Turk J Math
(2016) 40: 201 - 209
(c) TÜBİTAK
doi:10.3906/mat-1505-51

Research Article

Zero-divisor graph of matrix rings and Hurwitz rings

Cihat ABDİOĞLU*
Department of Mathematics, Karamanoğlu Mehmetbey University, Yunus Emre Campus, Karaman, Turkey

Received: 14.05.2015 \quad Accepted/Published Online: 19.08.2015 \quad - Final Version: 01.01.2016

Abstract

Let R be ring a with identity $1 \neq 0, S_{n}(R)$ be a subring of the ring $T_{n}(R)$ of $n \times n$ upper triangular matrices over R, and $H_{n}(R)$ be the ring defined in the next section using $H R$, the ring of the Hurwitz series over R. In this paper, we introduce the zero-divisor graph $\vec{\Gamma}\left(S_{n}(R)\right)$ and its underlying undirected graph $\Gamma\left(S_{n}(R)\right)$ of $S_{n}(R)$. We give some basic graph theory properties of $\vec{\Gamma}\left(S_{n}(R)\right)$. Moreover, we obtain some results of the zero-divisor directed graph of $\vec{\Gamma}\left(H_{n}(R)\right)$.

Key words: Zero-divisor graph, matrix ring, Hurwitz ring

1. Introduction

Zero-divisor graphs were first defined for commutative rings by Beck in [2]. However, he let all elements of a ring R be vertices of the graph and was mainly interested in colorings. In [1], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are the nonzero zero-divisors of R. They studied the interplay between the ring-theoretic properties of a commutative ring and the graph theoretic properties of its zero-divisor graph. In [7], Li and Tucci studied the zero-divisor graphs of upper triangular matrix rings over commutative rings with identity. We extend their results to some special matrix rings.

Let R be a commutative ring with identity $1 \neq 0$. Let $Z(R)$ denote the set of all zero-divisors of R, and $Z(R)^{*}=Z(R) \backslash\{0\}$ the nonzero zero-divisors of R. The zero-divisor graph of R, denoted by $\Gamma(R)$, is the undirected graph whose vertices are the elements of $Z(R)^{*}$, and two distinct vertices r and s are adjacent if and only if $r s=0$.

The zero-divisor graph of a noncommutative ring R is a directed graph, which is denoted by $\vec{\Gamma}(R)$. We denote the underlying undirected graph of $\vec{\Gamma}(R)$ by $\Gamma(R)$. An element $r \in R$ is a left (resp., right) zero-divisor if there exists $0 \neq s \in R$ such that $r s=0$ (resp., sr=0). In R, the sets of nonzero left and right zero-divisors are denoted by $Z D_{l}(R)^{*}$ and $Z D_{r}(R)^{*}$, respectively. The vertex set of $\vec{\Gamma}(R)$ is $V(\vec{\Gamma}(R))=Z D_{l}(R)^{*} \cup Z D_{r}(R)^{*}$, and there is an edge from r to s, denoted by $r \rightarrow s$, if and only if $r s=0$. For general background on graph theory, please see [3].

In Section 2, we study the zero-divisor graphs of $S_{n}(R)$. Assume that R is a commutative ring with nonzero identity. Let $T_{n}(R)$ denote the $n \times n$ upper triangular matrix ring over R and $S_{n}(R), T(R, n)$ be two

[^0]
ABDİOĞLU/Turk J Math

subrings of $T_{n}(R)$ defined as follows for any $n \geq 2$ respectively.

$$
\begin{aligned}
& S_{n}(R)=\left\{\left(\begin{array}{lllll}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right): a, a_{i j} \in R\right\} \\
& T(R, n)=\left\{\left(\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\
0 & a_{1} & a_{2} & \cdots & a_{n-1} \\
0 & 0 & a_{1} & \cdots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{1}
\end{array}\right): a_{i} \in R\right\}
\end{aligned}
$$

If there is no confusion, we write S and T instead of $S_{n}(R)$ and $T_{n}(R)$. In this section we determine the girth of $\vec{\Gamma}(S)$ and get some conditions for $\Gamma(S)$ to be planar. We also extend some of the results from [4] and [7] to $S_{n}(R)$.

In Section 3, we study the zero-divisor graphs of Hurwitz rings. Let R be any ring. We denote $H(R)$, or simply $H R$, the ring of Hurwitz series over R, defined as follows. The elements of $H R$ are sequences of the form $a=\left(a_{n}\right)=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$, where $a_{n} \in R$ for each $n \in \mathbb{N}$. An element in $H R$ can be thought of as a function from \mathbb{N} to R.

