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doi:10.3906/mat-1502-77

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Rectifying curves in the n-dimensional Euclidean space

Stijn CAMBIE1, Wendy GOEMANS2,∗, Iris VAN DEN BUSSCHE1

1Department of Mathematics, Faculty of Science, KU Leuven, Leuven, Belgium
2Faculty of Economics and Business, KU Leuven, Brussel, Belgium

Received: 27.02.2015 • Accepted/Published Online: 19.08.2015 • Final Version: 01.01.2016

Abstract: In this article, we study the so-called rectifying curves in an arbitrary dimensional Euclidean space. A curve is

said to be a rectifying curve if, in all points of the curve, the orthogonal complement of its normal vector contains a fixed

point. If this fixed point is chosen to be the origin, then this condition is equivalent to saying that the position vector of

the curve in every point lies in the orthogonal complement of its normal vector. Here we characterize rectifying curves

in the n -dimensional Euclidean space in different ways: using conditions on their curvatures, with an expression for the

tangential component, the normal component, or the binormal components of their position vector, and by constructing

them starting from an arclength parameterized curve on the unit hypersphere.
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1. Introduction

Let En denote the n -dimensional Euclidean space, that is, Rn equipped with the standard metric ⟨v,w⟩ =∑n
i=1 viwi for vectors v = (v1, . . . , vn),w = (w1, . . . , wn) ∈ Rn .

As can be found in any textbook on elementary differential geometry, for an arclength parameterized

space curve α : I ⊂ R → E3 from an open interval I of R to E3 , which has α′′(s) ̸= 0 in every s ∈ I , one

constructs a Frenet frame T (s) = α′(s), N(s) = T ′(s)
∥T ′(s)∥ , B(s) = T (s)×N(s) whose movement along the curve

is expressed by the Frenet–Serret equations

 T ′(s) = κ(s)N(s),
N ′(s) = −κ(s)T (s) +τ(s)B(s),
B′(s) = −τ(s)N(s).

Here T (s) is the tangent vector, N(s) the normal vector, and B(s) the binormal vector. Since α is arclength

parameterized, it has speed vα(s) = ∥α′(s)∥ =
√

⟨α′(s), α′(s)⟩ = 1; hence, the Frenet frame is an orthonormal

basis. The curvature κ(s) := ⟨T ′(s), N(s)⟩ and the torsion τ(s) := −⟨B′(s), N(s)⟩ determine the curve up to

a Euclidean motion of E3 .

Along a space curve, three planes are defined, each time spanned by two of its Frenet vectors: the

osculating plane (spanned by T and N ), the normal plane (spanned by N and B ), and the rectifying plane

(spanned by T and B ). It is well known that a space curve for which all its osculating planes contain a fixed

point is a planar curve and vice versa. Similarly, a space curve is spherical if and only if all its normal planes

∗Correspondence: wendy.goemans@kuleuven.be
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contain a fixed point. However, it was only in 2003 that space curves for which all its rectifying planes contain

a fixed point were called rectifying curves and studied in depth by B.-Y. Chen in [1].

In [1], several surprising characterizations of rectifying curves were proved. To name one, a space curve

is congruent to a rectifying curve if and only if the ratio of its torsion and curvature is a nonconstant linear

function of the arclength parameter. Moreover, a space curve α is a rectifying curve if and only if, up to

parameterization, it is given by α(t) = a sec(t + t0)y(t), where a, t0 ∈ R with a ̸= 0 and y is an arclength

parameterized curve on the unit sphere.

Shortly later, in [2], another set of interesting new characterizations and properties of rectifying curves is

proved. More or less simultaneously, but independently, in [7], it is proved that rectifying curves are geodesics

on a cone. Therefore, the authors of that article call rectifying curves conical geodesics.

Thereafter, the concept of a rectifying curve is translated to Minkowski 3-space, where analogous state-

ments can be proved, of course taking into account the causal character of the curve and that of the rectifying

plane; see [5, 6].

Furthermore, in [4], the definition of a rectifying curve is generalized to 4-dimensional Euclidean space

and some theorems characterizing these curves are proved.

Meanwhile, one also finds definitions of rectifying curves in other ambient spaces such as, e.g., the three-

dimensional sphere [9] and pseudo-Galilean space [10].

With this article, we want to contribute to the study of rectifying curves and present some results for

these curves in En . First, we recall some preliminaries about the theory of curves in En . Then we summarize

some results about rectifying curves in E4 from [4]. After that, we examine rectifying curves in En and prove

some properties and characterizations of these curves.

