

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2016) 40: 32 – 37 © TÜBİTAK doi:10.3906/mat-1412-37

Research Article

Abundance of *E*-order-preserving transformation semigroups

Lei SUN^{*}, Xuefeng HAN

School of Mathematics and Information Science, Henan Polytechnic University, Henan, Jiaozuo, P.R. China

Received: 15.12.2014	•	Accepted/Published Online: 24.06.2015	•	Final Version: 01.01.2016
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: Let \mathcal{T}_X be the full transformation semigroup on a finite totally ordered set $X = \{1 < 2 < ... < n\} (n \ge 3)$ and E be a nontrivial equivalence relation on X. In this paper, we consider a subsemigroup of \mathcal{T}_X defined by

 $EOP_X = \{ f \in \mathcal{T}_X : \forall x, y \in X, (x, y) \in E, x \le y \Rightarrow (f(x), f(y)) \in E, f(x) \le f(y) \}$

and present a necessary and sufficient condition under which the semigroup EOP_X is abundant.

Key words: Transformation semigroup, \mathcal{L}^* -relation, \mathcal{R}^* -relation, idempotent, abundance

1. Introduction

Let S be a semigroup. We say that $a, b \in S$ are \mathcal{L}^* -related in S if they are \mathcal{L} -related in a semigroup T such that S is a subsemigroup of T and write $(a, b) \in \mathcal{L}^*$. The relation \mathcal{R}^* is defined in the dual way. The equivalence relations \mathcal{L}^* and \mathcal{R}^* have been intensely studied in semigroup theory and have been used to define some important classes of semigroups. For instance, Fountain [3] pointed out that a semigroup S has the property that for every $a \in S$ the right ideal aS^1 is projective (as an S-act) if and only if every \mathcal{L}^* -class of S contains an idempotent. We call such semigroups *right abundant*. Left abundant semigroups are defined dually. A semigroup is *abundant* if it is both left and right abundant; see Fountain [4]. The property of being abundant can be considered as a wide generalization of regularity. (Recall that in a regular semigroup $\mathcal{L}^* = \mathcal{L}$ and $\mathcal{R}^* = \mathcal{R}$.)

Many papers have been written describing the abundances of various transformation semigroups on the nonempty set X (see [1, 8–12]). For example, Umar [11] observed that the semigroup S_n^- of nonbijective, orderdecreasing transformations on a finite totally ordered set $X = \{1 < 2 < ... < n\}$ is abundant but not regular. Let \mathcal{T}_X be the full transformation semigroup on a set X and E be an arbitrary equivalence relation on X. Araujo and Konieczny [1] proved that the semigroup

$$T_E(X,R) = \{ f \in \mathcal{T}_X : f(R) \subseteq R \text{ and } \forall x, y \in X, (x,y) \in E \Rightarrow (f(x), f(y)) \in E \},\$$

where R is a cross-section of the partition X/E of X induced by E, is abundant if and only if it is regular. Pei and Zhou [8] gave a condition under which the semigroup

 $T_E(X) = \{ f \in \mathcal{T}_X : \forall x, y \in X, (x, y) \in E \Rightarrow (f(x), f(y)) \in E \}$

*Correspondence: sunlei97@163.com

²⁰¹⁰ AMS Mathematics Subject Classification: 20M20.

is abundant. Sun [9] proved that the semigroup

$$T(X,Y) = \{ f \in \mathcal{T}_X : f(X) \subseteq Y \} (Y \subseteq X)$$

is left abundant but not right abundant if $|Y| \ge 2$ and $Y \ne X$. Sun and Wang [10] showed that the semigroup

$$T_{\exists}(X) = \{ f \in \mathcal{T}_X : \forall x, y \in X, (f(x), f(y)) \in E \Rightarrow (x, y) \in E \}$$

is also left abundant but not right abundant if the partition X/E of X is infinite.

