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Abstract: Suppose that W is an irreducible FqG -module of dimension n (d2 < n < d3) and that H is given as

G = ⟨X⟩ acting irreducibly on W where X is a set of n×n matrices with entries in F = Fq . In this paper, we present

a Las Vegas algorithm that constructs a representation of G of dimension d . We consider the twisted tensor products

of the modules of high weights λ1, λ2, λd−2, λd−1, 2λ1, 2λd−1 .
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1. Introduction

The majority of recent studies in computational group theory deal with the development of algorithms for

the investigation of subgroups of GL(d, q). O’Brien led this work [12]. A particular aim is to develop the

algorithms constructing an isomorphism between an arbitrary representation of a classical group and its natural

representation. Kantor and Serees [7] presented an algorithm that constructs an isomorphism between an

arbitrary permutation or matrix representation and the natural projective representation of H , where H is an

almost simple classical group. Magaard et al. [11] described algorithms to set up an isomorphism for a projective

matrix representation of degree of at most d2 of the general linear groups having natural module of dimension

d . In this paper, they construct a “nice” generating set in the natural module by using algorithms presented

by [3] or [9]. In addition, there is an effective algorithm constructing an isomorphism between an arbitrary

permutation or matrix representation of An , Sn of large degree and the natural permutation representation

[1], and in [2] a specialized algorithm does the same for the small degree case.

This study presents an algorithm that constructs an isomorphism such as in [11]. We consider the twisted

tensor products of modules of the high weights λ1, λ2, λd−2, λd−1, 2λ1, 2λd−1 .

We now give some required information for our task. Let q = pf be a prime power and Fq be a finite

field. Let V = ⟨v1, v2, . . . , vd⟩ be a natural module of H and V ∗ be its dual module. The symmetric square

Sym2(V ) of V is the subspace of V ⊗ V spanned by

{ei ⊗ ej + ej ⊗ ei : 1 ≤ i < j ≤ d} ∪ {ei ⊗ ei : 1 ≤ i ≤ d} .

The alternating square Λ2(V ) of V is the subspace of V ⊗ V spanned by

{ei ⊗ ej − ej ⊗ ei : 1 ≤ i < j ≤ d} .
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The following theorem shows how all highest weight modules of G can be constructed with p-restricted

highest weights.

Theorem 1.1 Let τ be the Frobenius automorphism, raising elements to their p th power. Twisting the G-

action on a G-module M with τ (i) , i ∈ Z≥0 , we get another G-module, which we denote by M (i) . If λi are

p-restricted weight, then

M (λ0 + pλ1 + · · ·+ pnλn ) ∼= M (λ0)⊗M(λ1)
(1) ⊗ · · · ⊗M(λn)

(n)

by [10].

In this paper, τ is an operation taking pe th powers of the entries in the matrices representing the group

elements, for some e < f . By the above theorem, the tensor products of the modules of the high weights

λ1, λ2, λd−2, λd−1, 2λ1, 2λd−1 can be given as follows:

1. V ⊗ V τ ⊗ V τ2

, tensor products consisting of replaced by duals of one or more factors in V ⊗ V τ ⊗ V τ2

,

and duals of these products,

2. V ⊗
(
Λ2(V )

)τ
, V ∗ ⊗

(
Λ2(V )

)τ
, and duals of these products,

3. V ⊗
(
Sym2(V )

)τ
, V ∗ ⊗

(
Sym2(V )

)τ
, and duals of these products.

Suppose that s has an irreducible action on V . Then the eigenvalues of s on V ⊗ Fqd are li = wqi−1

for 1 ≤ i ≤ d .

A prime r is a primitive prime divisor of qd − 1 if r|qd − 1 and r ∤ qe − 1 for 1 ≤ e < d and it is denoted

by ppd(q; d). For more detail, see [8]. Suppose that H is given as G ≤ GL (W ) where W = Fn
q . Assume that

s ∈ H , r a ppd(q; d), and r| |s| . Hence, s is a power of a Singer cycle. Let σ = δf be the Frobenius map

of GL
(
d, qd

)
whose fixed points contain H . There exist the eigenspaces ⟨ei⟩ of s such that eσi = ei+1 for all

i ∈ {1, 2, ..., d− 1} and eσd = e1 . Thus, σ centralizes ⟨s⟩ and so σ transitively permutes the eigenspaces of s

acting on V ⊗ Fqd .

