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Department of Mathematics, Karamanoğlu Mehmetbey University, Yunus Emre Campus, Karaman, Turkey

Received: 14.05.2015 • Accepted/Published Online: 19.08.2015 • Final Version: 01.01.2016

Abstract: Let R be ring a with identity 1 ̸= 0, Sn(R) be a subring of the ring Tn(R) of n × n upper triangular

matrices over R , and Hn(R) be the ring defined in the next section using HR , the ring of the Hurwitz series over R .

In this paper, we introduce the zero-divisor graph
→
Γ(Sn(R)) and its underlying undirected graph Γ(Sn(R)) of Sn(R) .

We give some basic graph theory properties of
→
Γ(Sn(R)) . Moreover, we obtain some results of the zero-divisor directed

graph of
→
Γ(Hn(R)) .
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1. Introduction

Zero-divisor graphs were first defined for commutative rings by Beck in [2]. However, he let all elements of

a ring R be vertices of the graph and was mainly interested in colorings. In [1], Anderson and Livingston

introduced and studied the zero-divisor graph whose vertices are the nonzero zero-divisors of R . They studied

the interplay between the ring-theoretic properties of a commutative ring and the graph theoretic properties of

its zero-divisor graph. In [7], Li and Tucci studied the zero-divisor graphs of upper triangular matrix rings over

commutative rings with identity. We extend their results to some special matrix rings.

Let R be a commutative ring with identity 1 ̸= 0. Let Z(R) denote the set of all zero-divisors of R ,

and Z(R)∗ = Z(R) \ {0} the nonzero zero-divisors of R . The zero-divisor graph of R , denoted by Γ(R), is the

undirected graph whose vertices are the elements of Z(R)∗ , and two distinct vertices r and s are adjacent if

and only if rs = 0.

The zero-divisor graph of a noncommutative ring R is a directed graph, which is denoted by
→
Γ(R). We

denote the underlying undirected graph of
→
Γ(R) by Γ(R). An element r ∈ R is a left (resp., right) zero-divisor if

there exists 0 ̸= s ∈ R such that rs = 0 (resp., sr = 0). In R , the sets of nonzero left and right zero-divisors are

denoted by ZDl(R)∗ and ZDr(R)∗ , respectively. The vertex set of
→
Γ(R) is V (

→
Γ(R)) = ZDl(R)∗ ∪ZDr(R)∗ ,

and there is an edge from r to s , denoted by r → s , if and only if rs = 0. For general background on graph

theory, please see [3].

In Section 2, we study the zero-divisor graphs of Sn(R). Assume that R is a commutative ring with

nonzero identity. Let Tn(R) denote the n×n upper triangular matrix ring over R and Sn(R), T (R,n) be two
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subrings of Tn(R) defined as follows for any n ≥ 2 respectively.

Sn(R) =




a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 : a, aij ∈ R


,

T (R,n) =




a1 a2 a3 · · · an
0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

...
. . .

...
0 0 0 · · · a1

 : ai ∈ R


.

If there is no confusion, we write S and T instead of Sn(R) and Tn(R). In this section we determine the girth

of
→
Γ(S) and get some conditions for Γ(S) to be planar. We also extend some of the results from [4] and [7] to

Sn(R).

In Section 3, we study the zero-divisor graphs of Hurwitz rings. Let R be any ring. We denote H(R),

or simply HR , the ring of Hurwitz series over R , defined as follows. The elements of HR are sequences of the

form a = (an) = (a0, a1, a2, ...), where an ∈ R for each n ∈ N . An element in HR can be thought of as a

function from N to R .

Two elements (an) and (bn) in HR are equal if they are equal as functions from N to R , i.e. if

an = bn for all n ∈ N . The element am ∈ R will be called the mth term of (an). Addition in HR is defined

termwise, so that (an) + (bn) = (cn), where cn = an + bn for all n ∈ N . If one identifies a formal power series∑∞
i=0 anx

n ∈ R[[x]] with the sequence of its coefficients (an), then multiplication in HR is similar to the usual

product of formal power series, except that binomial coefficients are introduced at each term in the product as

follows by [5]. The (Hurwitz) product of (an) and (bn) is given by (an)(bn) = (cn), where

cn =

n∑
k=0

Cn
k akbn−k.