Two elements $\left(a_{n}\right)$ and $\left(b_{n}\right)$ in $H R$ are equal if they are equal as functions from \mathbb{N} to R, i.e. if $a_{n}=b_{n}$ for all $n \in \mathbb{N}$. The element $a_{m} \in R$ will be called the m th term of $\left(a_{n}\right)$. Addition in $H R$ is defined termwise, so that $\left(a_{n}\right)+\left(b_{n}\right)=\left(c_{n}\right)$, where $c_{n}=a_{n}+b_{n}$ for all $n \in \mathbb{N}$. If one identifies a formal power series $\sum_{i=0}^{\infty} a_{n} x^{n} \in R[[x]]$ with the sequence of its coefficients $\left(a_{n}\right)$, then multiplication in $H R$ is similar to the usual product of formal power series, except that binomial coefficients are introduced at each term in the product as follows by [5]. The (Hurwitz) product of $\left(a_{n}\right)$ and $\left(b_{n}\right)$ is given by $\left(a_{n}\right)\left(b_{n}\right)=\left(c_{n}\right)$, where

$$
c_{n}=\sum_{k=0}^{n} C_{k}^{n} a_{k} b_{n-k}
$$

Hence,

$$
\begin{gathered}
\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)\left(b_{0}, b_{1}, b_{2}, b_{3}, \ldots\right)= \\
\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+2 a_{1} b_{1}+a_{2} b_{0}, a_{0} b_{3}+3 a_{1} b_{2}+3 a_{2} b_{1}+a_{3} b_{0}, \ldots\right)
\end{gathered}
$$

Set

$$
H(R, n)=\left\{\left(\begin{array}{llll}
a_{0} & a_{1} & \cdots & a_{n} \\
0 & a_{0} & \cdots & a_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{0}
\end{array}\right): a_{i} \in R \text { for } 0 \leq i \leq n\right\}
$$

We can identify $H(R, n)$ with the set

$$
\left\{\left(a_{0}, a_{1}, \ldots, a_{n}\right): a_{i} \in R \quad \text { for } 0 \leq i \leq n\right\}
$$

Then $H(R, n)$ is a ring with addition defined componentwise and multiplication is given by

$$
\left(a_{0}, a_{1}, \ldots, a_{n}\right)\left(b_{0}, b_{1}, \ldots, b_{n}\right)=\left(c_{0}, c_{1}, \ldots, c_{n}\right)
$$

where $c_{0}=a_{0} b_{0}$ and $c_{m}=\sum_{k=0}^{m} C_{k}^{m} a_{k} b_{m-k}$ for each $1 \leq m \leq n$. Note that sometimes the ring $H(R, n)$ is shown by $H_{n}(R)$. In this note, from now on we will use H_{n} instead of $H(R, n)=H_{n}(R)$.

2. Zero-divisor graph of $S_{n}(R)$

Suppose that $S_{n}(R)=S$ is the ring consisting of upper triangular matrices defined in the previous section. In this section, we will give some results of the graph $\Gamma(S)$ and the underlying graph $\vec{\Gamma}(S)$ such as the girth, diameter, vertices, edges, etc. For all undefined notions we refer to [2] and [7]. We begin with a known result, which will be used throughout the paper.

Theorem 2.1 [6, Theorem 2.1] Let R be a commutative ring with identity $1 \neq 0$, and let $Q(R)$ be the total quotient ring of R. Then $\vec{\Gamma}\left(T_{n}(R)\right) \cong \vec{\Gamma}\left(T_{n}(Q(R))\right)$.

Because of Theorem 2.1, we can assume throughout this paper that every element of R is either a unit or a zero-divisor.

Lemma 2.2 Let $A=\left[a, a_{i j}\right] \in S=S_{n}(R)$. Then $\operatorname{det} A$ is a zero-divisor in R if and only if $a_{j j}=a$ is a zero divisor in R for all $i=1,2, \ldots, n$.
Proof ${ }^{\prime \prime} \Rightarrow^{\prime \prime}$ Let $\operatorname{det} A \in Z D(R)$. Then $a^{n} \in Z D(R) \Rightarrow a^{n} r=0$ for some $r \in R$. We want to show that $a s=0$ for some nonzero $s \in R$. If $a=0$, then $a \in Z D(R)$. If $a \neq 0$, then $a a^{n-1} r=0$. Now there are two possibilities: $a^{n-1} r=0$ or $a^{n-1} r \neq 0$. If $a^{n-1} r=0$, then the proof goes as above. If $a^{n-1} r \neq 0$, then a is a zero divisor.
$" \kappa^{\prime \prime}$ Let a be a zero divisor. Then $\exists 0 \neq r \in R:$ ar $=0 \Rightarrow a a r=0 \Rightarrow a^{3} r=0 \Rightarrow \cdots \Rightarrow a^{n} r=0$. Then $a^{n}=\operatorname{det} A$ is a zero divisor since $r \neq 0$.