Given an arbitrary equivalence relation E on a finite totally ordered set $X = \{1 < 2 < ... < n\}$, the authors [6] introduced a new family of the subsemigroup of \mathcal{T}_X defined by

$$EOP_X = \{ f \in \mathcal{T}_X : \forall x, y \in X, (x, y) \in E, x \le y \Rightarrow (f(x), f(y)) \in E, f(x) \le f(y) \} \}$$

which is called an *E*-order-preserving transformation semigroup, and investigated the properties for EOP_X , such as Green's relations and the natural partial order on the semigroup EOP_X in [6] and [7], respectively. In particular, the regularity of the semigroup EOP_X was described as follows.

Lemma 1.1 ([6]) The *E*-order-preserving transformation semigroup EOP_X is regular if and only if either $E = X \times X$ or $E = \{(x, x) : x \in X\}$.

In this paper our aim is to investigate the abundance of the semigroup EOP_X . Note that if $E = X \times X$ or $E = \{(x, x) : x \in X\}$ then EOP_X is abundant. Thus, for the remainder of the paper, we assume that Eis nontrivial on the finite totally ordered set $X = \{1 < 2 < ... < n\}$ $(n \ge 3)$; that is, both $E \ne X \times X$ and $E \ne \{(x, x) : x \in X\}$. Under the assumption, we first characterize the relations \mathcal{L}^* and \mathcal{R}^* on the semigroup EOP_X and then present a necessary and sufficient condition under which the semigroup EOP_X is abundant. Throughout this paper, we apply transformations on the left so that for $f, g \in EOP_X$, their product fg is the transformation obtained by performing first g and then f.

2. The main result

The following lemma gives a characterization of \mathcal{L}^* and \mathcal{R}^* that can be found, for instance, in [5, Sect. X.1].

Lemma 2.1 Let S be a semigroup. Then

$$\mathcal{L}^* = \{(a, b) \in S \times S : (\forall s, t \in S^1) \, as = at \Leftrightarrow bs = bt\}$$

and

$$\mathcal{R}^* = \{(a,b) \in S \times S : (\forall s,t \in S^1) \, sa = ta \Leftrightarrow sb = tb\}.$$

We begin with the \mathcal{L}^* -relation.

Lemma 2.2 Let $f, g \in EOP_X$. Then $(f, g) \in \mathcal{L}^*$ if and only if kerf = kerg.

Proof For the 'if' part, suppose that ker f = kerg, and then f and g are known to be \mathcal{L} -related in the full transformation semigroup \mathcal{T}_X ; see, for instance, [2, Sect. 2.2]1. Hence, f and g are \mathcal{L}^* -related in EOP_X .

¹In order to prevent any chance of confusion, recall that in [2] transformations are written on the right of their arguments, while the description of Green's relations in [2, Section 2.2] should be left-right dualized to be applied in the present paper's setting.

For the 'only if' part, suppose that $(f,g) \in \mathcal{L}^*$. For $x \in X$, let $\langle x \rangle$ be the constant transformation with the range $\{x\}$; this transformation clearly belongs to EOP_X . Take $(x,y) \in \ker f$ for $x, y \in X$. Then $f\langle x \rangle = \{f(x)\} = \{f(y)\} = f\langle y \rangle$. Applying the characterization of \mathcal{L}^* from Lemma 2.1, we have $g\langle x \rangle = g\langle y \rangle$. This means g(x) = g(y) and $(x,y) \in \ker g$. Thus, $\ker f \subseteq \ker g$ and by symmetry $\ker g \subseteq \ker f$. Hence, $\ker f = \ker g$.

In what follows we consider the \mathcal{R}^* -relation.

Lemma 2.3 Let $f, g \in EOP_X$. Then $(f,g) \in \mathcal{R}^*$ if and only if f(X) = g(X).

Proof For the 'if' part, suppose that f(X) = g(X), and then f and g are known to be \mathcal{R} -related in the full transformation semigroup \mathcal{T}_X . Hence, f and g are \mathcal{R}^* -related in EOP_X .