Hence,

(a0, a1, a2, a3, ...)(b0, b1, b2, b3, ...) =

(a0b0, a0b1 + a1b0, a0b2 + 2a1b1 + a2b0, a0b3 + 3a1b2 + 3a2b1 + a3b0, ...).

Set

H(R,n) =




a0 a1 · · · an
0 a0 · · · an−1

...
...

. . .
...

0 0 · · · a0

 : ai ∈ R for 0 ≤ i ≤ n

 .

We can identify H(R,n) with the set

{(a0, a1, ..., an) : ai ∈ R for 0 ≤ i ≤ n} .
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Then H(R,n) is a ring with addition defined componentwise and multiplication is given by

(a0, a1, ..., an)(b0, b1, ..., bn) = (c0, c1, ..., cn),

where c0 = a0b0 and cm =
m∑

k=0

Cm
k akbm−k for each 1 ≤ m ≤ n. Note that sometimes the ring H(R,n) is shown

by Hn(R). In this note, from now on we will use Hn instead of H(R,n) = Hn(R).

2. Zero-divisor graph of Sn(R)

Suppose that Sn(R) = S is the ring consisting of upper triangular matrices defined in the previous section.

In this section, we will give some results of the graph Γ(S) and the underlying graph
→
Γ(S) such as the girth,

diameter, vertices, edges, etc. For all undefined notions we refer to [2] and [7]. We begin with a known result,

which will be used throughout the paper.

Theorem 2.1 [6, Theorem 2.1] Let R be a commutative ring with identity 1 ̸= 0 , and let Q(R) be the total

quotient ring of R . Then
→
Γ(Tn(R)) ∼=

→
Γ(Tn(Q(R))) .

Because of Theorem 2.1, we can assume throughout this paper that every element of R is either a unit

or a zero-divisor.

Lemma 2.2 Let A = [a, aij ] ∈ S = Sn(R) . Then detA is a zero-divisor in R if and only if ajj = a is a zero

divisor in R for all i = 1, 2, ..., n .

Proof ′′ ⇒′′ Let detA ∈ ZD(R). Then an ∈ ZD(R) ⇒ anr = 0 for some r ∈ R . We want to show that

as = 0 for some nonzero s ∈ R . If a = 0, then a ∈ ZD(R). If a ̸= 0, then aan−1r = 0. Now there are two

possibilities: an−1r = 0 or an−1r ̸= 0. If an−1r = 0, then the proof goes as above. If an−1r ̸= 0, then a is a

zero divisor.
′′ ⇐′′ Let a be a zero divisor. Then ∃0 ̸= r ∈ R : ar = 0 ⇒ aar = 0 ⇒ a3r = 0 ⇒ · · · ⇒ anr = 0. Then

an = detA is a zero divisor since r ̸= 0. 2

Theorem 2.3 [4, Theorem 9.1] Let Mn(R) be the ring of n × n matrices over a commutative ring R with

identity, and let A ∈ Mn(R) . Then

A ∈ ZDl(Mn(R)) ⇐⇒ detA ∈ ZD(R) ⇐⇒ A ∈ ZDr(Mn(R)).

Since Sn(R) ⊆ Mn(R) , Theorem 2.2 holds for any matrix in Sn(R) . Since we will use the results of this fact

in the paper, we give a simple proof here.

Lemma 2.4 Let A ∈ S = Sn(R) . Then

A ∈ ZDl(S) ⇐⇒ detA ∈ ZD(R) ⇐⇒ A ∈ ZDr(S).