Theorem 2.3 [4, Theorem 9.1] Let $M_{n}(R)$ be the ring of $n \times n$ matrices over a commutative ring R with identity, and let $A \in M_{n}(R)$. Then

$$
A \in Z D_{l}\left(M_{n}(R)\right) \Longleftrightarrow \operatorname{det} A \in Z D(R) \Longleftrightarrow A \in Z D_{r}\left(M_{n}(R)\right)
$$

Since $S_{n}(R) \subseteq M_{n}(R)$, Theorem 2.2 holds for any matrix in $S_{n}(R)$. Since we will use the results of this fact in the paper, we give a simple proof here.

Lemma 2.4 Let $A \in S=S_{n}(R)$. Then

$$
A \in Z D_{l}(S) \Longleftrightarrow \operatorname{det} A \in Z D(R) \Longleftrightarrow A \in Z D_{r}(S)
$$

Proof Since $S \subseteq M_{n}(R)$ we have the implication $A \in Z D_{l}(S) \Rightarrow A \in Z D_{l}\left(M_{n}(R)\right)$. Thus, $\operatorname{det} A \in Z D(R)$ and $A \in Z D_{r}(T)$ by Theorem 2.2. Thus, there exists a $0 \neq B \in M_{n}(R)$ such that $B A=0$. Let \vec{b}
be any nonzero row of B and let $B^{\prime}=[\vec{b}, \overrightarrow{0}, \ldots, \overrightarrow{0}]^{t} \in M_{n}(R)$ whose first row is \vec{b} and whose other rows are all $\overrightarrow{0}$. Then $B^{\prime} \neq 0 \in S_{n}$ and $B^{\prime} A$. Thus, $A \in Z D_{r}(S)$. Similarly, it can be shown that $A \in Z D_{r}(S) \Longrightarrow \operatorname{det} A \in Z D(R) \Longrightarrow A \in Z D_{l}(S)$.

Theorem 2.5 Let $A=[a, a i j] \in S$.
(a) The matrix A is a left and right zero-divisor in S if and only if $a=a_{i i}$ is a zero-divisor in R for all $i=1,2, \ldots n$
(b) If every element of R is a unit or a zero-divisor, then every element of T is either a unit or a zero-divisor.

Proof (a) This follows from the lemmas above.
(b) This follows because for $A \in S$, $\operatorname{det} A \in R$, and hence $\operatorname{det} A$ is either a zero-divisor or a unit.

Proposition 2.6 Let $n \geq 3$ and $S=S_{n}(R)$. The following statements hold.
(a) The girth of $\vec{\Gamma}(S)$ is 3 .
(b) If R is a commutative ring, then $\operatorname{diam} \Gamma(R) \leq \operatorname{diam} \vec{\Gamma}(S) \in\{2,3\}$.

Proof (a) Let $A=\left(\begin{array}{ccccc}0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right), B=\left(\begin{array}{cccccc}0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ccccc}0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right)$.
A, B, C are distinct matrices in $Z\left(S_{n}(R)\right)^{*}$ such that $A B=B C=C A=0$. Thus, $A \rightarrow B \rightarrow C \rightarrow A$ is a directed cycle of length 3 , as asserted.
(b) We define $\phi: Z(R)^{*} \rightarrow Z\left(S_{n}(R)\right)^{*}$ by $\phi(a)=\left(\begin{array}{cccccc}a & 0 & 0 & \cdots & 0 & 0 \\ 0 & a & 0 & \cdots & 0 & 0 \\ 0 & 0 & \ddots & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & a\end{array}\right)$ for any $a \in Z(R)^{*}$. Since $\phi(a)=\phi(b)$ implies $a=b, \phi$ is an injection from $\Gamma(R)$ to $\vec{\Gamma}(S)$. It is clear that $a b=0$ if and only if $\phi(a) \phi(b)=0$. Hence, $\Gamma(R)$ is isomorphic to a subgraph of $\vec{\Gamma}(S)^{*}$. Since $\Gamma(R)$ is connected, we conclude that $\operatorname{diam} \Gamma(R) \leq \operatorname{diam} \vec{\Gamma}(S)$.