For the 'only if' part, suppose that $(f,g) \in \mathcal{R}^*$ and $a \notin f(X)$. Let

$$\mathcal{A} = \{ A \in X/E : A \cap f(X) \neq \emptyset \}.$$

For each $A \in \mathcal{A}$, let $A \cap f(X) = \{a_1 < a_2 < \ldots < a_s\}$. Write $a_0 = \min A$ and $a_* = \max A$. Define $h_* : A \longrightarrow A$ by

$$h_*(x) = \begin{cases} a_1 & \text{if } x \in [a_0, a_1] \\ a_t & \text{if } x \in (a_{t-1}, a_t] (2 \le t \le s) \\ a_s & \text{if } x \in (a_s, a_*]. \end{cases}$$

Clearly, $h_*(A) = \{a_1, a_2, \dots, a_s\} = A \cap f(X)$. Now we define $h: X \to X$. There are two cases to consider.

Case 1. $\overline{a} \notin \mathcal{A}$ where \overline{a} is the *E*-class containing *a*. Fix $A_0 \in \mathcal{A}$ and $b \in A_0 \cap f(X)$. For each $A \in X/E$, define $h: X \to X$ by

$$h(x) = \begin{cases} h_*(x) & \text{if } x \in A \text{ where } A \in \mathcal{A} \\ x & \text{if } x \in A \text{ where } A \notin \mathcal{A} \text{ and } A \neq \overline{a} \\ b & \text{if } x \in \overline{a}. \end{cases}$$

Case 2. $\overline{a} \in \mathcal{A}$. For each $A \in X/E$, define $h: X \to X$ by

$$h(x) = \begin{cases} h_*(x) & \text{if } x \in A \text{ where } A \in \mathcal{A} \\ x & \text{if } x \in A \text{ where } A \notin \mathcal{A} \end{cases}$$

It is routine to show $h \in EOP_X$, $h \neq id_X$, and $hf = id_X f$, where id_X is the identity transformation on X. We assert that $a \notin g(X)$. Indeed, if g(x') = a for some $x' \in X$, then applying the characterization of \mathcal{R}^* from Lemma 2.1, we have $hg = id_X g$ and $hg(x') = id_X g(x')$. If $\overline{a} \notin \mathcal{A}$, then

$$b = h(\overline{a}) = hg(x') = \mathrm{id}_X g(x') = a,$$

a contradiction. If $\overline{a} \in \mathcal{A}$, then

$$h_*g(x') = hg(x') = \mathrm{id}_X g(x') = a \in f(X),$$

a contradiction. It follows readily that $a \notin g(X)$. This means that $g(X) \subseteq f(X)$. By symmetry, $f(X) \subseteq g(X)$. Consequently, f(X) = g(X), as required.

Let $Y, Z \subseteq X$ and $Y \cap Z = \emptyset$. Y < Z means that y < z for any $y \in Y$ and $z \in Z$.

Lemma 2.4 Let $f \in EOP_X$. Then $(f, e) \in \mathcal{R}^*$ for some idempotent $e \in EOP_X$. Consequently, the semigroup EOP_X is left abundant.

Proof Assume that

$${A \in X/E : A \cap f(X) \neq \emptyset} = {A_1 < A_2 < \ldots < A_t}.$$

For each A_i $(1 \le i \le t)$, let $A_i \cap f(X) = \{a_{i1} < a_{i2} < \ldots < a_{is}\}$. Write $a_{i0} = \min A_i$ and $a_{i*} = \max A_i$ and then define $e_i : A_i \longrightarrow A_i$ by

$$e_i(x) = \begin{cases} a_{i1} & \text{if } x \in [a_{i0}, a_{i1}] \\ a_{il} & \text{if } x \in (a_{il-1}, a_{il}] (2 \le l \le s) \\ a_{is} & \text{if } x \in (a_{is}, a_{i*}]. \end{cases}$$