This article is based on the work that the first and third authors carried out during their undergraduate

project under the supervision of the second author.

2. Preliminaries

Analogous as for a space curve, for an arclength parameterized curve α : I ⊂ R → En that is n times

continuously differentiable, one can construct a Frenet frame, T,N,B1, . . . , Bn−2 that satisfies the equations



T ′(s) = κ1(s)N(s),

N ′(s) = −κ1(s)T (s) + κ2(s)B1(s),

B′
1(s) = −κ2(s)N(s) + κ3(s)B2(s),

B′
i(s) = −κi+1(s)Bi−1(s) + κi+2(s)Bi+1(s) with i ∈ {2, 3, . . . , n− 3},

B′
n−2(s) = −κn−1(s)Bn−3(s).

(1)

If the curve α is not arclength parameterized, then the right-hand sides of the Eqs. (1) must be multiplied by

the speed v of α .

The functions κi for i ∈ {1, 2, . . . , n − 1} are the curvatures of the curve. All κi are positive for

i ∈ {1, 2, . . . , n− 2} .
From the proof of the Eqs. (1), it follows that κn−1 ≡ 0 if and only if the curve lies in a hyperplane.

This is equivalent to saying that Bn−2 is a constant vector, which is then perpendicular to that hyperplane.

See for instance [3, 8].

211



CAMBIE et al./Turk J Math

Thus, if in every point the position vector of a curve lies in the orthogonal complement of Bn−2 , then

that curve lies in a hyperplane and vice versa.

Similarly, if in every point the position vector of an arclength parameterized curve α lies in the orthogonal

complement of the tangent vector T , then the curve α lies on a hypersphere. Indeed, we see that the derivative

of ⟨α, α⟩ is zero; hence ⟨α, α⟩ is a constant and thus α lies on a hypersphere. Here the converse is also true.

Following this reasoning and inspired by [4], we study curves for which in every point the position vector

of the curve lies in the orthogonal complement of the normal vector N .

In order for the definition to be independent of the coordinates, we state it as follows.

Definition 2.1 A curve α : I → En is a rectifying curve if for all s ∈ I the orthogonal complement of N(s)

contains a fixed point.

Possibly after applying a Euclidean motion of En , we assume that the fixed point in Definition 2.1 is the

origin. Henceforth, since the orthogonal complement of N(s) is N(s)⊥ := {v ∈ Tα(s)En | ⟨v, N(s)⟩ = 0} , the
position vector of a rectifying curve α in En can be written as follows:

α(s) = λ(s)T (s) + µ1(s)B1(s) + · · ·+ µn−2(s)Bn−2(s), (2)

with λ , µ1 , . . . , µn−2 real functions.

In the rest of this article, we assume that all the curvatures of the curves we consider are not identically
zero.

3. Rectifying curves in E4

We recall the results obtained about rectifying curves in E4 from [4].

A rectifying curve in E4 is characterized by its curvatures in the following theorem.

Theorem 3.1 ([4]) Let α be an arclength parameterized curve in E4 with nonzero curvatures. Then α is

congruent to a rectifying curve if and only if

(s+ c)κ1(s)κ3(s)

κ2(s)
+

(
1

κ3(s)

(
(s+ c)κ1(s)

κ2(s)

)′
)′

= 0 (3)

for some c ∈ R .

An analogous statement in E3 is that an arclength parameterized curve with nonzero curvature κ and

nonzero torsion τ is congruent to a rectifying curve if and only if

(
(s+ c)κ(s)

τ(s)

)′

= 0.

This is of course equivalent to saying that the ratio of the torsion and the curvature of the curve is a nonconstant

linear function of its arclength, which is shown in [1]. We provide a proof of an analogous statement in En in

the next section.

The following theorem is an immediate consequence of Theorem 3.1.
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Theorem 3.2 ([4]) There exists no rectifying curve in E4 with nonzero constant curvatures.

If two of its curvatures are assumed to be a nonzero constant, then the third curvature of a rectifying

curve is completely determined by using Theorem 3.1. That is, we have the following theorem, in which we

correct the last two statements compared to [4].

