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Abstract: To a simplicial complex ∆, we associate a square-free monomial ideal F(∆) in the polynomial ring generated

by its facet over a field. Furthermore, we could consider F(∆) as the Stanley–Reisner ideal of another simplicial complex

δN (F(∆)) from facet ideal theory and Stanley–Reisner theory. In this paper, we determine what families of simplicial

complexes ∆ have the property that their Stanley–Reisner complexes δN (F(∆)) are shellable. Furthermore, we show

that the simplicial complex with the free vertex property is sequentially Cohen–Macaulay. This result gives a new proof

for a result of Faridi on the sequentially Cohen–Macaulayness of simplicial forests.
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1. Introduction

From the point of view of commutative algebra, the focus of this paper is on finding squarefree monomial

ideals that have sequentially Cohen–Macaulay quotients. Sequentially Cohen–Macaulay modules were intro-

duced by Stanley [13] in connection with the work of Björner and Wachs [1] on nonpure shellability. Pure

shellable simplicial complexes are Cohen–Macaulay, and Stanley identified sequentially Cohen–Macaulay as the

appropriate analog in the nonpure setting; that is, all nonpure shellable simplicial complexes are sequentially

Cohen–Macaulay. Recently, a number of authors have been interested in classifying or identifying (sequentially)

Cohen–Macaulay graphs or Cohen–Macaulay simplicial complexes in terms of the combinatorial properties of

graphs or simplicial complexes. For example, Duval in [3] showed that algebraic shifting preserves the h-

triangle of a simplicial complex ∆ if and only if ∆ is sequentially Cohen–Macaulay; Herzog et al. [11] proved

that a chordal graph is Cohen–Macaulay if and only if it is unmixed; Francisco and Tuyl [8] showed that all

chordal graphs G are sequentially Cohen–Macaulay; Tuyl and Villarreal [14] classified some of the sequentially

Cohen–Macaulay bipartite graphs; Faridi [5] showed that simplicial trees are sequentially Cohen–Macaulay; and

Francisco and Hà [7] gave various sufficient and necessary conditions on a subset S of the vertices of G such

that the graph G∪W (S), obtained from G by adding a whisker to each vertex in S , is a sequentially Cohen–

Macaulay graph. Because a shellable simplicial complex has the property that its associated Stanley–Reisner

ring is sequentially Cohen–Macaulay, our goal is, by identifying shellable simplicial complexes, to characterize

some of the sequentially Cohen–Macaulay simplicial complexes.
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The paper is organized as follows: Section 2 reviews some definitions and basic facts about simplicial

complexes. In Section 3, we introduce the definition of shellable simplicial complexes and identify some families

of shellable Stanley–Reisner complexes of the facet ideals of simplicial complexes. In Section 4, we introduce

the notion of a simplicial complex with the free vertex property and show that such a simplicial complex is

sequentially Cohen–Macaulay. We recover as a corollary the fact that all simplicial forests are sequentially

Cohen–Macaulay. This result was first proved by Faridi [5].

2. Preliminaries

We first recall some definitions and basic facts about simplicial complexes and their edge ideal to make this

paper self-contained. However, for more details of the notions, we refer the reader to [2, 4, 5, 6, 9, 10, 13, 14].

Definition 2.1 A simplicial complex ∆ on a set of vertices V is a collection of subsets of V , with the property

that for any x ∈ V , {x} ∈ ∆ , and if F ∈ ∆ , then all subsets of F are also in ∆ (including the empty set).

An element of ∆ is called a face of ∆ , and the dimension of a face F of ∆ is defined as |F | − 1 , where |F | is
the number of vertices of F (by convention, dim ∅ = −1). The maximal faces of ∆ under inclusion are called

facets of ∆ . The dimension of the simplicial complex ∆ is the maximal dimension of its facets. ∆ is called

pure if all of its facets have the same dimension; otherwise, ∆ is nonpure. If F1, . . . , Fq is a complete list of

the facets of ∆ , we sometimes write ∆ as ∆ = ⟨F1, . . . , Fq⟩ . A simplicial complex with only one facet is called

a simplex. A subcollection of ∆ is a simplicial complex whose facets are also facets of ∆ .