We denote the underlying graph of $\vec{\Gamma}(S)$ by $\Gamma(S)$.
Proposition 2.7 If $n \geq 3$, then $\Gamma(S)$ is not planar.
Proof Consider the ring R consisting of the elements $\{0,1\}$. To draw the graph $\Gamma\left(S_{3}(R)\right)$ we first need to determine the nonzero zero-divisors of $S_{3}(R)$. The nonzero zero divisors are as follows: $(1)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, (2) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right),(3)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),(4)\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),(5)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right),(6)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right),(7)\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.

Now the vertex set is $\{(1),(2),(3),(4),(5),(6),(7)\}$. From these vertices, the vertices $(1),(2),(3),(4),(5)$, and (6) are connected with each other. Therefore, when we start to draw the graph, in one step we reach the complete graph K_{6}, which is not planar. Hence, the graph $\Gamma\left(S_{3}(R)\right)$ is not planar. Hence, for any $n \geq 3$ $\Gamma\left(S_{n}(R)\right)$ is not planar.

Proposition 2.8 If $\Gamma(R)$ is not planar, then $\Gamma(S)$ is also not planar.
Proof Assume that $\Gamma(R)$ is not planar. Then $\Gamma(R)$ contains the subgraphs $K_{3,3}$ or K_{5}, and so there are at least 5 zero divisors, say $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$. On the other hand, since R is a ring with nonzero identity it has at least 7 elements. We start to prove assuming $n=2$. There are 6 nonzero zero divisors in $S_{2}(R):(1)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,
(2) $\left(\begin{array}{ll}0 & r_{1} \\ 0 & 0\end{array}\right)$,
(3) $\left(\begin{array}{ll}0 & r_{2} \\ 0 & 0\end{array}\right)$,
(4) $\left(\begin{array}{ll}0 & r_{3} \\ 0 & 0\end{array}\right)$,
(5) $\left(\begin{array}{ll}0 & r_{4} \\ 0 & 0\end{array}\right)$,
(6) $\left(\begin{array}{ll}0 & r_{5} \\ 0 & 0\end{array}\right)$, and these vertices construct the graph K_{6} since there are vertices between each pair of them. Thus, $\Gamma\left(S_{2}(R)\right)$ contains K_{6} and so $\Gamma\left(S_{2}(R)\right)$ is not planar.

Proving the same result for the $n \times n$ case is quite easy. Take only
$(1)\left(\begin{array}{cccll}0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right),(2)\left(\begin{array}{ccccc}0 & 0 & 0 & \cdots & r_{1} \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right),(3)\left(\begin{array}{ccccc}0 & 0 & 0 & \cdots & r_{2} \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right),(4)\left(\begin{array}{cccc}0 & 0 & 0 & \cdots \\ r_{3} \\ 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ 0 \\ \vdots & \vdots & \vdots & \cdots \\ 0 & 0 & 0 & \cdots \\ 0\end{array}\right)$,
$(5)\left(\begin{array}{ccccc}0 & 0 & 0 & \cdots & r_{4} \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right),(6)\left(\begin{array}{ccccc}0 & 0 & \cdots & r_{5} \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right)$. Then the proof follows as the previous part. Hence,
$\Gamma\left(S_{n}(R)\right)=\Gamma(S)$ is not planar.
The following example shows us that the inverse of the proposition need not be true.

Example 2.9 Let $R=\mathbb{Z}_{7}$ and consider the graph $\Gamma\left(S_{2}(R)\right)$. As we can see above there are 6 nonzero zero divisors like in the first part of the previous proposition, and the only difference is taking $2,3, \ldots$ instead of r_{1}, r_{2}, \ldots Thus, $\Gamma\left(S_{2}(R)\right)$ is not planar. On the other hand, since there is no nonzero zero divisor in \mathbb{Z}_{7} the graph $\Gamma(R)=\Gamma\left(\mathbb{Z}_{7}\right)$ is planar.