Theorem 3.3 Let α be an arclength parameterized curve in E4 with nonzero curvatures. When two of its

curvatures are assumed to be constant, then α is congruent to a rectifying curve if and only if either

(i) κ1(s) = κ1, κ2(s) = κ2 and κ3(s) = ± 1√
−s2 − 2cs+ c1

for some κ1, κ2 ∈ R+
0 and c, c1 ∈ R while

−s2 − 2cs+ c1 > 0 .

(ii) κ2(s) = κ2, κ3(s) = κ3 and κ1(s) = c1
sin(κ3s+ c2)

s+ c
for some κ2 ∈ R+

0 , κ3 ∈ R0 and c, c2 ∈ R , c1 ∈ R0 .

(iii) κ1(s) = κ1, κ3(s) = κ3 and κ2(s) = c2(s + c) sec(κ3s + c1) for some κ1 ∈ R+
0 , κ3 ∈ R0 and c, c1 ∈ R ,

c2 ∈ R0 .

Proof If α is a rectifying curve, then, in each case, the statement follows from solving the differential equation

that results from Eq. (3). Indeed, if for instance κ2 and κ3 are constants different from zero, Eq. (3) reduces

to

κ2
3(s+ c)κ1(s) +

(
(s+ c)κ1(s)

)′′
= 0.

Putting Y = (s+ c)κ1(s), this second order linear differential equation is equivalent to

κ2
3Y + Y ′′ = 0

which has the nontrivial solutions Y = A sin(κ3s) +B cos(κ3s) with A,B ∈ R and A2 +B2 ̸= 0. Therefore,

κ1(s) = c1
sin(κ3s+ c2)

s+ c
with c, c2 ∈ R, c1 ∈ R0.

Conversely, inserting the curvature conditions in Eq. (3), it immediately follows from Theorem 3.1 that α is a

rectifying curve in every case. 2

Rectifying curves in E4 can also be characterized by the tangential, by the normal, or by the first and

the second binormal component of their position vector as is illustrated by the following theorem.

Theorem 3.4 ([4]) Let α be an arclength parameterized rectifying curve in E4 with nonzero curvatures. Then

the following statements hold.

(i) The distance function ρ(s) = ∥α(s)∥ satisfies ρ2(s) = s2 + c1s+ c2 for some c1, c2 ∈ R .

(ii) The tangential component of the position vector of the curve is given by ⟨α(s), T (s)⟩ = s + c for some

constant c ∈ R .

(iii) The normal component of the position vector of the curve, which is given by αN (s) = ⟨α(s), N(s)⟩N(s) +

⟨α(s), B1(s)⟩B1(s)+⟨α(s), B2(s)⟩B2(s) , has constant length and the distance function ρ(s) is nonconstant.
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(iv) The first binormal component and the second binormal component of the position vector of the curve are

respectively given by

⟨α(s), B1(s)⟩ =
κ1(s)(s+ c)

k2(s)
,

⟨α(s), B2(s)⟩ =
1

κ3(s)

(
(s+ c)κ1(s)

κ2(s)

)′

,

for some c ∈ R .

Conversely, if α is an arclength parameterized curve in E4 with nonzero curvatures and one of these statements

holds, then α is a rectifying curve.

In the next section we generalize this theorem to rectifying curves in En .

Finally, to construct rectifying curves in E4 , one can, analogous to E3 , start from an arclength parame-

terized curve on the unit hypersphere.

Theorem 3.5 ([4]) Let α be a curve in E4 given by α(t) = ρ(t)y(t) , where ρ(t) is an arbitrary positive

function and y(t) is an arclength parameterized curve in the unit sphere S3(1) . Then α is a rectifying curve if

and only if

ρ(t) =
a

cos(t+ t0)
with a ∈ R0 and t0 ∈ R.

We prove a similar statement for rectifying curves in En in the next section.

4. Rectifying curves in En

In this section, we generalize some of the known results to rectifying curves in En . However, it is not possible to

make this generalization explicit for all characteristics of rectifying curves because a curve in En has in general

n− 1 curvatures.

4.1. The curvatures of a rectifying curve

Let α be an arclength parameterized rectifying curve in En . Take the derivative of the position vector of α

given by Eq. (2), that is,

α′(s) = λ′(s)T (s) + λ(s)T ′(s) +

n−2∑
i=1

(µ′
i(s)Bi(s) + µi(s)B

′
i(s)) .