Definition 2.2 A simplicial complex ∆ = ⟨F1, . . . , Fq⟩ is connected if for every pair i, j , 1 ≤ i < j ≤ q ,

there exists a sequence of facets Ft1 , · · · , Ftr of ∆ such that Ft1 = Fi, Ftr = Fj and Fts ∩ Fts+1 ̸= ∅ for

s = 1, . . . , r − 1 .

Definition 2.3 A facet F of a simplicial complex ∆ is called a leaf if either F is the only facet of ∆ or there

exists a facet G ∈ ∆ \ ⟨F ⟩ , such that F ∩ F ′ ⊆ F ∩G for every facet F ′ ∈ ∆ \ ⟨F ⟩ . Such a facet G is called a

joint of F .

A simplicial complex ∆ is a simplicial forest if every nonempty subcollection of ∆ has a leaf. A connected

simplicial forest is called a simplicial tree.

Throughout this paper, let k be any field, x1, . . . , xn be indeterminates, and R be the polynomial ring

k[x1, . . . , xn] . By abuse of notation, we often use x1, . . . , xn to denote both the vertices of ∆ and the variables

appearing in F(∆), and xi1 · · ·xis to denote a facet of ∆ as well as a monomial generator of F(∆).

To a squarefree monomial ideal I in R , one can associate two simplicial complexes δF (I) and δN (I) on

the vertex set {x1, . . . , xn} . Conversely, given a simplicial complex ∆ with vertex set {x1, . . . , xn} , one can

associate two squarefree monomial ideals F(∆) and N (∆) in the polynomial ring k[x1, . . . , xn] , and these are

all defined below:

Facet complex of I :

δF (I) = ⟨{xi1 , . . . , xis} | xi1 · · ·xis is a minimal generator of I ⟩,

Stanley–Reisner complex of I :

δN (I) = ⟨{xi1 , . . . , xis} | xi1 · · ·xis /∈ I ⟩,
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Facet ideal of ∆:
F(∆) = (xi1 · · ·xis | {xi1 , . . . , xis} is a facet of ∆),

Stanley–Reisner ideal of ∆

N (∆) = (xi1 · · ·xis | {xi1 , . . . , xis} /∈ ∆).

Definition 2.4 Suppose that ∆ is a simplicial complex and σ ∈ ∆ ; the deletion of σ from ∆ is the simplicial

complex defined by

∆ \ σ = {τ ∈ ∆ | σ ̸⊆ τ},

and when σ = {v} , we shall abuse notation and write ∆ \ v for ∆ \ {v} .
The link of σ is defined to be

lk∆(σ) = {τ ∈ ∆ | σ ∪ τ ∈ ∆, σ ∩ τ = ∅},

and when σ = {v} , then we shall abuse notation and write lk∆(v) for lk∆({v}) .
If ∆ = ⟨F1, . . . , Fq⟩ , F(∆) = (M1, . . . ,Mq) is its facet ideal in R = k[x1, . . . , xn] . The simplicial complex

obtained by removing the facet Fi from ∆ is the simplicial complex

∆ \ ⟨Fi⟩ = ⟨F1, . . . , F̂i, . . . , Fq⟩.

Note that F(∆ \ ⟨Fi⟩) = ⟨M1, . . . , M̂i, . . . ,Mq⟩ and the vertex set of ∆ \ ⟨Fi⟩ is a subset of the vertex set of ∆ .

Definition 2.5 Let ∆ be a simplicial complex with vertex set V . A vertex cover for ∆ is a subset A of V

that intersects every facet of ∆ . If A is a vertex cover, and no proper subset of A is a vertex cover for ∆ , it

is called a minimal vertex cover of ∆ .

Using the minimal vertex covers of a given simplicial complex, we can construct a new simplicial complex.

Definition 2.6 Given a simplicial complex ∆ , the simplicial complex ∆M whose facets are the minimal vertex

covers of ∆ is called the cover complex of ∆ .

Remark 2.7 Suppose that ∆ is a simplicial complex; by Proposition 2.4 of [5], we obtain that F is a facet

of the Stanley–Reisner complex δN (F(∆)) of the facet ideal F(∆) of ∆ if and only if V \ F is a facet of the

cover complex ∆M of ∆ .

