mathematics Subject Classification: 15A09, 16N20.

