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Abstract: Let TX be the full transformation semigroup on a finite totally ordered set X = {1 < 2 < . . . < n} (n ≥ 3)

and E be a nontrivial equivalence relation on X . In this paper, we consider a subsemigroup of TX defined by

EOPX = {f ∈ TX : ∀x, y ∈ X, (x, y) ∈ E, x ≤ y ⇒ (f(x), f(y)) ∈ E, f(x) ≤ f(y)}

and present a necessary and sufficient condition under which the semigroup EOPX is abundant.
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1. Introduction

Let S be a semigroup. We say that a, b ∈ S are L∗ -related in S if they are L -related in a semigroup T

such that S is a subsemigroup of T and write (a, b) ∈ L∗ . The relation R∗ is defined in the dual way. The

equivalence relations L∗ and R∗ have been intensely studied in semigroup theory and have been used to define

some important classes of semigroups. For instance, Fountain [3] pointed out that a semigroup S has the

property that for every a ∈ S the right ideal aS1 is projective (as an S -act) if and only if every L∗ -class

of S contains an idempotent. We call such semigroups right abundant. Left abundant semigroups are defined

dually. A semigroup is abundant if it is both left and right abundant; see Fountain [4]. The property of

being abundant can be considered as a wide generalization of regularity. (Recall that in a regular semigroup

L∗ = L and R∗ = R .)

Many papers have been written describing the abundances of various transformation semigroups on the

nonempty set X ( see [1, 8–12]). For example, Umar [11] observed that the semigroup S−
n of nonbijective, order-

decreasing transformations on a finite totally ordered set X = {1 < 2 < . . . < n} is abundant but not regular.

Let TX be the full transformation semigroup on a set X and E be an arbitrary equivalence relation on X .

Araujo and Konieczny [1] proved that the semigroup

TE(X,R) = {f ∈ TX : f(R) ⊆ R and ∀x, y ∈ X, (x, y) ∈ E ⇒ (f(x), f(y)) ∈ E},

where R is a cross-section of the partition X/E of X induced by E , is abundant if and only if it is regular.

Pei and Zhou [8] gave a condition under which the semigroup

TE(X) = {f ∈ TX : ∀x, y ∈ X, (x, y) ∈ E ⇒ (f(x), f(y)) ∈ E}
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is abundant. Sun [9] proved that the semigroup

T (X,Y ) = {f ∈ TX : f(X) ⊆ Y } (Y ⊆ X)

is left abundant but not right abundant if |Y | ≥ 2 and Y ̸= X . Sun and Wang [10] showed that the semigroup

T∃(X) = {f ∈ TX : ∀x, y ∈ X, (f(x), f(y)) ∈ E ⇒ (x, y) ∈ E}

is also left abundant but not right abundant if the partition X/E of X is infinite.

Given an arbitrary equivalence relation E on a finite totally ordered set X = {1 < 2 < . . . < n} , the
authors [6] introduced a new family of the subsemigroup of TX defined by

EOPX = {f ∈ TX : ∀x, y ∈ X, (x, y) ∈ E, x ≤ y ⇒ (f(x), f(y)) ∈ E, f(x) ≤ f(y)},

which is called an E -order-preserving transformation semigroup, and investigated the properties for EOPX ,

such as Green’s relations and the natural partial order on the semigroup EOPX in [6] and [7], respectively. In

particular, the regularity of the semigroup EOPX was described as follows.

Lemma 1.1 ( [6]) The E -order-preserving transformation semigroup EOPX is regular if and only if either

E = X ×X or E = {(x, x) : x ∈ X} .

In this paper our aim is to investigate the abundance of the semigroup EOPX . Note that if E = X ×X

or E = {(x, x) : x ∈ X} then EOPX is abundant. Thus, for the remainder of the paper, we assume that E

is nontrivial on the finite totally ordered set X = {1 < 2 < . . . < n} (n ≥ 3); that is, both E ̸= X × X and

E ̸= {(x, x) : x ∈ X} . Under the assumption, we first characterize the relations L∗ and R∗ on the semigroup

EOPX and then present a necessary and sufficient condition under which the semigroup EOPX is abundant.

Throughout this paper, we apply transformations on the left so that for f, g ∈ EOPX , their product fg is the

transformation obtained by performing first g and then f .

2. The main result

The following lemma gives a characterization of L∗ and R∗ that can be found, for instance, in [5, Sect. X.1].

Lemma 2.1 Let S be a semigroup. Then

L∗ = {(a, b) ∈ S × S : (∀ s, t ∈ S1) as = at ⇔ bs = bt}

and

R∗ = {(a, b) ∈ S × S : (∀ s, t ∈ S1) sa = ta ⇔ sb = tb}.

We begin with the L∗ -relation.