3. Shellable simplicial complexes

In this section, we introduce the notions of shellable simplicial complexes. Given a simplicial complex ∆, we

describe some properties of the Stanley–Reisner complex δN (F(∆)) of its facet ideal F(∆), and we identify

some families of shellable simplicial complexes.

Definition 3.1 A simplicial complex ∆ is shellable if the facets of ∆ can be ordered F1, . . . , Fs such that for

all 1 ≤ i < j ≤ s , there exists some v ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1} with Fj \ Fl = {v} . We call

F1, . . . , Fs a shelling of ∆ when the facets have been ordered with respect to the shellable definition. For a fixed

shelling of ∆ , if F, F ′ ∈ ∆ then we write F < F ′ to mean that F appears before F ′ in the ordering.
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Remark 3.2 The above definition of shellable is due to Björner and Wachs [1] and is usually referred to as

nonpure shellable; in this paper, we will drop the adjective “nonpure”. If the simplicial complex ∆ is pure and

satisfies the above definition of shellable, we will say ∆ is pure shellable.

To prove that the Stanley–Reisner complex δN (F(∆)) of the facet ideal F(∆) of a simplicial complex

∆ is shellable, it suffices to prove that each connected component of ∆ is shellable, as demonstrated below.

Proposition 3.3 Let ∆1 = ⟨F1, . . . , Fp⟩, ∆2 = ⟨Fp+1, . . . , Fq⟩ be two simplicial complexes with sets of ver-

tices V1 and V2 respectively such that V1 ∩ V2 = ∅ , and let ∆ be the simplicial complex whose facets are

F1, . . . , Fp, Fp+1, . . . , Fq . Then δN (F(∆1)) and δN (F(∆2)) are shellable if and only if δN (F(∆)) is shellable.

Proof (⇒) Let G1, . . . , Gr and H1, . . . ,Hs be the shellings of δN (F(∆1)) and δN (F(∆2)) respectively. We

first prove that the facets of δN (F(∆)) are G1∪H1 , . . . , G1∪Hs, G2∪H1, . . . , G2∪Hs, . . . , Gr∪H1, . . . , Gr∪Hs .

Indeed, G1, . . . , Gr are all the facets of δN (F(∆1)), and by Remark 2.7, we have that V1 \G1, . . . , V1 \Gr are

all of the minimal vertex covers of ∆1 . Similarly, V2 \H1, . . . , V2 \Hs are also all of the minimal vertex covers

of ∆2 . Thus, we get that (V1 ∪ V2) \ (Gi ∪Hj), i = 1, . . . , r, j = 1, . . . , s are all of the minimal vertex covers

of ∆. Again by Remark 2.7, this claim is true.

If we order the facets of δN (F(∆)) as

G1 ∪H1, . . . , G1 ∪Hs, G2 ∪H1, . . . , G2 ∪Hs, . . . , Gr ∪H1, . . . , Gr ∪Hs,

then we get a shelling of δN (F(∆)). Indeed, if F ′ < F are two facets of δN (F(∆)), we have two cases to

consider. Case (i): F ′ = Gi

∪
Hk, and F = Gj ∪Ht , where i < j . Because δN (F(∆1)) is shellable there is

some x ∈ Gj \Gi and some l < j with Gj \Gl = {x} . Hence, x ∈ F \F ′, Gl∪Ht < F , and F \(Gl∪Ht) = {x} .
Case (ii): F ′ = Gi∪Hk , and F = Gi∪Ht , where k < t . This case follows from the shellability of δN (F(∆2)).

(⇐) Note that if F is a facet of δN (F(∆)), then F ′ = F ∩ V1 , respectively, F ′′ = F ∩ V2 is the facet

of δN (F(∆1)), respectively, δN (F(∆2)). We now show that δN (F(∆1)) is shellable and omit the similar proof

for the shellability of δN (F(∆2)). Let F1, . . . , Ft be a shelling of δN (F(∆)), and consider the subsequence

Fi1 , . . . , Fis with 1 ≤ i1 < i2 < · · · < is ≤ t

where F1 ∩ V2 = Fij ∩ V2 , for ∀ ij ∈ {i1, . . . , is} , but F1 ∩ V2 ̸= Fk ∩ V2 for any k ∈ {1, 2, . . . , t} \ {i1, . . . , is} .
We then claim that