Proof Since S ⊆ Mn(R) we have the implication A ∈ ZDl(S) ⇒ A ∈ ZDl(Mn(R)). Thus, detA ∈ ZD(R)

and A ∈ ZDr(T ) by Theorem 2.2. Thus, there exists a 0 ̸= B ∈ Mn(R) such that BA = 0. Let
→
b
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be any nonzero row of B and let B′ = [
→
b ,

→
0 , ...,

→
0 ]t ∈ Mn(R) whose first row is

→
b and whose other

rows are all
→
0 . Then B′ ̸= 0 ∈ Sn and B′A . Thus, A ∈ ZDr(S). Similarly, it can be shown that

A ∈ ZDr(S) =⇒ detA ∈ ZD(R) =⇒ A ∈ ZDl(S). 2

Theorem 2.5 Let A = [a, aij] ∈ S .

(a) The matrix A is a left and right zero-divisor in S if and only if a = aii is a zero-divisor in R for all

i = 1, 2, ...n

(b) If every element of R is a unit or a zero-divisor, then every element of T is either a unit or a zero-divisor.

Proof (a) This follows from the lemmas above.

(b) This follows because for A ∈ S , detA ∈ R , and hence detA is either a zero-divisor or a unit. 2

Proposition 2.6 Let n ≥ 3 and S = Sn(R) . The following statements hold.

(a) The girth of
→
Γ(S) is 3.

(b) If R is a commutative ring, then diamΓ(R) ≤ diam
→
Γ(S) ∈ {2, 3} .

Proof (a) Let A =


0 0 0 · · · 1
0 0 0 · · · 1
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 , B =


0 0 0 · · · 1 1
0 0 0 · · · 0 1
0 0 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 0

 , and C =


0 0 0 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 .

A,B,C are distinct matrices in Z(Sn(R))∗ such that AB = BC = CA = 0. Thus, A → B → C → A is a

directed cycle of length 3, as asserted.

(b) We define ϕ : Z(R)∗ → Z(Sn(R))∗ by ϕ(a) =



a 0 0 · · · 0 0
0 a 0 · · · 0 0

0 0
. . . · · · 0 0

...
...

... · · ·
...

...
0 0 0 · · · 0 a

 for any a ∈ Z(R)∗ . Since

ϕ(a) = ϕ(b) implies a = b , ϕ is an injection from Γ(R) to
→
Γ(S). It is clear that ab = 0 if and only if

ϕ(a)ϕ(b) = 0. Hence, Γ(R) is isomorphic to a subgraph of
→
Γ(S)∗ . Since Γ(R) is connected, we conclude that

diamΓ(R) ≤ diam
→
Γ(S). 2

We denote the underlying graph of
→
Γ(S) by Γ(S).

Proposition 2.7 If n ≥ 3 , then Γ(S) is not planar.

Proof Consider the ring R consisting of the elements {0, 1} . To draw the graph Γ(S3(R)) we first need

to determine the nonzero zero-divisors of S3(R). The nonzero zero divisors are as follows: (1)

 0 0 1
0 0 0
0 0 0

 ,

(2)

 0 0 0
0 0 1
0 0 0

 , (3)

 0 1 0
0 0 0
0 0 0

 , (4)

 0 1 1
0 0 0
0 0 0

 , (5)

 0 0 1
0 0 1
0 0 0

 , (6)

 0 1 0
0 0 1
0 0 0

 , (7)

 0 1 1
0 0 1
0 0 0

 .
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Now the vertex set is {(1), (2), (3), (4), (5), (6), (7)} . From these vertices, the vertices (1), (2), (3), (4), (5), and

(6) are connected with each other. Therefore, when we start to draw the graph, in one step we reach the

complete graph K6 , which is not planar. Hence, the graph Γ(S3(R)) is not planar. Hence, for any n ≥ 3

Γ(Sn(R)) is not planar. 2

Proposition 2.8 If Γ(R) is not planar, then Γ(S) is also not planar.