Lemma 2.2 Let f, g ∈ EOPX . Then (f, g) ∈ L∗ if and only if kerf = kerg .

Proof For the ‘if’ part, suppose that kerf = kerg , and then f and g are known to be L -related in the full

transformation semigroup TX ; see, for instance, [2, Sect. 2.2]1. Hence, f and g are L∗ -related in EOPX .

1In order to prevent any chance of confusion, recall that in [2] transformations are written on the right of their arguments, while
the description of Green’s relations in [2, Section 2.2] should be left-right dualized to be applied in the present paper’s setting.
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For the ‘only if’ part, suppose that (f, g) ∈ L∗ . For x ∈ X , let ⟨x⟩ be the constant transformation

with the range {x} ; this transformation clearly belongs to EOPX . Take (x, y) ∈ kerf for x, y ∈ X . Then

f⟨x⟩ = {f(x)} = {f(y)} = f⟨y⟩ . Applying the characterization of L∗ from Lemma 2.1, we have g⟨x⟩ = g⟨y⟩ .
This means g(x) = g(y) and (x, y) ∈ kerg . Thus, kerf ⊆ kerg and by symmetry kerg ⊆ kerf . Hence,

kerf = kerg . 2

In what follows we consider the R∗ -relation.

Lemma 2.3 Let f, g ∈ EOPX . Then (f, g) ∈ R∗ if and only if f(X) = g(X) .

Proof For the ‘if’ part, suppose that f(X) = g(X), and then f and g are known to be R -related in the full

transformation semigroup TX . Hence, f and g are R∗ -related in EOPX .

For the ‘only if’ part, suppose that (f, g) ∈ R∗ and a /∈ f(X). Let

A = {A ∈ X/E : A ∩ f(X) ̸= ∅}.

For each A ∈ A , let A ∩ f(X) = {a1 < a2 < . . . < as} . Write a0 = minA and a∗ = maxA . Define

h∗ : A −→ A by

h∗(x) =

 a1 if x ∈ [a0, a1]
at if x ∈ (at−1, at] (2 ≤ t ≤ s)
as if x ∈ (as, a∗].

Clearly, h∗(A) = {a1, a2, . . . , as} = A ∩ f(X). Now we define h : X → X . There are two cases to consider.

Case 1. a /∈ A where a is the E -class containing a . Fix A0 ∈ A and b ∈ A0∩f(X). For each A ∈ X/E ,

define h : X → X by

h(x) =

 h∗(x) if x ∈ A where A ∈ A
x if x ∈ A where A /∈ A and A ̸= a
b if x ∈ a.

Case 2. a ∈ A . For each A ∈ X/E , define h : X → X by

h(x) =

{
h∗(x) if x ∈ A where A ∈ A
x if x ∈ A where A /∈ A.

It is routine to show h ∈ EOPX , h ̸= idX , and hf = idXf , where idX is the identity transformation on X .

We assert that a /∈ g(X). Indeed, if g(x′) = a for some x′ ∈ X , then applying the characterization of R∗ from

Lemma 2.1, we have hg = idXg and hg(x′) = idXg(x′). If a /∈ A , then

b = h(a) = hg(x′) = idXg(x′) = a,

a contradiction. If a ∈ A , then

h∗g(x
′) = hg(x′) = idXg(x′) = a ∈ f(X),

a contradiction. It follows readily that a /∈ g(X). This means that g(X) ⊆ f(X). By symmetry, f(X) ⊆ g(X).

Consequently, f(X) = g(X), as required. 2

Let Y,Z ⊆ X and Y ∩ Z = ∅ . Y < Z means that y < z for any y ∈ Y and z ∈ Z .
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Lemma 2.4 Let f ∈ EOPX . Then (f, e) ∈ R∗ for some idempotent e ∈ EOPX . Consequently, the semigroup

EOPX is left abundant.

Proof Assume that
{A ∈ X/E : A ∩ f(X) ̸= ∅} = {A1 < A2 < . . . < At}.

For each Ai (1 ≤ i ≤ t), let Ai ∩ f(X) = {ai1 < ai2 < . . . < ais} . Write ai0 = minAi and ai∗ = maxAi and

then define ei : Ai −→ Ai by

ei(x) =

 ai1 if x ∈ [ai0, ai1]
ail if x ∈ (ail−1, ail] (2 ≤ l ≤ s)
ais if x ∈ (ais, ai∗].

For every A ∈ X/E , define e : X → X by

e(x) =


ei(x) if x ∈ Ai (1 ≤ i ≤ t)
a11 if x ∈ A where 1 ≤ A < A1

ai1 if x ∈ A where Ai−1 < A < Ai (2 ≤ i ≤ t)
ats if x ∈ A where At < A ≤ n.

