Abundance of E-order-preserving transformation semigroups

Lei SUN*, Xuefeng HAN
School of Mathematics and Information Science, Henan Polytechnic University, Henan, Jiaozuo, P.R. China

| Received: 15.12 .2014 | Accepted/Published Online: 24.06 .2015 | • | Final Version: 01.01 .2016 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

Let \mathcal{T}_{X} be the full transformation semigroup on a finite totally ordered set $X=\{1<2<\ldots<n\}(n \geq 3)$ and E be a nontrivial equivalence relation on X. In this paper, we consider a subsemigroup of \mathcal{T}_{X} defined by $$
E O P_{X}=\left\{f \in \mathcal{T}_{X}: \forall x, y \in X,(x, y) \in E, x \leq y \Rightarrow(f(x), f(y)) \in E, f(x) \leq f(y)\right\}
$$

and present a necessary and sufficient condition under which the semigroup $E O P_{X}$ is abundant.
Key words: Transformation semigroup, \mathcal{L}^{*}-relation, \mathcal{R}^{*}-relation, idempotent, abundance

1. Introduction

Let S be a semigroup. We say that $a, b \in S$ are \mathcal{L}^{*}-related in S if they are \mathcal{L}-related in a semigroup T such that S is a subsemigroup of T and write $(a, b) \in \mathcal{L}^{*}$. The relation \mathcal{R}^{*} is defined in the dual way. The equivalence relations \mathcal{L}^{*} and \mathcal{R}^{*} have been intensely studied in semigroup theory and have been used to define some important classes of semigroups. For instance, Fountain [3] pointed out that a semigroup S has the property that for every $a \in S$ the right ideal $a S^{1}$ is projective (as an S-act) if and only if every \mathcal{L}^{*}-class of S contains an idempotent. We call such semigroups right abundant. Left abundant semigroups are defined dually. A semigroup is abundant if it is both left and right abundant; see Fountain [4]. The property of being abundant can be considered as a wide generalization of regularity. (Recall that in a regular semigroup $\mathcal{L}^{*}=\mathcal{L}$ and $\mathcal{R}^{*}=\mathcal{R}$.)

Many papers have been written describing the abundances of various transformation semigroups on the nonempty set X (see [1, 8-12]). For example, Umar [11] observed that the semigroup S_{n}^{-}of nonbijective, orderdecreasing transformations on a finite totally ordered set $X=\{1<2<\ldots<n\}$ is abundant but not regular. Let \mathcal{T}_{X} be the full transformation semigroup on a set X and E be an arbitrary equivalence relation on X. Araujo and Konieczny [1] proved that the semigroup

$$
T_{E}(X, R)=\left\{f \in \mathcal{T}_{X}: f(R) \subseteq R \text { and } \forall x, y \in X,(x, y) \in E \Rightarrow(f(x), f(y)) \in E\right\}
$$

where R is a cross-section of the partition X / E of X induced by E, is abundant if and only if it is regular. Pei and Zhou [8] gave a condition under which the semigroup

$$
T_{E}(X)=\left\{f \in \mathcal{T}_{X}: \forall x, y \in X,(x, y) \in E \Rightarrow(f(x), f(y)) \in E\right\}
$$

*Correspondence: sunlei97@163.com
2010 AMS Mathematics Subject Classification: 20M20.
is abundant. Sun [9] proved that the semigroup

$$
T(X, Y)=\left\{f \in \mathcal{T}_{X}: f(X) \subseteq Y\right\}(Y \subseteq X)
$$

is left abundant but not right abundant if $|Y| \geq 2$ and $Y \neq X$. Sun and Wang [10] showed that the semigroup

$$
T_{\exists}(X)=\left\{f \in \mathcal{T}_{X}: \forall x, y \in X,(f(x), f(y)) \in E \Rightarrow(x, y) \in E\right\}
$$

is also left abundant but not right abundant if the partition X / E of X is infinite.
Given an arbitrary equivalence relation E on a finite totally ordered set $X=\{1<2<\ldots<n\}$, the authors [6] introduced a new family of the subsemigroup of \mathcal{T}_{X} defined by

$$
E O P_{X}=\left\{f \in \mathcal{T}_{X}: \forall x, y \in X,(x, y) \in E, x \leq y \Rightarrow(f(x), f(y)) \in E, f(x) \leq f(y)\right\}
$$

which is called an E-order-preserving transformation semigroup, and investigated the properties for $E O P_{X}$, such as Green's relations and the natural partial order on the semigroup $E O P_{X}$ in [6] and [7], respectively. In particular, the regularity of the semigroup $E O P_{X}$ was described as follows.

Lemma 1.1 ([6]) The E-order-preserving transformation semigroup $E O P_{X}$ is regular if and only if either $E=X \times X$ or $E=\{(x, x): x \in X\}$.

In this paper our aim is to investigate the abundance of the semigroup $E O P_{X}$. Note that if $E=X \times X$ or $E=\{(x, x): x \in X\}$ then $E O P_{X}$ is abundant. Thus, for the remainder of the paper, we assume that E is nontrivial on the finite totally ordered set $X=\{1<2<\ldots<n\}(n \geq 3)$; that is, both $E \neq X \times X$ and $E \neq\{(x, x): x \in X\}$. Under the assumption, we first characterize the relations \mathcal{L}^{*} and \mathcal{R}^{*} on the semigroup $E O P_{X}$ and then present a necessary and sufficient condition under which the semigroup $E O P_{X}$ is abundant. Throughout this paper, we apply transformations on the left so that for $f, g \in E O P_{X}$, their product $f g$ is the transformation obtained by performing first g and then f.

2. The main result

The following lemma gives a characterization of \mathcal{L}^{*} and \mathcal{R}^{*} that can be found, for instance, in [5, Sect. X.1].