Proof Assume that Γ(R) is not planar. Then Γ(R) contains the subgraphs K3,3 or K5 , and so there are at

least 5 zero divisors, say r1, r2, r3, r4, r5 . On the other hand, since R is a ring with nonzero identity it has at

least 7 elements. We start to prove assuming n = 2. There are 6 nonzero zero divisors in S2(R): (1)

(
0 1
0 0

)
,

(2)

(
0 r1
0 0

)
, (3)

(
0 r2
0 0

)
, (4)

(
0 r3
0 0

)
, (5)

(
0 r4
0 0

)
, (6)

(
0 r5
0 0

)
, and these vertices construct

the graph K6 since there are vertices between each pair of them. Thus, Γ(S2(R)) contains K6 and so Γ(S2(R))

is not planar.

Proving the same result for the n× n case is quite easy. Take only

(1)


0 0 0 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 , (2)


0 0 0 · · · r1
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 , (3)


0 0 0 · · · r2
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 , (4)


0 0 0 · · · r3
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 ,

(5)


0 0 0 · · · r4
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 , (6)


0 0 0 · · · r5
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 . Then the proof follows as the previous part. Hence,

Γ(Sn(R)) = Γ(S) is not planar. 2

The following example shows us that the inverse of the proposition need not be true.

Example 2.9 Let R = Z7 and consider the graph Γ(S2(R)) . As we can see above there are 6 nonzero zero

divisors like in the first part of the previous proposition, and the only difference is taking 2,3,... instead of

r1, r2, ... . Thus, Γ(S2(R)) is not planar. On the other hand, since there is no nonzero zero divisor in Z7 the

graph Γ(R) = Γ(Z7) is planar.

Corollary 2.10 Let R be a finite ring. Then if Γ(S) is planar, R is isomorphic to one of the following rings:

Z2 × Z2 × Z2 , Z2 × Z2 × Z3 , Z2 × Z8,Z2 × Z2[x]/(x
3),Z2 × Z4[x]/(2x, x

2 − 2) ,

Z2 ×R2,Z3 ×R2, where |Z(R2)| ⩽ 3 ,

Z4 , Z2[x]/(x
2) ,

Z8 , Z2[x]/(x
3) , Z4[x]/(2x, x

2 − 2) , Z2[x, y]/(x, y)
2 , Z4[x]/(2x, x

2) ,

Z9 , Z3[x]/(x
2) ,

Z16 , F4[x]/(x
2) , Z4[x]/(x

2 − 2) , Z4[x]/(x
2 + 2x+ 2) , Z4[x]/(x

2 + x+ 1) ,

Z2[x]/(x
4) , Z2[x, y]/(x

2 − y2, xy) , Z2[x, y]/(x
2, y2) , Z4[x]/(2x, x

3 − 2) ,
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Z4[x, y]/(x
2 − 2, xy, y2 − 2, 2x) , Z4[x, y]/(x

2, xy − 2, y2) , Z4[x]/(x
2) ,

Z4[x]/(x
2 − 2x) , Z8[x]/(2x, x

2 − 4) ,

Z25 , Z5[x]/(x
2) ,

Z27 , Z9[x]/(x
2 − 3, 3x) , Z9[x]/(x

2 − 6, 3x) , Z3[x]/(x
3) .

3. Zero-divisor graph of Hn(R)

Suppose that Hn(R) = Hn is the ring consisting of upper triangular matrices defined in the first section. In

this section, we will give some properties of the graph
→
Γ(Hn).

Lemma 3.1 Suppose that |ZDr(Hn)| < ∞ and
→
Γ(Hn) is a nonempty graph. Then |ZDr(R)| < ∞ .

Proof Since
→
Γ(Hn) is a nonempty graph, there exist two nonzero elements A0 = (a0, a1, ..., an) and

B0 = (b0, b1, ..., bn) of Hn such that A0B0 = 0. Let Ir := Annr
Hn

(A0) = {C ∈ Hn : A0C = 0} . Then

Ir is a right ideal of Hn , which is nonzero since B0 ∈ Ir . On the other hand, Ir ⊆ ZDr(Hn), so |Ir| < ∞ .