F ′
1 = Fi1 ∩ V1, F

′
2 = Fi2 ∩ V1, . . . , F

′
s = Fis ∩ V1

is a shelling of δN (F(∆1)). We first show that this is a complete list of facets of δN (F(∆1)). Indeed, every

F ′
j = Fij ∩ V1 is a facet of δN (F(∆1)), and furthermore, for any facet F ′ ∈ δN (F(∆1)), by the argument of

necessity above, we have that F ′ ∪ (F1 ∩ V2) is a facet of δN (F(∆)), and hence F ′ ∪ (F1 ∩ V2) = Fij for some

ij ∈ {i1, . . . , is} .
From the fact that F1, . . . , Ft is a shelling of δN (F(∆)) and for 1 ≤ k < j ≤ s , Fij ∩ V2 = Fik ∩ V2 =

F1 ∩ V2 , there exists some x ∈ Fij \ Fik = (Fij ∩ V1) \ (Fik ∩ V1) = F ′
j \ F ′

k such that {x} = Fij \ Fl for some

1 ≤ l < ij . It suffices to show that Fl is among Fi1 , . . . , Fis . Now because Fij ∩ V2 ⊆ Fij and x /∈ Fij ∩ V2 , we

must have Fij ∩ V2 ⊆ Fl . Thus, Fij ∩ V2 ⊆ Fl ∩ V2 , but both Fij ∩ V2 and Fl ∩ V2 are facets of δN (F(∆2)),

and we must have Fij ∩ V2 = Fl ∩ V2 . Therefore, Fl = Fir for some r < j , and hence, {x} = F ′
j \ F ′

r. 2
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Proposition 3.4 Let ∆ be a connected simplicial complex on a vertex set V and x ∈ V , and let F1, . . . , Ft

be all the facets of ∆ containing x . Set ∆1 = ∆ \ x and ∆2 = ∆ \ ⟨F1, . . . , Ft⟩ . Then:

(1) δN (F(∆1)) = lkδN (F(∆))(x) ; (2) δN (F(∆)) \ x = δN (F(∆2)) \ x .

Proof

(1) Let F be any facet of δN (F(∆1)), and then by Remark 2.7, we have that V \ F is a minimal vertex

cover of ∆1 . We claim that V \ F is also a minimal vertex cover of ∆. Indeed, for i = 1, . . . , t , set

Fi = {x}∪Bi , we have that Bi ∈ ∆1 . Thus, (V \F )∩Bi ̸= ∅ , and furthermore (V \F )∩Fi ̸= ∅ . Note that

x is not the vertex of ∆1 , and hence x /∈ V \F , i.e. x ∈ F . It is obvious that (V \F )∪{x} = V \(F \{x})
is a vertex cover of ∆, and then F \ {x} ∈ δN (F(∆)). Hence, F = (F \ {x}) ∪ {x} ∈ lkδN (F(∆))(x).

Conversely, let F ′ be any facet of lkδN (F(∆))(x), and then F ′ is a face of δN (F(∆)) and F ′ ∪ {x} is a

facet of δN (F(∆)). Then, by Remark 2.7, V \ F ′ is a vertex cover of ∆ and V \ (F ′ ∪ {x}) is a minimal

vertex cover of ∆. However, x /∈ V \ (F ′ ∪{x}), and we have that V \ (F ′ ∪{x}) is a vertex cover of ∆1 .

Again by Remark 2.7, F ′ ∪ {x} ∈ δN (F(∆1)). Hence, F
′ ∈ δN (F(∆1)).

(2) Take any facet F ∈ δN (F(∆)) \ x , and then, by Remark 2.7, we get that V \ F is a minimal vertex

cover of ∆ and x ∈ V \ F . Thus, (V \ F ) \ x = V \ (F ∪ {x}) is a minimal vertex cover of ∆2 . Hence,

F ∪ {x} ∈ δN (F(∆2)). Furthermore, we have that F ∈ δN (F(∆2)) and hence F ∈ δN (F(∆2)) \ x .

Conversely, let F ∈ δN (F(∆2))\x , and then F ∈ δN (F(∆2)) and x /∈ F , and by Remark 2.7 we get that

V \F is a vertex cover of ∆2 and x ∈ V \F . Thus, V \F is also a vertex cover of ∆. Again by Remark

2.7, we have that F ∈ δN (F(∆)), and hence x ∈ δN (F(∆)) \ x .