It is routine to show e ∈ EOPX , e2 = e , and e(X) = f(X). By Lemma 2.3, we have (e, f) ∈ R∗ . 2

In general, the semigroup EOPX is not right abundant; that is, there may be no idempotents in some

L∗ -class of EOPX . In what follows we pursue a necessary and sufficient condition under which the semigroup

EOPX is abundant. For f ∈ TX , let π(f) be the partition of X induced by kerf , namely

π(f) = {f−1(y) : y ∈ f(X)},

and call f−1(y) a kerf -class. For each f ∈ TE(X), let Ef = E ∨ kerf . Then Ef is the smallest equivalence

relation on X containing both E and kerf and each Ef -class is a union of E -classes as well as a union of

kerf -classes. Moreover, f(F ) ⊆ A ∈ X/E for each Ef -class F .

Recall that, in [1], a transformation f is said to be normal if for each Ef class F , there is some E -class

A ⊆ F such that A ∩K ̸= ∅ for each kerf -class K ⊆ F .

Lemma 2.5 Let e ∈ EOPX be an idempotent. Then e is normal.

Proof The proof is similar to that of [8, Lemma 2.8] and it is omitted. 2

Lemma 2.6 Let f ∈ EOPX . Then the following statements hold.

(1) f is normal if and only if there is an idempotent e ∈ EOPX such that kere = kerf .

(2) The semigroup EOPX is abundant if and only if f is normal.

Proof (1) For the ‘if’ part, suppose that kere = kerf for some idempotent e ∈ EOPX . It is clear that

Ef = Ee and f is normal.

For the ‘only if’ part, suppose that f is normal. For each Ef -class F , there is some E -class A such

that A ∩ K ̸= ∅ for each kerf -class contained in F . Take k ∈ A ∩ K and define e : K → K by e(K) = k .

To see e ∈ EOPX , take E -class B ⊆ F and x, y ∈ B, x ≤ y . Obviously, e(B) ⊆ e(F ) ⊆ A , which implies

that (e(x), e(y)) ∈ E . Now assume that x ∈ Kx and y ∈ Ky where Kx,Ky ∈ π(f). If Kx = Ky , then
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e(x) = e(y). If Kx ̸= Ky , then x ̸= y and f(x) < f(y). By the definition of e , we have e(x) = kx and

e(y) = ky where kx ∈ A ∩ Kx and ky ∈ A ∩ Ky . Now we assert that kx < ky . Indeed, if kx > ky , then

f(x) = f(kx) > f(ky) = f(y), which leads to a contradiction. Hence, kx < ky and e ∈ EOPX . It is routine to

show that e2 = e and kere = kerf .

(2) The proof is similar to that of [8, Theorem 2.10] and it is also omitted. 2

Recall that, in [1], an equivalence relation E on X is said to be simple if there is exactly one E -class

( ̸= X ) containing more than one point and the other E -classes are singletons, and E is said to be n -bounded

if the cardinality of each E -class is not more than n .

Lemma 2.7 Let E be an equivalence relation on X . Then the following statements hold.

(1) If E is either simple or 2-bounded, then each f ∈ EOPX is normal.

(2) If E is neither simple nor 2-bounded, then EOPX is not abundant.

Proof (1) The proof is to similar to that of Lemmas 2.12 and 2.13 of [8].

(2) Assume that A = {a1 < a2 < . . . < as} ∈ X/E and B = {b1 < b2 < . . . < bt} ∈ X/E for

s ≥ 3, t ≥ 2. Now define f : X → X by

f(x) =


a1 if x = a1
a2 if x ∈ {a2, a3, . . . , as, b1}
a3 if x ∈ {b2, b3, . . . , bt}
x otherwise.

It is clear that f ∈ EOPX and all Ef -class are F = A ∪ B and C ∈ X/E with C ̸= A, C ̸= B . Moreover,

there are exactly three kerf -classes K1,K2 , and K3 contained in F , where

K1 = {a1},K2 = {a2, a3, . . . , as, b1},K3 = {b2, b3, . . . , bt}.

However, there is no E -class D ⊆ F such that D ∩ Ki ̸= ∅ for i = 1, 2, 3, so f is not normal. Therefore,

EOPX is not abundant. 2

Clearly, if |X| = 3, then E is both simple and 2-bounded, so the semigroup EOPX is abundant. If

|X| = 4, then E is either simple or 2-bounded and the semigroup EOPX is also abundant. Thus, we have the

main result in this paper.

Theorem 2.8 Let E be a nontrivial equivalence on the finite totally ordered set X = {1 < 2 < . . . < n} (n ≥ 3) .

Then the following statements hold.

(1) If |X| = 3 or |X| = 4 , then the semigroup EOPX is abundant.

(2) If |X| ≥ 5 , then the semigroup EOPX is abundant if and only if E is either simple or 2-bounded.
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