Corollary 2.10 Let R be a finite ring. Then if $\Gamma(S)$ is planar, R is isomorphic to one of the following rings:
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{8}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{2} \times \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)$,
$\mathbb{Z}_{2} \times R_{2}, \mathbb{Z}_{3} \times R_{2}$, where $\left|Z\left(R_{2}\right)\right| \leqslant 3$,
$\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right)$,
$\mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right), \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{4}[x] /\left(2 x, x^{2}\right)$,
$\mathbb{Z}_{9}, \mathbb{Z}_{3}[x] /\left(x^{2}\right)$,
$\mathbb{Z}_{16}, \mathbb{F}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2\right), \mathbb{Z}_{4}[x] /\left(x^{2}+2 x+2\right), \mathbb{Z}_{4}[x] /\left(x^{2}+x+1\right)$,
$\mathbb{Z}_{2}[x] /\left(x^{4}\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}-y^{2}, x y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \mathbb{Z}_{4}[x] /\left(2 x, x^{3}-2\right)$,

```
\(\mathbb{Z}_{4}[x, y] /\left(x^{2}-2, x y, y^{2}-2,2 x\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}\right)\),
\(\mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \mathbb{Z}_{8}[x] /\left(2 x, x^{2}-4\right)\),
\(\mathbb{Z}_{25}, \mathbb{Z}_{5}[x] /\left(x^{2}\right)\),
\(\mathbb{Z}_{27}, \mathbb{Z}_{9}[x] /\left(x^{2}-3,3 x\right), \mathbb{Z}_{9}[x] /\left(x^{2}-6,3 x\right), \mathbb{Z}_{3}[x] /\left(x^{3}\right)\).
```


3. Zero-divisor graph of $H_{n}(R)$

Suppose that $H_{n}(R)=H_{n}$ is the ring consisting of upper triangular matrices defined in the first section. In this section, we will give some properties of the graph $\vec{\Gamma}\left(H_{n}\right)$.

Lemma 3.1 Suppose that $\left|Z D_{r}\left(H_{n}\right)\right|<\infty$ and $\vec{\Gamma}\left(H_{n}\right)$ is a nonempty graph. Then $\left|Z D_{r}(R)\right|<\infty$.
Proof Since $\vec{\Gamma}\left(H_{n}\right)$ is a nonempty graph, there exist two nonzero elements $A_{0}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and $B_{0}=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ of H_{n} such that $A_{0} B_{0}=0$. Let $I_{r}:=A n n_{H_{n}}^{r}\left(A_{0}\right)=\left\{C \in H_{n}: A_{0} C=0\right\}$. Then I_{r} is a right ideal of H_{n}, which is nonzero since $B_{0} \in I_{r}$. On the other hand, $I_{r} \subseteq Z D_{r}\left(H_{n}\right)$, so $\left|I_{r}\right|<\infty$. Now suppose that $\left|Z D_{r}(R)\right|=\infty$. Thus, for each $r \in Z D_{r}(R), A_{r}=(r, 0, \ldots, 0) \in H_{n}$ and $B_{0} A_{r} \in I_{r}$. Since $\left|I_{r}\right|<\infty$, there exists an element $M \in I_{r}$ such that $J=\left\{r \in Z D_{r}(R): B_{0} A_{r}=M\right\}$ is a finite set. For each $r, s \in J$, we have $B_{0} A_{r}=M=B_{0} A_{s}$, and thus $A_{r}-A_{s} \in A n n_{H_{n}}^{r}\left(B_{0}\right)$. This implies that $A n n_{H_{n}}^{r}\left(B_{0}\right)$ is an infinite subset of $Z D_{r}\left(H_{n}\right)$, which is a contradiction. Therefore, $\left|Z D_{r}(R)\right|<\infty$.

Theorem $3.2 \vec{\Gamma}\left(H_{n}\right)$ is a finite graph and has at least two vertices as $A_{0}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and $B_{0}=$ $\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ such that $a_{0} b_{0} \neq 0$ and $A_{0} B_{0}=0$ if and only if R is finite and not an integral domain.

Proof Assume that R is finite and not an integral domain. Since R is finite, it is clear that $\vec{\Gamma}\left(H_{n}\right)$ is finite. On the other hand, since R is not an integral domain, there exist two nonzero elements a and b of R such that $a b=0$. Now if we take $A_{0}=(a, 0, \ldots, 0)$ and $B_{0}=(b, 0, \ldots, 0)$, then it is clear that these are two nonzero elements of H_{n} such that $A_{0} B_{0}=0$.

For the other direction of the proof, suppose that $\vec{\Gamma}\left(H_{n}\right)$ is finite and there exist two nonzero elements $A_{0}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and $B_{0}=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ of H_{n} such that $a_{0}, b_{0} \neq 0$ and $A_{0} B_{0}=0$. Thus, we have $a_{0} b_{0}=0$ and $0=\sum_{k=0}^{m} C_{k}^{m} a_{k} b_{m-k}$ for each $1 \leq m \leq n$. Let $I=A n n_{R}^{r}\left(a_{0}\right)$. Since $\vec{\Gamma}(R)$ is a subgraph of $\vec{\Gamma}\left(H_{n}\right)$ and $\vec{\Gamma}\left(H_{n}\right)$ is finite, we conclude that $|Z D(R)|<\infty$ and especially $\left|Z D_{r}(R)\right|<\infty$. Thus, $|I|<\infty$. Now by a similar proof, we can see that if R is infinite, then $A n n_{R}^{r}\left(b_{0}\right)$ is an infinite subset of $Z D_{r}(R)$, which contradicts Lemma 3.1.