2

The following proposition shows that the property of shellability is preserved when we remove a vertex

x from each facet containing it.

Proposition 3.5 Let ∆ be a connected simplicial complex on a vertex set V and x ∈ V . Set ∆1 = ∆ \ x . If

δN (F(∆)) is shellable, then δN (F(∆1)) is shellable.

Proof Assume that G1, . . . , Gq is a shelling of δN (F(∆)), and the subsequence

Gi1 , . . . , Git with 1 ≤ i1 < · · · < it ≤ q

is the list of all the facets with x ∈ Gij . Set Hj = Gij \ {x} , for each j = 1, . . . , t . Proposition 3.4 (1) implies

that H1, . . . ,Ht are all the facets of δN (F(∆1)).

We claim that H1, . . . , Ht is a shelling of δN (F(∆1)). Because G1, . . . , Gq form a shelling of δN (F(∆)),

for all 1 ≤ j < k ≤ t , there exists some v ∈ Gik\Gij = (Gik\{x})\(Gij \{x}) = Hk\Hj such that {v} = Gik\Gl

for some 1 ≤ l < ik . It suffices to show that Gl ∈ {Gi1 , . . . , Git} . However, because x ∈ Gik and x ̸= v , we

must have x ∈ Gl . Thus, Gl = Gis for some s < k , but then {v} = Gij \ Gl = Gij \ Gis = Hk \Hs . Thus,

H1, . . . ,Ht form a shelling of δN (F(∆1)). 2

A vertex of a simplicial complex ∆ is called a free vertex if it belongs to exactly one facet of ∆.

Theorem 3.6 Let ∆ be a connected simplicial complex with a free vertex x and F1 be the only facet of ∆

containing x . Let y ∈ F1 and y ̸= x . Set ∆1 = ∆ \ x and ∆2 = ∆ \ y , and then δN (F(∆)) is shellable if and

only if δN (F(∆1)) and δN (F(∆2)) are shellable.
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Proof If δN (F(∆)) is shellable, then δN (F(∆1)) and δN (F(∆2)) are shellable by Proposition 3.5. It suffices

to prove the reverse direction. Let G1, . . . , Gr and H1, . . . , Hs be the shellings of δN (F(∆1)) and δN (F(∆2))

respectively. We first prove that G1 ∪ {x}, . . . , Gr ∪ {x},H1 ∪ {y}, . . . , Hs ∪ {y} is a complete list of facets of

δN (F(∆)). Indeed, take any facet F of δN (F(∆)), and then V \F is a minimal vertex cover of ∆ by Remark

2.7. We consider two cases:

(1) If y /∈ F , we must have x ∈ F , because if not, then x, y ∈ V \ F , contradicting with V \ F being

a minimal vertex cover of ∆. Thus, V \ (F \ {x}) = (V \ F ) ∪ {x} is a vertex cover of ∆, and we have that

F \ {x} ∈ δN (F(∆)). Hence, F \ {x} = Gi for some i .

(2) If y ∈ F , then x /∈ F . Indeed, if x ∈ F , then x /∈ V \ F . As V \ F is a minimal vertex cover of ∆,

then V \ F is also a vertex cover of ∆1 . We claim that this vertex cover is minimal. If not, then there exists a

nonempty subset T ⊆ V \ F , such that (V \ F ) \ T = V \ (F ∪ T ) is a minimal vertex cover of ∆1 . From the

proof of Proposition 3.4 (1), we obtain that (V \ F ) \ T is also a vertex cover of ∆. It is not possible. Using

the same arguments as in (1), we have F \ {y} = Hi for some i .

Now we prove that G1∪{x}, . . . , Gr ∪{x},H1∪{y}, . . . ,Hs∪{y} is a shelling of δN (F(∆)). Let G < H

be two facets of δN (F(∆)). We need only consider the case G = Gi ∪ {x} , H = Hj ∪ {y} . In this case, we can

obtain that Hj ∪{x} is contained in some facet of δN (F(∆)). Because H = Hj ∪{y} , by the above argument,

we get x /∈ H , and thus x ∈ V \H and V \H = V \ (Hj ∪{y}) is a minimal vertex cover of ∆ by Remark 2.7.