We assume that random elements of a finite group G can be constructed with our algorithm. An algorithm

outputs an ε -uniformly distributed random element x of G if (1− ε) / |G| <Prob(x = g) < (1 + ε) / |G| for

all g ∈ G [13]. In our context, ‘nearly uniform’ means ε-uniform for some ε < 1/2.

Let ξ be the time required to choose a nearly uniformly random element of G and let ρq indicate the

cost of a field operation in a finite field Fq .

Our main results are stated in the following theorem:

Theorem 1.2 Let q = pf be a prime power and H have the natural module of dimension d . Suppose a set X

of n× n matrices with entries in Fq , and suppose that H is given as G = ⟨X⟩ acting irreducibly on a twisted

module of dimension n(d2 < n ≤ d3) of high weights λ1, λ2, λd−2, λd−1, 2λ1, 2λd−1 . For the inputs G and d ,

there is a polynomial-time Las Vegas algorithm that, with probability of at least 1−ε , sets up a data structure for

rewriting G as a d-dimensional projective representation in time O(ξd2 log q log ε−1 + ρqd
11 (log q )

2
log ε−1 +

ρqdd
11log q + ρqdd

6log2d log (dq) log q log ε
−1

) . The procedure that finds the image of g in a representation of

degree d costs O(ξ + ρqdd
9log q) .

192
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We prove this theorem by giving an algorithm with the stated complexity. Now we give a summary for

the recognition algorithm, which constructs a matrix representation of dimension d .

Algorithm 1.

Input: G , which is isomorphic to a classical group H with natural module of dimension d , and W is

an irreducible FqG module of dimension n .

Output: The action of g on a d -dimensional vector space in Fq .

Procedure:

1. Find a random element s ∈ G that satisfies the following:

s has n one-dimensional eigenspaces and r divides |s| where r is a ppd(q; d).

2. Label the eigenvalues of s and find a basis of s-eigenvectors on W⊗F qd .

3. Compute the vector corresponding to ei ⊗ ej ⊗ ek from the eigenspace ⟨ei,j,k⟩ labeled with (i, j, k).

4. Find the image of g ∈ G on a d -dimensional vector space.

The output of all steps of the algorithm is the input of the following step. In order to prove this theorem,

we consider each of the steps separately. In [11], common steps of the algorithm were given comprehensively.

Therefore, we are not interested in these steps. In the last step of our algorithm, we find the image of g , which

is a matrix in GL(d, Fqd). However, the aim of the final step of our algorithm is to rewrite the output as a

d × d matrix over Fq . In order to determine the base change matrix between the base of V and the base of

V⊗F qd , we use the algorithm of [5], a Las Vegas algorithm that finds the base change matrix.

2. Finding the random element

The first step of the recognition algorithm is common for all representations. We now discuss whether or not a

random element s ∈ G that satisfies Step 1 has order divisible by an r primitive prime divisor of qd − 1. We

require a test searching a suitable element s ∈ G and its eigenvalues over Fqd . The procedure of finding the

random element was given in [4]. We will only point out a particular focus. If (q, d) = (2, 6), then m = 21. If

(q, d) = (p, 2) with p a Mersenne prime, then m = p− 1. Otherwise,

m =
∏

j|d, j ̸=d

d

j

(
qj − 1

)
.

The order of s is the factor of a ppd(q; d) prime if and only if sm ̸= 1. Since the order of s is divisible

by the order of an eigenvalue, we decide this by taking the mth power of the eigenvalues of s .

We will now give a lemma identifying a sufficient condition for a suitable random element of H .