Now suppose that |ZDr(R)| = ∞ . Thus, for each r ∈ ZDr(R), Ar = (r, 0, ..., 0) ∈ Hn and B0Ar ∈ Ir . Since

|Ir| < ∞ , there exists an element M ∈ Ir such that J = {r ∈ ZDr(R) : B0Ar = M} is a finite set. For each

r, s ∈ J , we have B0Ar = M = B0As , and thus Ar − As ∈ Annr
Hn

(B0). This implies that Annr
Hn

(B0) is an

infinite subset of ZDr(Hn), which is a contradiction. Therefore, |ZDr(R)| < ∞ . 2

Theorem 3.2
→
Γ(Hn) is a finite graph and has at least two vertices as A0 = (a0, a1, ..., an) and B0 =

(b0, b1, ..., bn) such that a0b0 ̸= 0 and A0B0 = 0 if and only if R is finite and not an integral domain.

Proof Assume that R is finite and not an integral domain. Since R is finite, it is clear that
→
Γ(Hn) is finite.

On the other hand, since R is not an integral domain, there exist two nonzero elements a and b of R such

that ab = 0. Now if we take A0 = (a, 0, ..., 0) and B0 = (b, 0, ..., 0), then it is clear that these are two nonzero

elements of Hn such that A0B0 = 0.

For the other direction of the proof, suppose that
→
Γ(Hn) is finite and there exist two nonzero elements

A0 = (a0, a1, ..., an) and B0 = (b0, b1, ..., bn) of Hn such that a0, b0 ̸= 0 and A0B0 = 0. Thus, we have a0b0 = 0

and 0 =
m∑

k=0

Cm
k akbm−k for each 1 ≤ m ≤ n . Let I = Annr

R(a0). Since
→
Γ(R) is a subgraph of

→
Γ(Hn) and

→
Γ(Hn) is finite, we conclude that |ZD(R)| < ∞ and especially |ZDr(R)| < ∞ . Thus, |I| < ∞ . Now by a

similar proof, we can see that if R is infinite, then Annr
R(b0) is an infinite subset of ZDr(R), which contradicts

Lemma 3.1. 2

Lemma 3.3 Let A = (a0, a1, ..., an) ∈ Hn . Then detA is a zero divisor of R if and only if a0 is a zero divisor

of R .

Proof If det(A) = an0 is a zero-divisor of R , then there is an r ∈ R such that an0 r = 0. If a0 = 0, then

a0 ∈ ZD(R); otherwise, if a0 ̸= 0, then either an−1
0 r = 0 or an−1

0 r ̸= 0. In the first case, if we continue

by induction we can catch the result. In the second case, let p = an−1
0 r , since a0p = 0, we conclude that
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a0 ∈ ZD(R). Conversely, assume that a0 ∈ ZD(R), and then there is an 0 ̸= r ∈ R such that a0r = 0; thus,

an0 r = 0, which implies that det(A) = an0 is a zero-divisor. 2

Lemma 3.4 If
→
Γ(Hn) is a complete graph (i.e. there are two sided arcs between any two vertices), then

→
Γ(R)

is also complete.

Proof Let a, b ∈ V (
→
Γ(R)). Then there exist some nonzero elements c, d of R such that ac = bd = 0. Let

A = (a, 0, 0, ..., 0), B = (b, 0, 0, ..., 0), C = (c, 0, 0, ..., 0), D = (d, 0, 0, ..., 0). It is clear that AC = 0 = BD .

Therefore, A,B ∈ V (
→
Γ(Hn)). Since

→
Γ(Hn) is a complete graph, we have AB = 0, which implies that ab = 0,

so d(a, b) = 1 in
→
Γ(R). Hence,

→
Γ(R) is complete. 2

Theorem 3.5 Suppose that
→
Γ(Hn) is the triangle A ↔ B ↔ C ↔ A . Then the following hold:

(i) |R| < 16 .