Therefore, (V \H) ∪ {y} = V \Hj is a vertex cover of ∆, but x, y ∈ V \Hj , (V \Hj) \ {x} = V \ (Hj ∪ {x})
is also a vertex cover of ∆. In particular, V \ (Hj ∪ {x}) is a vertex cover of ∆1 , and then Hj ∪ {x} is a face

of δN (F(∆1)) by the fact that δN (F(∆1)) = lkδN (F(∆))(x). Thus, Hj ∪ {x} ⊆ Gl ∪ {x} for some l . Hence,

(Hj ∪ {y}) \ (Gl ∪ {x}) ⊆ (Hj ∪ {y}) \ (Hj ∪ {x}) = {y} . As H = Hj ∪ {y} and G = Gi ∪ {x} , we have that

y ∈ H \G , and Gl ∪ {x} < H . The remaining two cases follow readily from the shellability of δN (F(∆1)) and

δN (F(∆2)). 2

4. Simplicial complexes with the free vertex property are sequentially Cohen–Macaulay

In this section, we introduce the notion of simplicial complex with the free vertex property and show that such

a simplicial complex is sequentially Cohen–Macaulay. The results of this section allow us to give a new proof

for a result of Faridi [5] on the sequentially Cohen–Macaulayness of simplicial forests.

Definition 4.1 (free vertex property) Let ∆ be a simplicial complex, if it satisfies the following conditions:

(1) ∆ is a simplex, or

(2) ∆ has a free vertex x such that both ∆ \ ⟨F ⟩ and ∆ \ x also have free vertices, where F is the only facet

of ∆ containing x .

We call such a simplicial complex ∆ as having the free vertex property.

Remark 4.2 It is easy to prove that a leaf must contain a free vertex, so both simplicial trees and simplicial

forests have the free vertex property.

The following example shows that a simplicial complex with the free vertex property is not always a

simplicial tree or a simplicial forest.
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Example 4.3 The simplicial complex on the left has the free vertex property, but it is not a simplicial tree,

because although all of its facets {x1, x2, x3, x4}, {x1, x2, x5} , {x2, x3, x6} , and {x1, x3, x7} are leaves, if one

removes the facet {x1, x2, x3, x4} , the remaining simplicial complex (on the right) has no leaf.

S
S
S

x1 x2

�
�
�
�

x3

Z
Z
ZZ

x4

x5

�
��

x6

S
S
S
S

�
�
�
�
�

x7
     
!!
!!

S
S
S

x1 x2

�
�
�
�

x3

Z
Z
ZZ

x4

x5

�
��

x6

S
S
S
Sx7

�
�
�
�
�

     
!!

!!

-
remove the facet {x1,x2,x3,x4}

Figure. Simplicial complex with the free vertex property is not always a simplicial tree or a simplicial forest.

Definition 4.4 (sequentially Cohen–Macaulay) Let M be a graded module over R = k[x1, . . . , xn] . We say

that M is sequentially Cohen–Macaulay if there exists a filtration of graded R -submodules of M

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that each quotient Mi/Mi−1 is Cohen–Macaulay and the Krull dimensions of the quotients are increasing,

i.e. dim (M1/M0) < dim (M2/M1) < · · · < dim (Mr/Mr−1) .

A simplicial complex is said to be sequentially Cohen–Macaulay if its Stanley–Reisner ideal has a sequen-

tially Cohen–Macaulay quotient.

As first shown by Stanley [13], shellability implies sequentially Cohen–Macaulay.

Theorem 4.5 Let ∆ be a simplicial complex, and suppose that R/N (∆) is the associated Stanley–Reisner

ring. If ∆ is shellable, then R/N (∆) is sequentially Cohen–Macaulay.

Proposition 4.6 Let ∆ be a simplicial complex over a vertex set V = {x1, . . . , xn} , A ⊂ V be a set of vertices,

and ∆M = ⟨G1, . . . , Gp⟩ be the cover complex of ∆ . If the Stanley–Reisner complex δN (F(∆)) of the facet

ideal F(∆) of ∆ is shellable, then the Stanley–Reisner complex δN (I) of the ideal

I =
∩

A∩Gi=∅

(Gi)

is shellable with respect to the linear ordering of the facets of δN (I) induced by the shelling of the simplicial

complex δN (F(∆)) .