Lemma 2.1 Suppose that W are the tensor products of the modules of the high weights λ1, λ2, λd−2, λd−1, 2λ1, 2λd−1

and that the order of s ∈ H is a multiple of (qd − 1)/(q − 1) . Then s has distinct eigenvalues in Fqd .

Proof Let q = pf be a prime power and λ be a primitive element of Fqd . Since s has the order that is a

factor of (qd− 1)/(q− 1), the eigenvalues of s in V⊗F qd are ω, ωq, . . . , ωqd−1

, where ω = λk for some divisor

k of q − 1.
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We first consider the case W = V⊗
(
Sym2(V )

)τ
. The eigenvalues of s on W⊗F qd are ωqi−1+pe(qj−1+qk−1)

for 1 ≤ i, j, k ≤ d and 1 ≤ j ≤ k ≤ d . If ωqi1−1+pe(qj1−1+qk1−1) = ωqi2−1+pe(qj2−1+qk2−1) for some

1 ≤ i1, j1, k1, i2, j2, k2 ≤ d and 1 ≤ j1 ≤ k1 ≤ d , 1 ≤ j2 ≤ k2 ≤ d , then

λk(qi1−1+pe(qj1−1+qk1−1)) = λk(qi2−1+pe(qj2−1+qk2−1)). (1)

If any two of i1 = i2 , j1 = j2 , and k1 = k2 hold, then the other equality holds.

If i1 = i2 , then λkpe(qj1−1+qk1−1) = λkpe(qj2−1+qk2−1) for 1 ≤ j1 ≤ k1 ≤ d , 1 ≤ j2 ≤ k2 ≤ d . The solution

is j1 = j2 , k1 = k2 [11].

If k1 = k2 , then λk(qi1−1+peqj1−1) = λk(qi2−1+peqj2−1) for 1 ≤ i1, j1, i2, j2 ≤ d and if j1 = j2 , then

λk(qi1−1+peqk1−1) = λk(qi2−1+peqk2−1) for 1 ≤ i1, k1, i2, k2 ≤ d . The only solution is i1 = i2 , j1 = j2 or i1 = i2 ,

k1 = k2 when d ̸= 3, q ̸= 4 [11].

If the exponents on both sides of equation (1) are equal, then

qi1−1 − qi2−1 = pe
((
qj2−1 − qj1−1

)
+

(
qk2−1 − qk1−1

))
.

If k1 ̸= k2 and j1 ̸= j2 , then the right side of this equation is divisible by pe and the left side of this equation is

divisible by pf . Thus, the exponents on both sides of the equation are equal to e , 0 modf , respectively. This

is a contradiction. Therefore, k1 = k2 , j1 = j2 and so i1 = i2 . If the exponents on each side of (1) are less than

qd − 1, then both exponents in (1) are at most k
(
qd−1 + peqd−3 + peqd−3

)
< (q − 1)(qd−1 + qd−2 + qd−3) ≤

qd − 1 for j1, j2 ≤ d− 2 and k1, k2 ≤ d− 2, so these exponents are equal. There is only one solution k1 = k2

and j1 = j2 and i1 = i2 .

If jl+ t−1 ≤ 2d−2, kl+ t−1 ≤ 2d−2 for l = 1, 2, then by taking the qt th powers of the exponents (1),

we obtain qil+t−1 , qjl+t−1 , qkl+t−1 for l = 1, 2. When these exponents are greater than d , the solution of (1) is

obtained with jl ≤ kl ≤ d−2 for l = 1, 2. We have k1+t−1 ≡ k2+t−1 (modd) and j1+t−1 ≡ j2+t−1 (modd).

Then we get k1 = k2 , j1 = j2 and so i1 = i2 . If j1 ≤ k1 ≤ d− 1, then k(qi1−1 + pe(qj1−1 + qk1−1)) is greater

than qd − 1 in case of k = q − 1, i1 = d , j1 ≤ k1 = d− 1; that is to say, k(qi1−1 + pe(qj1−1 + qk1−1)) > qd − 1

and also k
(
qi1−1 + pe

(
qj1−1 + qk1−1

))
< 2(qd − 1). From both inequalities, we deduce that the only case is

(q − 1)
(
qd−1 + pe

(
2qd−2

))
= (q − 1)

(
qi2−1 + pe

(
qj2−1 + qk2−1

))
+ qd − 1.