Then, use the Eqs. (1) in this expression; this results in

T (s) = λ′(s)T (s) +
(
κ1(s)λ(s)− κ2(s)µ1(s)

)
N(s) + µ1(s)κ3(s)B2(s)

+
n−2∑
i=1

µ′
i(s)Bi(s) +

n−3∑
i=2

µi(s)
(
− κi+1(s)Bi−1(s) + κi+2(s)Bi+1(s)

)
− κn−1(s)µn−2(s)Bn−3(s).
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Equivalently,

T (s) = λ′(s)T (s) +
(
κ1(s)λ(s)− κ2(s)µ1(s)

)
N(s) +

(
µ′
1(s)− µ2(s)κ3(s)

)
B1(s)

+

n−3∑
i=2

(
µi−1(s)κi+1(s) + µ′

i(s)− µi+1(s)κi+2(s)
)
Bi(s)

+
(
µn−3(s)κn−1(s) + µ′

n−2(s)
)
Bn−2(s).

Since the Frenet frame is an orthonormal basis, this equation leads to

λ′(s) = 1, (4a)

λ(s)κ1(s)− µ1(s)κ2(s) = 0, (4b)

µ′
1(s)− µ2(s)κ3(s) = 0, (4c)

µi−1(s)κi+1(s) + µ′
i(s)− µi+1(s)κi+2(s) = 0 with i ∈ {2, 3, . . . , n− 3}, (4d)

µn−3(s)κn−1(s) + µ′
n−2(s) = 0. (4e)

The system (4) consists of n equations incorporating n − 1 curvature functions, the function λ , and

n − 2 functions µi with i ∈ {1, 2, . . . , n − 2} . However, these functions µi can be expressed in terms of the

curvature functions, derivatives of the curvature functions, and the function λ . Indeed, from Eq. (4a) one has

λ(s) = s+ c with c ∈ R . Eqs. (4b) and (4c) lead to

µ1(s) = λ(s)
κ1(s)

κ2(s)
and µ2(s) =

1

κ3(s)

κ1(s)

κ2(s)
+

λ(s)

κ3(s)

(
κ1(s)

κ2(s)

)′

.

Introducing functions µ1,0 , µ2,0 , and µ2,1 one rewrites these equations as

µ1(s) = µ1,0(s)
κ1(s)

κ2(s)
and µ2(s) = µ2,0(s)

κ1(s)

κ2(s)
+ µ2,1(s)

(
κ1(s)

κ2(s)

)′

. (5)

By induction, from Eqs. (4d), one finds this way,

µi(s) =
i−1∑
k=0

µi,k(s)
∂k

∂sk

(
κ1(s)

κ2(s)

)
(6)

215



CAMBIE et al./Turk J Math

for i ∈ {3, 4, . . . , n− 2} . Here the functions µi,k are inductively defined by the following system



µ1,0(s) = s+ c with c ∈ R,

µ2,0(s) =
1

κ3(s)
, µ2,1(s) =

s+ c

κ3(s)
, and for i ∈ {3, 4 . . . , n− 2} one has,

µi,0(s) =
κi(s)µi−2,0(s) + µ′

i−1,0(s)

κi+1(s)
,

µi,k(s) =
κi(s)µi−2,k(s) + µ′

i−1,k(s) + µi−1,k−1(s)

κi+1(s)
for k ∈ {1, 2, . . . , i− 3},

µi,i−2(s) =
µi−1,i−3(s) + µ′

i−1,i−2(s)

κi+1(s)
,

µi,i−1(s) =
µi−1,i−2(s)

κi+1(s)
.

(7)

Based on the system of Eqs. (4), we prove the following theorem, which is a higher dimensional version

of Theorem 3.1.

Theorem 4.1 Let α be an arclength parameterized curve in En with nonzero curvatures. Then α is congruent

to a rectifying curve if and only if

κn−1(s)

n−4∑
k=0

µn−3,k(s)
∂k

∂sk

(
κ1(s)

κ2(s)

)
+

n−3∑
k=0

(
µn−2,k(s)

∂k

∂sk

(
κ1(s)

κ2(s)

))′

= 0 (8)

with µi,k inductively defined by the system (7).

Proof If α is a rectifying curve, then inserting Eq. (6) in Eq. (4e) immediately results in Eq. (8).

Conversely, assume that Eq. (8) is satisfied. Define the curve β(s) = α(s) − λ(s)T (s) − µ1(s)B1(s) −
· · · − µn−2(s)Bn−2(s) with the function λ(s) = s+ c , where c ∈ R and the functions µ1(s), . . . , µn−2(s) as in

Eqs. (5) and (6). Since β′(s) = 0, we conclude that α is congruent to a rectifying curve. 2

Applying Theorem 4.1 we can prove the following theorem, which is an analogue of Theorem 3.2.