Lemma 3.3 Let $A=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in H_{n}$. Then $\operatorname{det} A$ is a zero divisor of R if and only if a_{0} is a zero divisor of R.
Proof If $\operatorname{det}(A)=a_{0}^{n}$ is a zero-divisor of R, then there is an $r \in R$ such that $a_{0}^{n} r=0$. If $a_{0}=0$, then $a_{0} \in Z D(R)$; otherwise, if $a_{0} \neq 0$, then either $a_{0}^{n-1} r=0$ or $a_{0}^{n-1} r \neq 0$. In the first case, if we continue by induction we can catch the result. In the second case, let $p=a_{0}^{n-1} r$, since $a_{0} p=0$, we conclude that
$a_{0} \in Z D(R)$. Conversely, assume that $a_{0} \in Z D(R)$, and then there is an $0 \neq r \in R$ such that $a_{0} r=0$; thus, $a_{0}^{n} r=0$, which implies that $\operatorname{det}(A)=a_{0}^{n}$ is a zero-divisor.

Lemma 3.4 If $\vec{\Gamma}\left(H_{n}\right)$ is a complete graph (i.e. there are two sided arcs between any two vertices), then $\vec{\Gamma}(R)$ is also complete.
Proof Let $a, b \in V(\vec{\Gamma}(R))$. Then there exist some nonzero elements c, d of R such that $a c=b d=0$. Let $A=(a, 0,0, \ldots, 0), B=(b, 0,0, \ldots, 0), C=(c, 0,0, \ldots, 0), D=(d, 0,0, \ldots, 0)$. It is clear that $A C=0=B D$. Therefore, $A, B \in V\left(\vec{\Gamma}\left(H_{n}\right)\right)$. Since $\vec{\Gamma}\left(H_{n}\right)$ is a complete graph, we have $A B=0$, which implies that $a b=0$, so $d(a, b)=1$ in $\vec{\Gamma}(R)$. Hence, $\vec{\Gamma}(R)$ is complete.

Theorem 3.5 Suppose that $\vec{\Gamma}\left(H_{n}\right)$ is the triangle $A \leftrightarrow B \leftrightarrow C \leftrightarrow A$. Then the following hold:
(i) $|R|<16$.
(ii) If $|Z D(R)|=3$, then R is not reduced.
(iii) If $|Z D(R)|=3$, then C is an n-tuples consisting of the elements $c_{0}, c_{1}, \ldots, c_{n}$, where $c_{i} \in\left\{0, d^{m-1}\right\}$ such that $0 \neq d$ is a nilpotent element of $R, C \neq B$ and not all $c_{i} s$ are zero.

Proof

(i) By Lemma 3.3, it is clear that $\vec{\Gamma}(R)$ is a complete graph. Thus, either it is a triangle or a path of length two. Thus, $|Z D(R)| \leq 4$ and so $|R| \leq|Z D(R)|^{2} \leq 16$.
(ii) Assume that $|Z D(R)|=3$. Then there exist nonzero distinct elements a, b of $Z D(R)$ such that $a b=0$. Let $M=(a, 0,0, \ldots, 0)$ and $N=(b, 0,0, \ldots, 0)$. Then $M N=0$. Since $\vec{\Gamma}\left(H_{n}\right)$ is the triangle $A \leftrightarrow B \leftrightarrow C \leftrightarrow A$, without loss of generality, we may assume that $A=M$ and $B=N$. Now we have $A C=B C=0$, and so $a c_{0}=0=b c_{0}$ and $\sum_{k=0}^{m} C_{k}^{m} a_{k} c_{m-k}=0=\sum_{k=0}^{m} C_{k}^{m} b_{k} c_{m-k}$ for each $1 \leq m \leq n$. Suppose that R is reduced, which means that it does not have any nonzero nilpotent element. Since $a c_{0}=0=b c_{0}$ and $\left|Z D(R)^{*}\right|=2$, we have $c_{0} \in\{0, a, b\}$. However, R is reduced, so $c_{0}=0$. On the other hand, $a_{0} c_{1}+a_{1} c_{0}=0=b_{0} c_{1}+b_{1} c_{0}$ implies that $a c_{1}=0=b c_{1}$ and so $c_{1}=0$. For the next step, we can see that $a_{0} c_{2}+2 a_{1} c_{1}+a_{2} c_{0}=0=b_{0} c_{2}+2 b_{1} c_{1}+b_{2} c_{0}$, which implies that $a c_{2}=0=b c_{2}$ and so $c_{2}=0$. Continuing this process gives $c_{i}=0$ for each $0 \leq i \leq n$, which is a contradiction since $C \neq 0$. Hence, R is not reduced.
(iii) Suppose that $|Z D(R)|=3$. Thus, R is not reduced by (ii), and so there exists a nonzero nilpotent element d of R. Thus, there is an integer m such that $d^{m-1} \neq 0$ but $d d^{m-1}=d^{m}=0$. Without loss of generality we may assume that $a=d$ and $b=d^{m-1}$. As seen in the previous proof, $c_{0} \in\left\{0, d, d^{m-1}\right\}$. Since $\left|Z D(R)^{*}\right|=2$, then $m>2$ and so $c_{0} \in\left\{0, d^{m-1}\right\}$. Similarly, we can see that $c_{i} \in\left\{0, d^{m-1}\right\}$ for every i. Thus, $C=\left(c_{0}, c_{1}, \ldots, c_{n}\right)$, where $c_{i} \in\left\{0, d^{m-1}\right\}$ such that $0 \neq d$ is a nilpotent element of R, $C \neq B$ and not all c_{i} s are zero.