Proof By Remark 2.7, we may assume that F1, . . . , Fp is a shelling of δN (F(∆)) and Fi = V \ Gi for

i = 1, . . . , p . Let Fi and Fj be two facets of δN (I) with i < j , and by Remark 2.7, we have that A ∩Gi = ∅
and A ∩ Gj = ∅ . By the shellability of δN (F(∆)), there exists some x ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1}
with Fj \ Fl = {x} . It suffices to prove that A ∩Gl = ∅ . If A ∩Gl ̸= ∅ , pick y ∈ A ∩Gl ⊆ A . By A ∩Gi = ∅
and A∩Gj = ∅ , we have that y /∈ Gi ∪Gj and y ∈ Fi ∩ Fj . Since y /∈ Fl (otherwise y /∈ Gl , a contradiction),

we get y ∈ Fj \ Fl = {x} , i.e. y = x , a contradiction because x /∈ Fi . 2
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Proposition 4.7 Let xn be a free vertex of a simplicial complex ∆ = ⟨F1, . . . , Fq⟩ , and let Fq be only the facet

of ∆ containing xn and Fq = {xn} ∪A .

(1) If ∆1 = ∆\⟨Fq⟩ is the simplicial complex obtained by removing the facet Fq from ∆ , then C is a minimal

vertex cover of ∆ containing xn if and only if C ∩ A = ∅ and C = {xn} ∪ C ′ for some minimal vertex

cover C ′ of ∆1 ;

(2) If ∆2 = ∆\xn is the simplicial complex obtained by deleting the face {xn} from ∆ , then C is a minimal

vertex cover of ∆ not containing xn if and only if C is a minimal vertex cover of ∆2 .

Proof

(1) Assume that C is a minimal vertex cover of ∆ containing xn , and then C = {xn} ∪ C ′ for some set C ′

of vertices. If C ∩A ̸= ∅ , then C ′ = C \ {xn} is a vertex cover of ∆, a contradiction. Thus, C ∩A = ∅ .
Hence, it suffices to note that C ′ = C \ {xn} is a minimal vertex cover of ∆1 . The sufficiency is obvious.

(2) Assume that C is a minimal vertex cover of ∆ not containing xn ; then clearly C ∩ A ̸= ∅ because

Fq = {xn} ∪ A . Thus, C is a vertex cover of ∆2 . To prove that C is a minimal vertex cover of ∆2 ,

we can take C ′ ⊊ C . We must show that there is a facet F of ∆2 not covered by C ′ . As C ′ is not a

vertex cover of ∆, there is a facet F of ∆ such that F ∩ C ′ = ∅ . If F = Fi with 1 ≤ i ≤ q − 1, there is

nothing to prove; otherwise F = A , and then A ∩ C ′ = ∅ , and the facet A of ∆2 is not covered by C ′ .

The converse also follows readily.

2

Theorem 4.8 If the simplicial complex ∆ on a vertex set V = {x1, . . . , xn} has the free vertex property, then

the Stanley–Reisner complex δN (F(∆)) of the facet ideal F(∆) of ∆ is shellable.

Proof We proceed by induction on n . The case n = 1 is clear. Assume that xn is a free vertex of a simplicial

complex ∆ and F = {xn} ∪ A is only the facet of ∆ containing xn . Consider the simplicial complexes

∆1 = ∆ \ ⟨F ⟩ and ∆2 = ∆ \ xn . Set V1 and V2 as the sets of vertices of the simplicial complexes ∆1 and

∆2 , respectively, and then both V1 and V2 have fewer than n vertices (because xn is the vertex of neither ∆1

nor ∆2 ), and by the induction hypothesis, we have that δN (F(∆1)) and δN (F(∆2)) are shellable. Assume

that G1, . . . , Gr are the facets of δN (F(∆)) containing xn and H1, . . . , Hs are the facets of δN (F(∆)) not

containing xn . Set Ci = V \ Hi and C ′
i = Ci \ {xn} for i = 1, . . . , s . Then, by Remark 2.7, C1, . . . , Cs are

the set of minimal vertex covers of ∆ containing xn , and by Proposition 4.7 (1), one has that C ′
1, . . . , C