Theorem 4.2 There exists no rectifying curve in En with nonzero constant curvatures.

Proof Assume there exists a rectifying curve with all its curvatures κ1 , κ2 , . . . , κn−1 constant but nonzero.

From Eqs. (4a), (4b), and (4c) it follows that

λ(s) = s+ c, µ1(s) =
κ1

κ2
(s+ c), µ2(s) =

κ1

κ2κ3
with c ∈ R.

For i ∈ {2, 3, . . . , n− 3} we deduce from Eq. (4d) that

µi+1(s) =
µi−1(s)κi+1 + µ′

i(s)

κi+2
.
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By induction we prove that

µ2m−1(s) =
κ1κ3 · · ·κ2m−1

κ2κ4 · · ·κ2m
(s+ c), (9a)

µ2m(s) =

∑m
j=1

(∏j
i=1 κ2i−1

∏m
i=j+1 κ2i

)2
κ1κ2κ3 · · ·κ2m+1

, (9b)

where the index ranges from 1 to n − 2. Indeed, it is clear that these equations are valid for m = 1. If the

equations are valid for m ∈ {1, 2, . . . ,M} , then,

µ2M+1(s) =
µ2M−1(s)κ2M+1 + µ′

2M (s)

κ2M+2
=

κ1κ3 · · ·κ2M−1

κ2κ4 · · ·κ2M
(s+ c)

κ2M+1

κ2M+2

=
κ1κ3 · · ·κ2M−1κ2M+1

κ2κ4 · · ·κ2Mκ2M+2
(s+ c),

which is Eq. (9a) for m = M + 1.

Moreover,

µ2M+2(s) =
µ2M (s)κ2M+2 + µ′

2M+1(s)

κ2M+3

=

∑M
j=1

(∏j
i=1 κ2i−1

∏M
i=j+1 κ2i

)2
κ1κ2κ3 · · ·κ2M+1

κ2M+2

κ2M+3
+

κ1κ3 · · ·κ2M−1κ2M+1

κ2κ4 · · ·κ2Mκ2M+2κ2M+3

=

∑M
j=1

[(∏j
i=1 κ2i−1

∏M
i=j+1 κ2i

)2
κ2
2M+2

]
κ1κ2κ3 · · ·κ2M+1κ2M+2κ2M+3

+
(κ1κ3 · · ·κ2M−1κ2M+1)

2

κ1κ2κ3 · · ·κ2M+1κ2M+2κ2M+3

=

∑M
j=1

(∏j
i=1 κ2i−1

∏M+1
i=j+1 κ2i

)2
κ1κ2κ3 · · ·κ2M+1κ2M+2κ2M+3

+
(κ1κ3 · · ·κ2M−1κ2M+1)

2

κ1κ2κ3 · · ·κ2M+1κ2M+2κ2M+3

=

∑M+1
j=1

(∏j
i=1 κ2i−1

∏M+1
i=j+1 κ2i

)2
κ1κ2κ3 · · ·κ2M+1κ2M+2κ2M+3

·

This proves Eq. (9b) for m = M + 1.

For even n , with the aid of Eqs. (9), Eq. (4e), which is equivalent to Eq. (8), reduces to

κ1κ3 · · ·κn−3

κ2κ4 · · ·κn−2
(s+ c)κn−1 = 0.

However, since we assume all curvatures to be nonzero, this leads to a contradiction.

For odd n , using Eqs. (9), Eq. (4e) is rewritten as follows:

∑n−3
2

j=1

(∏j
i=1 κ2i−1

∏n−3
2

i=j+1 κ2i

)2
κ1κ2κ3 · · ·κn−2

κn−1 +
κ1κ3 · · ·κn−2

κ2κ4 · · ·κn−1
= 0.