(ii) If |ZD(R)| = 3 , then R is not reduced.

(iii) If |ZD(R)| = 3 , then C is an n-tuples consisting of the elements c0, c1, ..., cn , where ci ∈ {0, dm−1} such

that 0 ̸= d is a nilpotent element of R , C ̸= B and not all ci s are zero.

Proof

(i) By Lemma 3.3, it is clear that
→
Γ(R) is a complete graph. Thus, either it is a triangle or a path of length

two. Thus, |ZD(R)| ≤ 4 and so |R| ≤ |ZD(R)|2 ≤ 16.

(ii) Assume that |ZD(R)| = 3. Then there exist nonzero distinct elements a, b of ZD(R) such that

ab = 0. Let M = (a, 0, 0, ..., 0) and N = (b, 0, 0, ..., 0). Then MN = 0. Since
→
Γ(Hn) is the triangle

A ↔ B ↔ C ↔ A , without loss of generality, we may assume that A = M and B = N . Now we have

AC = BC = 0, and so ac0 = 0 = bc0 and
m∑

k=0

Cm
k akcm−k = 0 =

m∑
k=0

Cm
k bkcm−k for each 1 ≤ m ≤ n .

Suppose that R is reduced, which means that it does not have any nonzero nilpotent element. Since

ac0 = 0 = bc0 and |ZD(R)∗| = 2, we have c0 ∈ {0, a, b} . However, R is reduced, so c0 = 0. On the

other hand, a0c1 + a1c0 = 0 = b0c1 + b1c0 implies that ac1 = 0 = bc1 and so c1 = 0. For the next step,

we can see that a0c2 + 2a1c1 + a2c0 = 0 = b0c2 + 2b1c1 + b2c0 , which implies that ac2 = 0 = bc2 and so

c2 = 0. Continuing this process gives ci = 0 for each 0 ≤ i ≤ n , which is a contradiction since C ̸= 0.

Hence, R is not reduced.

(iii) Suppose that |ZD(R)| = 3. Thus, R is not reduced by (ii), and so there exists a nonzero nilpotent

element d of R . Thus, there is an integer m such that dm−1 ̸= 0 but ddm−1 = dm = 0. Without loss of

generality we may assume that a = d and b = dm−1 . As seen in the previous proof, c0 ∈ {0, d, dm−1} .
Since |ZD(R)∗| = 2, then m > 2 and so c0 ∈ {0, dm−1} . Similarly, we can see that ci ∈ {0, dm−1} for

every i . Thus, C = (c0, c1, ..., cn), where ci ∈ {0, dm−1} such that 0 ̸= d is a nilpotent element of R ,

C ̸= B and not all ci s are zero. 2
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Theorem 3.6 If
→
Γ(Hn) is a directed path and Z(Hn) ̸= Ø , then

→
Γ(R) is a connected graph and the following

hold:

(i) Let 0 ̸= M be an arbitrary element of Hn . If
→
Γ(R) = P3 , then for each K ∈ ZDr(Hn) and L ∈ ZDl(Hn) ,

we have MK ∈ ZDr(Hn) and LM ∈ ZDl(Hn) .

(ii) If
→
Γ(R) = P2 = a → b → c and R is reduced, then we can determine the forms of elements of ZD(R) .

(iii) If
→
Γ(R) = P1 and R is reduced, then we can determine the forms of all elements of ZD(R) .

Proof Since
→
Γ(Hn) is a path, then it is a connected graph and so diam(

→
Γ(Hn)) ≤ 3. Without loss of

generality we may assume that
→
Γ(Hn) : A → B → C → D.