While the left side of the last equation is divisible by p , the other side is divisible by p if and only if i2 = 1

and p = 2. Hence, the equation is obtained as

2e
(
2qd−2 − qj2−1 − qk2−1

)
=

(
qd−1 + q − 2

)
/(q − 1).

For j2 ≤ k2 ≤ d− 2, the left side of the last equation is greater than the other side. This is a contradiction.

When d = 3, suppose that k1 ̸= k2 , j1 ̸= j2 , and i1 ̸= i2 . Then

k
(
q2 + pe − 1− peq2

)
= k

(
q2 − 1

)
(pe − 1)

must be a multiple of qd − 1, but it is not divisible by a ppd(q; d). Therefore, this is a contradiction. Similarly,

for d = 2, suppose that k1 ̸= k2 , j1 ̸= j2 , and i1 ̸= i2 . Then this implies that

k (q + 2pe − 1− 2qpe) = k (q − 1) (1− 2pe)
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is a multiple of qd − 1, but it is not divisible by a ppd(q; d). Therefore, this is a contradiction.

If W is V ⊗
(
Λ2 (V )

)τ
, then the eigenvalues of s on W⊗F qd are ωqi−1+pe(qj−1+qk−1) for 1 ≤ i, j, k ≤ d

and 1 ≤ j < k ≤ d . Since its eigenvalues consist of eigenvalues for V ⊗
(
Sym2(V )

)τ
, it is applied as above.

When the case is W = V ⊗V τ ⊗V τ2

, then the eigenvalues of s on W⊗F qd are ωqi−1+peqj−1+p2eqk−1

for

1 ≤ i, j, k ≤ d . Since it is shown that its eigenvalues are distinct in a way similar to V ⊗
(
Sym2(V )

)τ
, we will

not give its proof.

If W is V ∗⊗
(
Sym2 (V )

)τ
, then the eigenvalues of s on W⊗F qd are ω−qi−1+pe(qj−1+qk−1) for 1 ≤ i, j, k ≤

d and 1 ≤ j ≤ k ≤ d . If ω−qi1−1+pe(qj1−1+qk1−1) = ω−qi2−1+pe(qj2−1+qk2−1) for some 1 ≤ i1, j1, k1, i2, j2, k2 ≤ d

and 1 ≤ j1 ≤ k1 ≤ d ,1 ≤ j2 ≤ k2 ≤ d , then

λk(qi2−1+pe(qj1−1+qk1−1)) = λk(qi1−1+pe(qj2−1+qk2−1)).

As before, the only solution is i1 = i2 , j1 = j2 , and k1 = k2 . Similarly, if W is V ∗ ⊗
(
Λ2 (V )

)τ
, then

the eigenvalues of s on W⊗F qd are ω−qi−1+pe(qj−1+qk−1) for 1 ≤ i, j, k ≤ d and 1 ≤ j < k ≤ d . If

ω−qi1−1+pe(qj1−1+qk1−1) = ω−qi2−1+pe(qj2−1+qk2−1) for some 1 ≤ i1, j1, k1, i2, j2, k2 ≤ d and 1 ≤ j1 < k1 ≤

d ,1 ≤ j2 < k2 ≤ d , then λk(qi2−1+pe(qj1−1+qk1−1)) = λk(qi1−1+pe(qj2−1+qk2−1)) . As before, the only solution is

i1 = i2 , j1 = j2 , and k1 = k2 . Besides, it is shown that their eigenvalues are distinct when the cases are tensor

products consisting of replaced by duals of one or more factors of W = V ⊗ V τ ⊗ V τ2

. 2

In [4, 11], the authors showed that there is an element s ∈ G that satisfies the steps of the following Las

Vegas algorithm.

Algorithm 2.

Input: G , which is isomorphic to a classical group H with natural module of dimension d .