This is equivalent to

∑n−3
2

j=1

(∏j
i=1 κ2i−1

∏n−1
2

i=j+1 κ2i

)2
κ1κ2κ3 · · ·κn−2κn−1

+

(
κ1κ3 · · ·κn−2

)2
κ1κ2κ3 · · ·κn−2κn−1

= 0.
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Hence, again this leads to a contradiction. That is, using Theorem 4.1, we conclude that there exists no recti-

fying curve with all its curvatures nonzero constants. 2

Remark 4.3 As is shown in [8], a curve β in En that has all its curvatures constant is parameterized by

β(t) = (a1 sin (b1t) , a1 cos (b1t) , . . . , am sin (bmt) , am cos (bmt)) (10)

for even n = 2m and by

β(t) = (a1 sin (b1t) , a1 cos (b1t) , . . . , am sin (bmt) , am cos (bmt) , at) (11)

for odd n = 2m+ 1 . Here a, ai, bi ∈ R , and all bi are distinct numbers for i ∈ {1, 2, . . . ,m} .
From this it is clear that, for even n , a rectifying curve in En cannot have all its curvatures constant,

since then it would lie on a hypersphere. In that case, the position vector of the curve lies in every point in

T (s)⊥ and hence in general not in N(s)⊥ .

From parameterizations (10) and (11) one can also straightforwardly show that a curve with all its

curvatures constant is not a rectifying curve since then ⟨β(t), N(t)⟩ ̸≡ 0 .

If all but one of the curvatures of a rectifying curve are assumed to be nonzero constants, one can try to

determine that nonconstant curvature as in the following theorem.

Theorem 4.4 Let α be an arclength parameterized curve in En with nonzero curvatures. If the first n − 2

curvatures of α are nonzero constants κ1 , κ2 , . . . , κn−2 , then α is a rectifying curve if and only if
κn−1(s) = ± 1√

as(s+ 2c) + b
for even n,

κn−1(s) = ± s+ c√
as(s+ 2c) + b

for odd n.

(12)

Here a is a constant depending on the curvatures κ1 , κ2 , . . . , κn−2 and b, c ∈ R .

Proof Assume that α is a rectifying curve for which its first n − 2 curvatures are nonzero constants. From

the system (4), we know

µn−3(s)κn−1(s) = −µ′
n−2(s) = −

(
µn−4(s)κn−2 + µ′

n−3(s)

κn−1(s)

)′

. (13)

Now, the Eqs. (9) remain valid for the index up to n− 3. Therefore, for even n , Eq. (13) reduces to

a(s+ c)κn−1(s) =

(
1

κn−1(s)

)′

,

with a a constant depending on the curvatures κ1 , κ2 , . . . , κn−2 . This differential equation leads to the

solution as in the statement of the theorem.

In case n is odd, from Eq. (13), one obtains the differential equation

aκn−1(s) =

(
s+ c

κn−1(s)

)′

,
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again with a a constant determined by the curvatures κ1 , κ2 , . . . , κn−2 . This differential equation is equivalent

to

s+ c

κn−1(s)

(
s+ c

κn−1(s)

)′

= a(s+ c)

from which the solution as in the statement of the theorem follows.

Conversely, assume that α is a curve with its first n − 2 curvatures constant with n ≥ 4 and its last

curvature as in Eqs. (12). Then Eq. (8) is

κn−1(s)µn−3,0(s) + µ′
n−2,0(s) = 0.

Using the system (7), this is equivalent to

κn−1(s)µn−3,0(s) +

(
κn−2µn−4,0(s) + µ′

n−3,0(s)

κn−1(s)

)′

= 0.

However, from Eq. (6) and the constancy of κ1 and κ2 , this is equivalent to Eq. (13). Since the curvatures

defined in Eqs. (12) satisfy Eq. (13), we find that Eq. (8) is fulfilled; hence, α is a rectifying curve. 2

Remark 4.5 If either κ1 or κ2 of a rectifying curve α is nonconstant and all the other curvatures of α are

constant, then, inserting in Eq. (4e) the other equations of the system (4), one obtains a homogeneous linear

differential equation of order n − 2 with constant coefficients for the function µ1 . Therefore, the roots of the

associated characteristic polynomial determine the solution for µ1 and by that also the expression for κ1 or κ2 .

However, it is not possible to write down this solution explicitly for arbitrary n .

If one of the curvatures κi with i ∈ {3, 4, . . . , n − 2} of a rectifying curve α is nonconstant and all the

other curvatures of α are constant, then Eq. (8) is a homogeneous nonlinear differential equation for κi which,

even for low dimension, cannot be solved explicitly.

Therefore, due to the existence of n− 1 curvatures, one cannot explicitly solve all possible cases for the

curvature that is nonconstant.

4.2. The components of the position vector of a rectifying curve

A rectifying curve in En is characterized by its tangential component, its normal component, or its binormal

components in the following theorem.