It should be mentioned that
→
Γ(R) is always a subgraph of

→
Γ(Hn). We claim that

→
Γ(R) is connected. Other-

wise, if
→
Γ(R) is not connected, without loss of generality we may assume that a → b and c → d are distinct

connected components of
→
Γ(R). Note that we do not have an isolated vertex. Let A0 = (a, 0, 0, ..., 0), B0 =

(b, 0, 0, ..., 0), C0 = (c, 0, 0, ..., 0), and D0 = (d, 0, 0, ..., 0). Then A0 → B0 and C0 → D0 are two paths with

length 1. Now it is clear that A0 → B0 and C0 → D0 are subgraphs of
→
Γ(Hn), but

→
Γ(Hn) is a path of length

three, and so we have either A0 → B0 → C0 → D0 or C0 → D0 → A0 → B0 . In the first case, we have

B0C0 = 0. This implies that bc = 0, which is impossible since
→
Γ(R) is disconnected. Similarly, in the second

case, we have da = 0, which is a contradiction. Thus,
→
Γ(R) is connected. 2

(i) If
→
Γ(R) = P3 : a → b → c → d, then we conclude that A = (a, 0, 0, ...), B = (b, 0, 0, ...), C = (c, 0, 0, ...),

and D = (d, 0, 0, ...). Thus, ZDr(Hn) = {0, A,B,C} and ZDl(Hn) = {0, B, C,D} . Let 0 ̸= M ∈
Hn . We claim that MA ∈ ZDr(Hn). It is easy to check that MA = (m0a,m1a, ...,mna). Thus,

(MAB)j =
j∑

k=0

Cj
k(MA)kBj−k = mjab = 0 for each 0 ≤ j ≤ n , and so MAB = 0, which implies that

MA ∈ ZDr(Hn). One can follow a similar proof for the other elements. Similarly, we can see that

LM ∈ ZDl(Hn) for any element L ∈ ZDl(Hn).

(ii) Without loss of generality we may assume that A = (a, 0, ..., 0), B = (b, 0, ..., 0), C = (c, 0, ..., 0). Since

cd0 = 0, then d0 ∈ {0, a, b, c} . Since R is reduced we conclude that d0 ∈ {0, a, b} . In the next step, we

have 0 = cd1 + c1d0 , so cd1 = 0. Thus, d1 ∈ {0, a, b} . Continuing in this way, similar to the previous

part, we can conclude that di ∈ {0, a, b} for each i .

(iii) Step 1: Suppose that A = (a, 0, ..., 0), B = (b, 0, ..., 0). Since bc0 = 0 and R is reduced, we have

c0 ∈ {0, a} . By similar argument, we can see that ci ∈ {0, a} for each 1 ≤ i ≤ n . Since C ̸= 0, there

exists 0 ≤ j ≤ n such that 0 ̸= cj = a and for each i < j , ci = 0. On the other hand CD = 0,

so for each i , (CD)i = 0, especially
j∑

k=0

Cmckdk−j = (CD)j = 0, which implies that ad0 = cjd0 = 0
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and so d0 ∈ {0, b} . In the second step, 0 = (CD)j+1 , so ad1 + cj+1d0 = 0. Since d0 ∈ {0, b} and

cj+1 ∈ {0, a} , we will have four cases for the above equation. However, it is easy to see that in each

case we get d1 ∈ {0, b} . In the third step, 0 = (CD)j+2 , so we have ad2 + cj+1d1 + cj+2d0 = 0. Since

d0, d1 ∈ {0, b} , and cj+1, cj+2 ∈ {0, a} , by a similar argument we can see that d2 ∈ {0, b} . Continuing in

this way, we can conclude that di ∈ {0, b} for each i .

Step 2: Suppose that C = (c, 0, ..., 0) and D = (d, 0, ..., 0). The proof in this case is similar to the proof

of the first step and we can see that for each 0 ≤ j ≤ n , bj ∈ {0, d} and aj ∈ {0, c} .

Step 3: Suppose that B = (b, 0, ..., 0), C = (c, 0, ..., 0). By a similar proof we can see that for each

0 ≤ j ≤ n , aj ∈ {0, c} and dj ∈ {0, b} .
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