Output: s ∈ G and its eigenvalues over Fqd .

Procedure:

1. Set T := ⌈2/P log ε−1⌉ , where P is given as the proportion of random elements in G with 1
P < 3d2 log q

and T is the upper bound of random elements of G .

2. Compute the characteristic polynomial c(x) of a random element s ∈ G , and find the square-free

factorization of c(x), the distinct-degree factorization of c(x).

3. Compute the distinct linear factors of c(x) over Fqd and the eigenvalues of s over Fqd . For a zero β ∈ Fqd

of one of the irreducible divisors of c(x) largest degree, compute βm . If the value of βm is 1 or if the

computation of linear factors returns FAIL, then discard s and return 2.

4. Return s and its eigenvalues over Fqd .

Our procedure determining a random element is the same as the procedures performed in recent papers

[4, 11]. We obtain the required time for the procedure determining a random element in our representations by

the following lemma.

195
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Lemma 2.2 Let W be an irreducible FqG-module dimension of n(d2 < n ≤ d3) . There is a Las Vegas algorithm

that, with probability 1−ε, finds s ∈ G such that s is a ppd(q; d) one-dimensional eigenspace of its eigenvalues.

Algorithm 2 has complexity

O((ξ + ρqd
9 + ρqd

3log q + ρqd d4log2d log (dq) )
1

P
log ε−1),

where P is the proportion of random elements in G . Then the complexity is O((ξ + ρqd
9 + ρqd

3log q +

ρqd d4log2d log (dq) )d2 log q log ε−1) [6].

3. Labeling the eigenvalues lijk

Assume that G ≤ GL (W ) where W is an irreducible FqG -module W of dimension n . In the previous section,

the element s ∈ G providing conditions in the first step of the recognition algorithm was found. We now

perform steps 2 and 3 of the recognition algorithm in this section. As before, the eigenvalues of s on V ⊗ Fqd

are li = wqi−1

for 1 ≤ i ≤ d and its eigenspaces on W are ⟨ei,j,k⟩ for 1 ≤ i, j, k ≤ d . Sets of eigenvalues of s

on W such that W = V ⊗ V τ ⊗ V τ2

, W = V ⊗
(
Λ2 (V )

)τ
, and W = V ⊗

(
Sym2(V )

)τ
are denoted as follows,

respectively, {
li,j,k := li (lj)

pe

(lk)
p2e

: 1 ≤ i, j, k ≤ d
}
,{

li,j,k := li (lj)
pe

(lk)
pe

: 1 ≤ i, j, k ≤ d, j < k
}
,{

li,j,k := li (lj)
pe

(lk)
pe

: 1 ≤ i, j, k ≤ d, j ≤ k
}
.

The remaining modules of dimension between d2 and d3 are the products that consist of replaced by duals

of one or more factors of above products. We choose a basis of FW = {fi,j,k} , fi,j,k ∈ ⟨ei,j,k⟩ by using the

following algorithm.

Algorithm 3.

Input: Random element s and eigenvalues of s on W .

Output: Labeling the eigenvalues lijk and the basis FW = {fijk} .
Procedure:

1. Construct the orbits of eigenvalues under the Frobenius map σ and compute their q th powers.

2. Perform suitable labeling of the eigenvalues l1jk and for 2 ≤ i, j, k ≤ d , lijk = lqi−1,j−1,k−1 .

3. Take l1jk ∈ Ω for each orbit Ω of eigenvalues and choose the vector f1,j,k ∈ ⟨e1,j,k⟩ whose first nonzero

coordinate is equal to 1.

4. Compute fi+r,j+r,k+r = fσr

i,j,k for other lσ
r

i,j,k ∈ Ω.