Theorem 4.6 Let α be an arclength parameterized rectifying curve in En with nonzero curvatures. Then the

following statements hold.

(i) The tangential component of the position vector of the curve is given by ⟨α(s), T (s)⟩ = s + c for some

constant c ∈ R .

(ii) The distance function ρ(s) = ∥α(s)∥ satisfies ρ2(s) = s2 + c1s+ c2 for some c1, c2 ∈ R .

(iii) The normal component αN (s) of the position vector of the curve has constant length and the distance

function ρ(s) is nonconstant.
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(iv) The binormal components of the position vector of the curve, for i ∈ {1, 2, . . . , n − 2} , are given by

⟨α(s), Bi(s)⟩ = µi(s) where the µi ’s are defined by Eqs. (5) and (6).

Conversely, if α is an arclength parameterized curve in En with nonzero curvatures and one of the statements

holds, then α is congruent to a rectifying curve.

Proof

(i) In order to prove (i), assume that α is an arclength parameterized rectifying curve. Then from Eqs. (2)

and (4a) we see that

⟨α(s), T (s)⟩ = λ(s) = s+ c.

Conversely, if ⟨α(s), T (s)⟩ = s+ c , then differentiating with respect to s while keeping Eqs. (1) in mind

leads to ⟨α(s), N(s)⟩κ1(s) = 0, from which we conclude that α is congruent to a rectifying curve since

κ1 ̸≡ 0.

(ii) To prove (ii), if α is an arclength parameterized rectifying curve, one uses the system (4). Multiply (4c),

(4d), and (4e) with µi where i ∈ {1, 2, . . . , n− 2} , respectively,

µ1(s)
(
µ′
1(s)− µ2(s)κ3(s)

)
= 0,

µi(s)
(
µi−1(s)κi+1(s) + µ′

i(s)− µi+1(s)κi+2(s)
)
= 0 for i ∈ {2, 3, . . . , n− 3},

µn−2(s)
(
µn−3(s)κn−1(s) + µ′

n−2(s)
)
= 0.

Adding these equations leads to
∑n−2

i=1 µi(s)µ
′
i(s) = 0. Hence,

∑n−2
i=1 µ2

i (s) = a2 for a ∈ R0 . From Eq.

(2) we have

ρ2(s) = ⟨α(s), α(s)⟩ = λ2(s) +
n−2∑
i=1

µ2
i (s) = (s+ c)2 + a2

where we also used Eq. (4a).

Conversely, differentiating ρ2(s) = ⟨α(s), α(s)⟩ = s2+c1s+c2 twice with respect to s while inserting Eqs.

(1) leads to ⟨α(s), N(s)⟩ = 0. Thus, α is congruent to a rectifying curve.

(iii) Now, to prove (iii), decompose the position vector of a curve α in its tangential and its normal component,

that is,

α(s) = ⟨α(s), T (s)⟩T (s) + αN (s).

For a rectifying curve, from Eq. (2), we know that αN (s) =
∑n−2

i=1 µi(s)Bi(s). Therefore, ∥αN (s)∥ =√∑n−2
i=2 µ2

i (s) = a in which we use what we already calculated in part (ii) above. Thus, the normal

component has constant length. The claim about the distance function ρ is also already proved in part

(ii) above.

Conversely, from αN (s) = α(s)− ⟨α(s), T (s)⟩T (s), and ⟨αN (s), αN (s)⟩ = a2 , we see that

a2 = ⟨αN (s), αN (s)⟩ = ⟨α(s), α(s)⟩ − ⟨α(s), T (s)⟩2.
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Differentiating with respect to s and using Eqs. (1), we obtain

κ1(s)⟨α(s), T (s)⟩⟨α(s), N(s)⟩ = 0.

Since ρ2(s) = ∥α(s)∥2 is not a constant, ⟨α(s), T (s)⟩ must be different from zero. Hence, α is congruent

to a rectifying curve.

(iv) Finally, (iv) follows immediately from Eq. (2) for the position vector of a rectifying curve.

Conversely, assume ⟨α(s), B1(s)⟩ = µ1(s). Take the derivative and use Eqs. (1) then

−κ2(s)⟨α(s), N(s)⟩+ κ3(s)µ2(s) = µ′
1(s)

where we also inserted ⟨α(s), B2(s)⟩ = µ2(s). Using the definition of µ1 and µ2 , one obtains ⟨α(s), N(s)⟩ =
0. Therefore, α is congruent to a rectifying curve.