For every $A \in X/E$, define $e: X \to X$ by

$$e(x) = \begin{cases} e_i(x) & \text{if } x \in A_i \ (1 \le i \le t) \\ a_{11} & \text{if } x \in A \text{ where } \overline{1} \le A < A_1 \\ a_{i1} & \text{if } x \in A \text{ where } A_{i-1} < A < A_i \ (2 \le i \le t) \\ a_{ts} & \text{if } x \in A \text{ where } A_t < A \le \overline{n}. \end{cases}$$

It is routine to show $e \in EOP_X$, $e^2 = e$, and e(X) = f(X). By Lemma 2.3, we have $(e, f) \in \mathbb{R}^*$.

In general, the semigroup EOP_X is not right abundant; that is, there may be no idempotents in some \mathcal{L}^* -class of EOP_X . In what follows we pursue a necessary and sufficient condition under which the semigroup EOP_X is abundant. For $f \in \mathcal{T}_X$, let $\pi(f)$ be the partition of X induced by ker f, namely

$$\pi(f) = \{ f^{-1}(y) : y \in f(X) \},\$$

and call $f^{-1}(y)$ a ker*f*-class. For each $f \in T_E(X)$, let $E_f = E \vee \ker f$. Then E_f is the smallest equivalence relation on X containing both E and ker*f* and each E_f -class is a union of E-classes as well as a union of ker*f*-classes. Moreover, $f(F) \subseteq A \in X/E$ for each E_f -class F.

Recall that, in [1], a transformation f is said to be *normal* if for each E_f class F, there is some E-class $A \subseteq F$ such that $A \cap K \neq \emptyset$ for each ker f-class $K \subseteq F$.

Lemma 2.5 Let $e \in EOP_X$ be an idempotent. Then e is normal.

Proof The proof is similar to that of [8, Lemma 2.8] and it is omitted.

Lemma 2.6 Let $f \in EOP_X$. Then the following statements hold.

(1) f is normal if and only if there is an idempotent $e \in EOP_X$ such that kere = kerf.

(2) The semigroup EOP_X is abundant if and only if f is normal.

Proof (1) For the 'if' part, suppose that ker $e = \ker f$ for some idempotent $e \in EOP_X$. It is clear that $E_f = E_e$ and f is normal.

For the 'only if' part, suppose that f is normal. For each E_f -class F, there is some E-class A such that $A \cap K \neq \emptyset$ for each ker f-class contained in F. Take $k \in A \cap K$ and define $e : K \to K$ by e(K) = k. To see $e \in EOP_X$, take E-class $B \subseteq F$ and $x, y \in B, x \leq y$. Obviously, $e(B) \subseteq e(F) \subseteq A$, which implies that $(e(x), e(y)) \in E$. Now assume that $x \in K_x$ and $y \in K_y$ where $K_x, K_y \in \pi(f)$. If $K_x = K_y$, then

e(x) = e(y). If $K_x \neq K_y$, then $x \neq y$ and f(x) < f(y). By the definition of e, we have $e(x) = k_x$ and $e(y) = k_y$ where $k_x \in A \cap K_x$ and $k_y \in A \cap K_y$. Now we assert that $k_x < k_y$. Indeed, if $k_x > k_y$, then $f(x) = f(k_x) > f(k_y) = f(y)$, which leads to a contradiction. Hence, $k_x < k_y$ and $e \in EOP_X$. It is routine to show that $e^2 = e$ and kere = ker f.

(2) The proof is similar to that of [8, Theorem 2.10] and it is also omitted.

Recall that, in [1], an equivalence relation E on X is said to be *simple* if there is exactly one E-class $(\neq X)$ containing more than one point and the other E-classes are singletons, and E is said to be *n*-bounded if the cardinality of each E-class is not more than n.

Lemma 2.7 Let E be an equivalence relation on X. Then the following statements hold.

- (1) If E is either simple or 2-bounded, then each $f \in EOP_X$ is normal.
- (2) If E is neither simple nor 2-bounded, then EOP_X is not abundant.