Lemma 3.1 Let li = wqi−1

, for 1 ≤ i ≤ d , be eigenvalues of s on V ⊗ Fqd and let W be the irreducible FG-

modules corresponding with tensor products of high weights λ1, λd−1, λ2, λd−2, 2λ1, 2λd−1 . There are suitable

labelings li,j,k of the eigenvalues of s on W with a basis FW = {fi,j,k} . The cost of this labeling procedure is

O
(
ρqd

(
d11 + d9log q

))
where ρqd is the cost of a field operation in Fqd .
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Proof Let W be the irreducible FG -modules corresponding with high weights λ1, λd−1, λ2, λd−2, 2λ1, 2λd−1 .

We perform suitable labelings li,j,k of the eigenvalues of s on W as follows. Let W = V ⊗ V τ ⊗ V τ2

and let

q = pf be a prime power. We know the set for the eigenvalues of s in its action on W by{
li,j,k := li (lj)

pe

(lk)
p2e

: 1 ≤ i, j, k ≤ d
}
.

Its eigenspaces on W are ⟨ei,j,k = ei ⊗ ej ⊗ ek⟩ , for 1 ≤ i, j, k ≤ d . First, we choose one of these orbits and

take an entry α from this orbit as l1l1l1 . If there exists an eigenvalue w where w1+pe+p2e

= α1+qpe+qp2e

and

if αq+1w−1 is an eigenvalue, then we identify l1,2,2 as w and αq+1w−1 as l2,1,1 . Otherwise, we choose a new

orbit.

We perform the labeling of the eigenvalues li,j,k as follows:

For k ∈ {2, 3, . . . , d} , lk,k,k = lqk−1,k−1,k−1 , for k ∈ {2, 3, . . . , d− 1} , lk,k+1,k+1 = lqk−1,k,k and ld,1,1 =

lqd−1,d,d.

For k ∈ {2, 3, . . . , d− 1} , lk+1,1,1 = l1,1,1lk,k,klk+1,k+1,k+1/l1,k,klk,k+1,k+1 and l1,k+1,k+1 = l1,1,1lk+1,k+1,k+1/lk+1,1,1.

For k ∈ {1, 2, . . . , d− 1} , lk+1,k+1,1 = l1,1,1lk,k,klk+1,k+1,k+1/l1,1,klk,k,k+1 and l1,1,k+1 = l1,1,1lk+1,k+1,k+1/lk+1,k+1,1.

We label l1,2,1 = l1,1,1l1,2,2/l1,1,2 , l2,1,2 = l1,1,1l2,2,2/l1,2,1 . For k ∈ {2, 3, . . . , d− 1} ,

lk,k+1,k = lqk−1,k,k−1, ld,1,d = lqd−1,d,d−1,

lk+1,1,k+1 = l1,1,k+1lk+1,k+1,k+1/l1,k+1,k+1

l1,k+1,1 = l1,1,1lk+1,k+1,k+1/lk+1,1,k+1.

We label for (i, j, k) → (1, 2, 3), l1,2,3 = l1,2,2
q+1/l1,2,1

q . For k ∈ {2, 3, . . . , d− 2} , we determine

lk,k+1,k+2 = lqk−1,k,k+1, ld−1,d,1 = lqd−2,d−1,d,

and for k ∈ {2, 3, . . . , d− 1} ,

lk,k+1,1 = l1,1,1lk+1,k+1,k+1lk,k,k/l1,k,klk+1,1,k+1,

l1,k,k+1 = l1,k+1,k+1lk,k,k/lk,k+1,k.

Also, (1, k + 1, k), (k, 1, k + 1), (k + 1, 1, k), (k + 1, k, 1) triples are determined by the same way.

For r ∈ {2, 3, . . . , d− k} , we label l1,k,k+r = lq+1
1,k,k+r−1/l

q
1,k,k+r−2 and other triples. Other values of

lk,l,m are determined by taking q th powers of labeled elements of orbits.

Now we consider the case W = V ⊗
(
Λ2 (V )

)τ
. We know the set for the eigenvalues of s in its action on

W by {
li,j,k := li (lj)

pe

(lk)
pe

: 1 ≤ i, j, k ≤ d, j < k
}
.