2

Note that, to prove the converse of the last statement of Theorem 4.6, only the binormal components with

respect to the first two binormals B1 and B2 are required.

4.3. A classification of rectifying curves

Finally, we construct rectifying curves starting from an arclength parameterized curve on the unit hypersphere

centered at the origin, Sn−1(1) = {p ∈ En | ⟨p, p⟩ = 1} .

Theorem 4.7 Let α be a curve in En given by α(t) = ρ(t)y(t) , where ρ(t) is an arbitrary positive function

and y(t) is an arclength parameterized curve in the unit hypersphere Sn−1(1) . Then α is a rectifying curve if

and only if

ρ(t) =
a

cos(t+ t0)
with a ∈ R0 and t0 ∈ R.

Proof To make the notation less elaborate, we do not always write down explicitly the parameter t in this

proof.

The second order derivative of α(t) = ρ(t)y(t) with respect to t is

T ′ =

(
ρ′

v

)′

y +

(
ρ′

v
+
(ρ
v

)′)
y′ +

ρ

v
y′′ (14)

where the speed v of α is v(t) =
√

ρ′(t)2 + ρ2(t) since ⟨y, y⟩ = ⟨y′, y′⟩ = 1.

Take an orthonormal basis {y, y′, Y1, . . . , Yn−2} of TEn . Then

y′′ = ⟨y, y′′⟩y + ⟨y′, y′′⟩y′ + ⟨Y1, y
′′⟩Y1 + · · ·+ ⟨Yn−2, y

′′⟩Yn−2.

Since also ⟨y, y′′⟩ = −1 and ⟨y′, y′′⟩ = 0, using the Eqs. (1) for non-arclength parameterized curves, we can

rewrite Eq. (14) to

κ1vN =

((
ρ′

v

)′

− ρ

v

)
y +

(
ρ′

v
+
(ρ
v

)′)
y′ +

ρ

v

(
n−2∑
i=1

⟨Yi, y
′′⟩Yi

)
.
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Now, take the scalar product of this last equation with α and use that α = ρy , then

κ1v⟨α,N⟩ =

((
ρ′

v

)′

− ρ

v

)
ρ.

Since α is a rectifying curve if and only if ⟨α,N⟩ = 0, this leads to the differential equation

ρρ′′ − 2ρ′2 − ρ2 = 0

which has as nonzero solutions ρ(t) = a sec(t+ t0) for a ∈ R0 and t0 ∈ R . 2

Example 4.8 Theorem 4.7 allows us to give some explicit examples of rectifying curves in En .

If n is even, n = 2m , then parameterization (10) with
∑m

i=1 a
2
i = 1 and

∑m
i=1 a

2
i b

2
i = 1 describes an

arclength parameterized curve in Sn−1(1) . Hence,

α(t) =
a

cos(t+ t0)
(a1 sin (b1t) , a1 cos (b1t) , . . . , am sin (bmt) , am cos (bmt))

with a ∈ R0 and t0 ∈ R parameterizes a rectifying curve in En .

For odd n = 2m+ 1 , one has, for instance, if
∑m

i=1 a
2
i b

2
i = 1 , the arclength parameterized curve

y(t) = (a1 sin (b1t) , a1 cos (b1t) , . . . , am sin (bmt) , am cos (bmt) , c)

that lies on the unit hypersphere Sn−1(1) if
∑m

i=1 a
2
i + c2 = 1 . Here for i ∈ {1, 2, . . . ,m} , one has ai ∈ R ,

bi ∈ R all distinct numbers and c ∈ R . Then

α(t) =
a

cos(t+ t0)
(a1 sin (b1t) , a1 cos (b1t) , . . . , am sin (bmt) , am cos (bmt) , c)

with a ∈ R0 and t0 ∈ R is the parameterization of a rectifying curve in En .

5. Conclusions

Where possible, we stated and proved a generalization of known results to rectifying curves in En . In order to

do so, one needs to take into account the n− 1 curvatures and n Frenet vectors of a curve in En . Because of

this, it is not possible to explicitly generalize all known results to rectifying curves in En .

As is clear from for instance [9], it is interesting to translate and study the concept of rectifying curves to

other spaceforms. Furthermore, studying curves in En for which the position vector always lies in the orthogonal

complement of a binormal vector could be interesting.
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