Theorem 3.6 If $\vec{\Gamma}\left(H_{n}\right)$ is a directed path and $Z\left(H_{n}\right) \neq \emptyset$, then $\vec{\Gamma}(R)$ is a connected graph and the following hold:
(i) Let $0 \neq M$ be an arbitrary element of H_{n}. If $\vec{\Gamma}(R)=P_{3}$, then for each $K \in Z D_{r}\left(H_{n}\right)$ and $L \in Z D_{l}\left(H_{n}\right)$, we have $M K \in Z D_{r}\left(H_{n}\right)$ and $L M \in Z D_{l}\left(H_{n}\right)$.
(ii) If $\vec{\Gamma}(R)=P_{2}=a \rightarrow b \rightarrow c$ and R is reduced, then we can determine the forms of elements of $Z D(R)$.
(iii) If $\vec{\Gamma}(R)=P_{1}$ and R is reduced, then we can determine the forms of all elements of $Z D(R)$.

Proof Since $\vec{\Gamma}\left(H_{n}\right)$ is a path, then it is a connected graph and so $\operatorname{diam}\left(\vec{\Gamma}\left(H_{n}\right)\right) \leq 3$. Without loss of generality we may assume that

$$
\vec{\Gamma}\left(H_{n}\right): A \rightarrow B \rightarrow C \rightarrow D
$$