Its eigenspaces on W are ⟨ei,j,k = ei ⊗ ej ⊗ ek⟩ , for 1 ≤ i, j, k ≤ d and j < k . We choose one of these orbits

and take an entry α from this orbit as l1l1l2 . If there exists an eigenvalue w where w1+pe+qpe

= α1+pe+q2pe

,

then we identify l1,1,3 as w . Otherwise, we choose a new orbit.
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We perform the labeling of the eigenvalues li,j,k as follows:

For k ∈ {4, 5, . . . , d} , l1,1,k =
lq+1
1,1,k−1

lq1,1,k−2
and then lq1,1,d = l2,1,2 , l123 =

lq+1
112

l212
, l124 = l123l224

l223
and

l313 =
l113l

q
212

l123
.

For k ∈ {4, 5, . . . , d} , lk,1,k =
lq+1
k−1,1,k−1

lqk−2,1,k−2
.

For k ∈ {3, 4, . . . , d} and r ∈ {1, 2, . . . , d− k} , lk,1,k+r =
lq+1
k−1,1,k+r−1

lqk−2,1,k+r−2
and lk+r,1,k =

lq+1
k+r−1,1,k−1

lqk+r−2,1,k−2
.

For k ∈ {5, 6, . . . , d} , l1,2,k =
lq+1
1,2,k−1

lq1,2,k−2
.

For k ∈ {3, 4, . . . , d} , l2,1,k =
lq+1
2,1,k−1

lq2,1,k−2
and lk,1,2 =

lq+1
k−1,1,2

lqk−2,1,2
.

For k ∈ {3, 4, . . . , d} and r ∈ {1, 2, . . . , d− k} , l1,k,k+r =
lq+1
1,k−1,k+r−1

lq1,k−2,k+r−2
.

Other values of lk,l,m are determined by taking q th powers of labeled elements of orbits.

Finally, we consider the case W = V ⊗
(
Sym2(V )

)τ
. We know the set for the eigenvalues of s in its

action on W by {
li,j,k := li (lj)

pe

(lk)
pe

: 1 ≤ i, j, k ≤ d, j ≤ k
}
.

Its eigenspaces on W are ⟨ei,j,k = ei ⊗ ej ⊗ ek⟩ , for 1 ≤ i, j, k ≤ d and j ≤ k .

We choose one of these orbits and take an entry α from this orbit as l1l1l1 . If there exists an eigenvalue

w where w1+2pe

= α1+pe+qpe

, then we identify l1,1,2 as w . Otherwise, we choose a new orbit. We perform the

labeling of the eigenvalues li,j,k as follows:

For k ∈ {3, 4, . . . , d} , l1,1,k =
lq+1
1,1,k−1

lq1,1,k−2
then lq1,1,d = l2,1,2 , l211 = l212l111

l112
, l122 =

lq+1
111

l211
, l123 =

lq+1
112

l212
,

l124 = l123l224
l223

and l313 =
l113l

q
212

l123
, lk,1,1 =

lq+1
k−1,1,1

lqk−2,1,1
.

For k ∈ {4, 5, . . . , d} , lk,1,k =
lq+1
k−1,1,k−1

lqk−2,1,k−2
.

For k ∈ {3, 4, . . . , d} and r ∈ {1, 2, . . . , d− k} , lk,1,k+r =
lq+1
k−1,1,k+r−1

lqk−2,1,k+r−2
and lk+r,1,k =

lq+1
k+r−1,1,k−1

lqk+r−2,1,k−2
.

For k ∈ {5, 6, . . . , d} , l1,2,k =
lq+1
1,2,k−1

lq1,2,k−2
.

For k ∈ {3, 4, . . . , d} , l2,1,k =
lq+1
2,1,k−1

lq2,1,k−2
and lk,1,2 =

lq+1
k−1,1,2

lqk−2,1,2
.

For k ∈ {3, 4, . . . , d} , l1,k,k =
lq+1
1,k−1,k−1

lq1,k−2,k−2
.

For k ∈ {3, 4, . . . , d} and r ∈ {1, 2, . . . , d− k} , we determine l1,k,k+r =
lq+1
1,k−1,k+r−1

lq1,k−2,k+r−2
.