′
s are

the set of minimal vertex covers of ∆1 with C ′
i ∩A = ∅ for i = 1, . . . , s . We claim that C ′

i ⊆ V1 . If not, there

exists a ∈ C ′
i \ V1 , and thus a /∈ A (because A ∩ C ′

i = ∅). Thus, V1 \ C ′
i is the facet of δN (F(∆1)) from the

fact that C ′
i is the set of minimal vertex covers of ∆1 and Remark 2.7, and hence a ∈ V1 , a contradiction with

a ∈ A \ V1 . Thus, we have the equality Hi = V \ Ci = (V1 ∪ {xn}) \ (C ′
i ∪ {xn}) = V1 \ C ′

i and Hi = V1 \ C ′
i

is the facet of δN (F(∆1)) for i = 1, . . . , s . Hence, by the shellability of δN (F(∆1)) and Proposition 4.6, we

may assume that H1, . . . , Hs is a shelling for the simplicial complex generated by H1, . . . , Hs . By Proposition

4.7 (2), one has that C is a minimal vertex cover of ∆ not containing xn if and only if C is a minimal vertex

cover of ∆2 . Thus, G is a facet of δN (F(∆)) that contains xn , i.e. G = {xn} ∪G′ if and only if G′ is a facet
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of δN (F(∆2)). By induction we may also assume that G′
1 = G1 \ {xn}, . . . , G′

r = Gr \ {xn} is a shelling of

δN (F(∆2)). We now prove that

G1, . . . , Gr,H1, . . . , Hs with Gi = {xn} ∪G′
i

is a shelling of δN (F(∆)). We need only show that given Hj and Gi there is x ∈ Hj \ Gi and Gl such that

Hj \Gl = {x} . We can write

Hj = V \ Cj and Gi = V \Di

where Cj (resp. Di ) is a minimal vertex cover of ∆ containing xn (resp. not containing xn ). By Proposition

4.7, we have that: (i) Cj = {xn}∪C ′
j for some minimal vertex cover C ′

j of ∆1 such that C ′
j∩A = ∅ , and (ii) Di

is a minimal vertex cover of ∆2 . From (i) we get that A ⊆ Hj . Observe that A ⊈ Gi ; otherwise, A∩Di = ∅ ,
a contradiction, because Di must cover some vertex of A . Hence, there is some x ∈ A \Gi ⊆ Hj \Gi . Since

{xn} ∪ C ′
j is a vertex cover of ∆, there is a minimal vertex cover Dl of ∆ contained in {xn} ∪ C ′

j . Clearly

x ∈ Dl because Dl is a minimal vertex cover of ∆, Dl ∩A ̸= ∅ and A ∩C ′
j = ∅ . Thus, Gl = V \Dl is a facet

of δN (F(∆)) containing xn . To finish the proof we now prove that Hj \Gl = {x} . We know that x ∈ Hj . If

x ∈ Gl , then x /∈ Dl , a contradiction. Thus, x ∈ Hj \ Gl , i.e. {x} ⊆ Hj \ Gl . Conversely take y ∈ Hj \ Gl ,

i.e. y ∈ Hj = V \ ({xn} ∪ C ′
j) and y /∈ Gl = V \Dl , and then y /∈ {xn} ∪ C ′

j and y ∈ Dl ⊂ {x} ∪ C ′
j . Hence,

y = x , as required. 2

Theorem 4.9 Assume that a simplicial complex ∆ on a vertex set V has the free vertex property, and then

R/F(∆) is sequentially Cohen–Macaulay.

Proof By Theorem 4.8, we obtain that the simplicial complex δN (F(∆)) is shellable, and thus R/F(∆) is

sequentially Cohen–Macaulay by Theorem 4.5. 2

As a consequence of the above theorem, we obtain [5, Corollary 5.6].

Corollary 4.10 Let ∆ be a simplicial forest. Then R/F(∆) is sequentially Cohen–Macaulay.

Proof As simplicial forest ∆ has the free vertex property, the simplicial complex δN (F(∆)) is shellable by

Theorem 4.8. Hence, R/F(∆) is sequentially Cohen–Macaulay by Theorem 4.9. 2
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