It should be mentioned that $\vec{\Gamma}(R)$ is always a subgraph of $\vec{\Gamma}\left(H_{n}\right)$. We claim that $\vec{\Gamma}(R)$ is connected. Otherwise, if $\vec{\Gamma}(R)$ is not connected, without loss of generality we may assume that $a \rightarrow b$ and $c \rightarrow d$ are distinct connected components of $\vec{\Gamma}(R)$. Note that we do not have an isolated vertex. Let $A_{0}=(a, 0,0, \ldots, 0), B_{0}=$ $(b, 0,0, \ldots, 0), C_{0}=(c, 0,0, \ldots, 0)$, and $D_{0}=(d, 0,0, \ldots, 0)$. Then $A_{0} \rightarrow B_{0}$ and $C_{0} \rightarrow D_{0}$ are two paths with length 1 . Now it is clear that $A_{0} \rightarrow B_{0}$ and $C_{0} \rightarrow D_{0}$ are subgraphs of $\vec{\Gamma}\left(H_{n}\right)$, but $\vec{\Gamma}\left(H_{n}\right)$ is a path of length three, and so we have either $A_{0} \rightarrow B_{0} \rightarrow C_{0} \rightarrow D_{0}$ or $C_{0} \rightarrow D_{0} \rightarrow A_{0} \rightarrow B_{0}$. In the first case, we have $B_{0} C_{0}=0$. This implies that $b c=0$, which is impossible since $\vec{\Gamma}(R)$ is disconnected. Similarly, in the second case, we have $d a=0$, which is a contradiction. Thus, $\vec{\Gamma}(R)$ is connected.
(i) If $\vec{\Gamma}(R)=P_{3}: a \rightarrow b \rightarrow c \rightarrow d$, then we conclude that $A=(a, 0,0, \ldots), B=(b, 0,0, \ldots), C=(c, 0,0, \ldots)$, and $D=(d, 0,0, \ldots)$. Thus, $Z D_{r}\left(H_{n}\right)=\{0, A, B, C\}$ and $Z D_{l}\left(H_{n}\right)=\{0, B, C, D\}$. Let $0 \neq M \in$ H_{n}. We claim that $M A \in Z D_{r}\left(H_{n}\right)$. It is easy to check that $M A=\left(m_{0} a, m_{1} a, \ldots, m_{n} a\right)$. Thus, $(M A B)_{j}=\sum_{k=0}^{j} C_{k}^{j}(M A)_{k} B_{j-k}=m_{j} a b=0$ for each $0 \leq j \leq n$, and so $M A B=0$, which implies that $M A \in Z D_{r}\left(H_{n}\right)$. One can follow a similar proof for the other elements. Similarly, we can see that $L M \in Z D_{l}\left(H_{n}\right)$ for any element $L \in Z D_{l}\left(H_{n}\right)$.
(ii) Without loss of generality we may assume that $A=(a, 0, \ldots, 0), B=(b, 0, \ldots, 0), C=(c, 0, \ldots, 0)$. Since $c d_{0}=0$, then $d_{0} \in\{0, a, b, c\}$. Since R is reduced we conclude that $d_{0} \in\{0, a, b\}$. In the next step, we have $0=c d_{1}+c_{1} d_{0}$, so $c d_{1}=0$. Thus, $d_{1} \in\{0, a, b\}$. Continuing in this way, similar to the previous part, we can conclude that $d_{i} \in\{0, a, b\}$ for each i.
(iii) Step 1: Suppose that $A=(a, 0, \ldots, 0), B=(b, 0, \ldots, 0)$. Since $b c_{0}=0$ and R is reduced, we have $c_{0} \in\{0, a\}$. By similar argument, we can see that $c_{i} \in\{0, a\}$ for each $1 \leq i \leq n$. Since $C \neq 0$, there exists $0 \leq j \leq n$ such that $0 \neq c_{j}=a$ and for each $i<j, c_{i}=0$. On the other hand $C D=0$, so for each $i,(C D)_{i}=0$, especially $\sum_{k=0}^{j} C_{m} c_{k} d_{k-j}=(C D)_{j}=0$, which implies that $a d_{0}=c_{j} d_{0}=0$

ABDİOĞLU/Turk J Math

and so $d_{0} \in\{0, b\}$. In the second step, $0=(C D)_{j+1}$, so $a d_{1}+c_{j+1} d_{0}=0$. Since $d_{0} \in\{0, b\}$ and $c_{j+1} \in\{0, a\}$, we will have four cases for the above equation. However, it is easy to see that in each case we get $d_{1} \in\{0, b\}$. In the third step, $0=(C D)_{j+2}$, so we have $a d_{2}+c_{j+1} d_{1}+c_{j+2} d_{0}=0$. Since $d_{0}, d_{1} \in\{0, b\}$, and $c_{j+1}, c_{j+2} \in\{0, a\}$, by a similar argument we can see that $d_{2} \in\{0, b\}$. Continuing in this way, we can conclude that $d_{i} \in\{0, b\}$ for each i.

Step 2: Suppose that $C=(c, 0, \ldots, 0)$ and $D=(d, 0, \ldots, 0)$. The proof in this case is similar to the proof of the first step and we can see that for each $0 \leq j \leq n, b_{j} \in\{0, d\}$ and $a_{j} \in\{0, c\}$.

Step 3: Suppose that $B=(b, 0, \ldots, 0), C=(c, 0, \ldots, 0)$. By a similar proof we can see that for each $0 \leq j \leq n, a_{j} \in\{0, c\}$ and $d_{j} \in\{0, b\}$.

References

[1] Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. J Algebra 1999; 217: 434-447.
[2] Beck I. Coloring of commutative rings. J Algebra 1998; 116: 208-226.
[3] Bondy JA, Murty USR. Graph Theory with Applications. New York, NY, USA: Elsevier, 1976.
[4] Brown W. Matrices over Commutative Rings. New York, NY, USA: Marcel Dekker, 1993.
[5] Keigher WF. On the ring of Hurwitz series. Comm Alg 1997; 25: 1845-1859.
[6] Li B. Zero-divisor graph of triangular matrix rings over commutative rings. Int J Algebra 2011; 5: 255-260.
[7] Li A, Tucci RP. Zero divisor graphs of upper triangular matrix rings. Comm Alg 2013; 41: 4622-4636.

[^0]: *Correspondence: cabdioglu@kmu.edu.tr
 2010 AMS Mathematics Subject Classification: 16S50, 13A99, 05C12.