Other values of lk,l,m are determined by taking q th powers of labeled elements of orbits.

The labelings for probable modules consisting of their duals instead of one or more factors are identical

with the cases given above. Therefore, we do not restate their proofs.

In Algorithm 3, step 1 costs O(d3) q th power, a cost of O(ρqd log q ) for each, and thus the set up of

this data structure has complexity O(ρqdd
3 log q ). In step 3, we compute d2 eigenvectors at a cost O(ρqdd

9) of
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each, and then step 3 has complexity O(ρqdd
11). Step 4 costs O(ρqdd

9 log q ). The total time of this procedure

is O
(
ρqd(d

11 + d9 log q )
)
. 2

Since we can assume that the first coordinate of each ei is 1, the vector fi,j,k corresponds precisely to

ei ⊗ ej⊗ek , and so it does not need a scalar multiple [11].

We use the algorithm of [5] to perform the final base change. This algorithm is a Las Vegas algorithm

that determines the base change matrix with complexity O
(
ρqd |X| d3

)
+ O∼(ρqdlog q). Its procedure is fast

and hence it has no effect on the complexity of Algorithm 3.

4. Finding images

It only remains to determine the image of an arbitrary g ∈ G . We compute K = (κijk,lmn), the matrix of g

in the basis FW . Let A = (aij) be the matrix of g in the basis {e1, e2, . . . , ed} . The aij is computed since we

know K = (κijk,lmn). Finally, g is rewritten in the basis ß = {b1, b2, . . . , bd} for the natural module V .

Lemma 4.1 Let K = (κijk,lmn) be the matrix representation defined with the action of g on W with respect

to the basis FW = {fi,j,k} . The matrix aij of g is determined with the cost O
(
ξ + ρqd

(
d9 + d2 log q

))
where

ξ is the required cost to choose a random element of G , and ρqd is the cost of a field operation in Fqd .

Proof If W is V ⊗ V τ ⊗ V τ2

, then the basic equation for κijk,lmn with all 1 ≤ i, j, k, l, m, n ≤ d is

κijk,lmn = ail(ajm)
pe

(akn)
p2e

.

If W is V ⊗
(
Λ2(V )

)τ
, then the basic equation for κijk,lmn with j < k and m < n is

κijk,lmn = ail(ajm)
pe

(akn)
pe

.

If W is V ⊗
(
Sym2(V )

)τ
, then the basic equation for κijk,lmn with j ≤ k and m ≤ n is

κijk,lmn = ail(ajm)
pe

(akn)
pe

.

We choose an arbitrary nonzero entry κi0j0k0,l0m0n0 in Fqd . The matrices with (i, l) entry

κij0k0,lm0n0 = ail(aj0m0)
pe

(ak0n0)
p2e

, κij0k0,lm0n0 = ail(aj0m0)
pe

(ak0n0)
pe

κij0k0,lm0n0 = ail(aj0m0)
pe

(ak0n0)
pe

are images of g . When one or more factors replace with their duals,

finding the image of g is similar to the cases given above. Let A∗ =
(
a∗ij

)
be the matrix of φ(g) in the basis

{e1, e2, . . . , ed} for a graph automorphism φ . Here we give only one of these cases when W = V ∗ ⊗ V τ ⊗ V τ2

.

The basic equation for κijk,lmn is

κijk,lmn = a∗il(ajm)
pe

(akn)
p2e

.

We choose an arbitrary nonzero entry κi0j0k0,l0m0n0 in Fqd . The matrix with (i, l) entry κij0k0,lm0n0 =

a∗il(aj0m0)
pe

(ak0n0)
p2e

is an image of g . For computing K = (κijk,lmn), the matrix representation, the

cost requires O(ρqdn
3) = O(ρqdd

9). Of the remaining part of the procedure, the most expensive is to

take the q th power of aij . The time required for it is O(ρqdd
2log q ). The procedure has complexity

O
(
ξ + ρqd

(
d9 + d2 log q

))
. 2
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