Proof (1) The proof is to similar to that of Lemmas 2.12 and 2.13 of [8].

(2) Assume that $A = \{a_1 < a_2 < \ldots < a_s\} \in X/E$ and $B = \{b_1 < b_2 < \ldots < b_t\} \in X/E$ for $s \ge 3, t \ge 2$. Now define $f : X \to X$ by

$$f(x) = \begin{cases} a_1 & \text{if } x = a_1 \\ a_2 & \text{if } x \in \{a_2, a_3, \dots, a_s, b_1\} \\ a_3 & \text{if } x \in \{b_2, b_3, \dots, b_t\} \\ x & \text{otherwise.} \end{cases}$$

It is clear that $f \in EOP_X$ and all E_f -class are $F = A \cup B$ and $C \in X/E$ with $C \neq A, C \neq B$. Moreover, there are exactly three ker f-classes K_1, K_2 , and K_3 contained in F, where

$$K_1 = \{a_1\}, K_2 = \{a_2, a_3, \dots, a_s, b_1\}, K_3 = \{b_2, b_3, \dots, b_t\}.$$

However, there is no *E*-class $D \subseteq F$ such that $D \cap K_i \neq \emptyset$ for i = 1, 2, 3, so f is not normal. Therefore, EOP_X is not abundant.

Clearly, if |X| = 3, then E is both simple and 2-bounded, so the semigroup EOP_X is abundant. If |X| = 4, then E is either simple or 2-bounded and the semigroup EOP_X is also abundant. Thus, we have the main result in this paper.

Theorem 2.8 Let E be a nontrivial equivalence on the finite totally ordered set $X = \{1 < 2 < ... < n\}$ $(n \ge 3)$. Then the following statements hold.

(1) If |X| = 3 or |X| = 4, then the semigroup EOP_X is abundant.

(2) If $|X| \ge 5$, then the semigroup EOP_X is abundant if and only if E is either simple or 2-bounded.

Acknowledgments

We would like to thank the referee for his/her valuable suggestions and comments, which helped to improve the presentation of this paper. This paper was supported by National Natural Science Foundation of China (Nos. U1404101, 11261018, 11426092).

References

- Araujo J, Konieczny J. Semigroups of transformations preserving an equivalence relation and a cross-section. Comm Alg 2004; 32: 1917–1935.
- [2] Clifford AH, Preston GB. The Algebraic Theory of Semigroups, Vol I. Providence, RI, USA: American Mathematical Society, 1961.
- [3] Fountain JB. Adequate semigroups. P Edinburgh Math Soc 1979; 22: 113–125.
- [4] Fountain JB. Abundant semigroups. P Lond Math Soc 1982; 44: 103–129.
- [5] Liapin ES. Semigroups. Moscow: Fizmatgiz, 1960 (in Russian).
- [6] Ma MY, You TJ, Luo SS, Yang Y, Wang L. Regularity and Green's relations for finite *E*-order-preserving transformations semigroups. Semigroup Forum 2010; 80: 164–173.
- [7] Pei HS, Deng WN. The natural order for the *E*-order-preserving transformation semigroups. Asian Eur J Math 2012; 5: 1250035.
- [8] Pei HS, Zhou HJ. Abundant semigroups of transformations preserving an equivalence relation. Algebr Colloq 2011; 18: 77–82.
- [9] Sun L. A note on abundance of certain semigroups of transformations with restricted range. Semigroup Forum 2013; 87: 681–684.
- [10] Sun L, Wang LM. Abundance of the semigroup of all transformations of a set that reflect an equivalence relation. J Algebra Appl 2014; 13: 1350088.
- [11] Umar A. On the semigroups of order-decreasing finite full transformations. Proc Roy Soc Edinburgh Sect A 1992; 120: 129–142.
- Yang HB, Yang XL. Automorphisms of partition order-decreasing transformation monoids. Semigroup Forum 2012; 85: 513–524.