Lemma 2.1 Let S be a semigroup. Then

$$
\mathcal{L}^{*}=\left\{(a, b) \in S \times S:\left(\forall s, t \in S^{1}\right) a s=a t \Leftrightarrow b s=b t\right\}
$$

and

$$
\mathcal{R}^{*}=\left\{(a, b) \in S \times S:\left(\forall s, t \in S^{1}\right) s a=t a \Leftrightarrow s b=t b\right\} .
$$

We begin with the \mathcal{L}^{*}-relation.

Lemma 2.2 Let $f, g \in E O P_{X}$. Then $(f, g) \in \mathcal{L}^{*}$ if and only if kerf $=k e r g$.
Proof For the 'if' part, suppose that $\operatorname{ker} f=\operatorname{ker} g$, and then f and g are known to be \mathcal{L}-related in the full transformation semigroup \mathcal{T}_{X}; see, for instance, [2, Sect. 2.2]1. Hence, f and g are \mathcal{L}^{*}-related in $E O P_{X}$.

[^0]For the 'only if' part, suppose that $(f, g) \in \mathcal{L}^{*}$. For $x \in X$, let $\langle x\rangle$ be the constant transformation with the range $\{x\}$; this transformation clearly belongs to $E O P_{X}$. Take $(x, y) \in \operatorname{ker} f$ for $x, y \in X$. Then $f\langle x\rangle=\{f(x)\}=\{f(y)\}=f\langle y\rangle$. Applying the characterization of \mathcal{L}^{*} from Lemma 2.1, we have $g\langle x\rangle=g\langle y\rangle$. This means $g(x)=g(y)$ and $(x, y) \in \operatorname{ker} g$. Thus, $\operatorname{ker} f \subseteq \operatorname{ker} g$ and by symmetry $\operatorname{ker} g \subseteq \operatorname{ker} f$. Hence, $\operatorname{ker} f=\operatorname{ker} g$.

In what follows we consider the \mathcal{R}^{*}-relation.

Lemma 2.3 Let $f, g \in E O P_{X}$. Then $(f, g) \in \mathcal{R}^{*}$ if and only if $f(X)=g(X)$.
Proof For the 'if' part, suppose that $f(X)=g(X)$, and then f and g are known to be \mathcal{R}-related in the full transformation semigroup \mathcal{T}_{X}. Hence, f and g are \mathcal{R}^{*}-related in $E O P_{X}$.

For the 'only if' part, suppose that $(f, g) \in \mathcal{R}^{*}$ and $a \notin f(X)$. Let

$$
\mathcal{A}=\{A \in X / E: A \cap f(X) \neq \emptyset\} .
$$

For each $A \in \mathcal{A}$, let $A \cap f(X)=\left\{a_{1}<a_{2}<\ldots<a_{s}\right\}$. Write $a_{0}=\min A$ and $a_{*}=\max A$. Define $h_{*}: A \longrightarrow A$ by

$$
h_{*}(x)=\left\{\begin{array}{lll}
a_{1} & \text { if } & x \in\left[a_{0}, a_{1}\right] \\
a_{t} & \text { if } & x \in\left(a_{t-1}, a_{t}\right](2 \leq t \leq s) \\
a_{s} & \text { if } & x \in\left(a_{s}, a_{*}\right]
\end{array}\right.
$$

Clearly, $h_{*}(A)=\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}=A \cap f(X)$. Now we define $h: X \rightarrow X$. There are two cases to consider.
Case 1. $\bar{a} \notin \mathcal{A}$ where \bar{a} is the E-class containing a. Fix $A_{0} \in \mathcal{A}$ and $b \in A_{0} \cap f(X)$. For each $A \in X / E$, define $h: X \rightarrow X$ by

$$
h(x)=\left\{\begin{array}{lll}
h_{*}(x) & \text { if } & x \in A \text { where } A \in \mathcal{A} \\
x & \text { if } & x \in A \text { where } A \notin \mathcal{A} \text { and } A \neq \bar{a} \\
b & \text { if } & x \in \bar{a}
\end{array}\right.
$$

Case 2. $\bar{a} \in \mathcal{A}$. For each $A \in X / E$, define $h: X \rightarrow X$ by

$$
h(x)=\left\{\begin{array}{lll}
h_{*}(x) & \text { if } & x \in A \text { where } A \in \mathcal{A} \\
x & \text { if } & x \in A \text { where } A \notin \mathcal{A} .
\end{array}\right.
$$

It is routine to show $h \in E O P_{X}, h \neq \operatorname{id}_{X}$, and $h f=\operatorname{id}_{X} f$, where id_{X} is the identity transformation on X. We assert that $a \notin g(X)$. Indeed, if $g\left(x^{\prime}\right)=a$ for some $x^{\prime} \in X$, then applying the characterization of \mathcal{R}^{*} from Lemma 2.1, we have $h g=\operatorname{id}_{X} g$ and $h g\left(x^{\prime}\right)=\operatorname{id}_{X} g\left(x^{\prime}\right)$. If $\bar{a} \notin \mathcal{A}$, then

$$
b=h(\bar{a})=h g\left(x^{\prime}\right)=\operatorname{id}_{X} g\left(x^{\prime}\right)=a
$$

a contradiction. If $\bar{a} \in \mathcal{A}$, then

$$
h_{*} g\left(x^{\prime}\right)=h g\left(x^{\prime}\right)=\operatorname{id}_{X} g\left(x^{\prime}\right)=a \in f(X)
$$

a contradiction. It follows readily that $a \notin g(X)$. This means that $g(X) \subseteq f(X)$. By symmetry, $f(X) \subseteq g(X)$. Consequently, $f(X)=g(X)$, as required.

Let $Y, Z \subseteq X$ and $Y \cap Z=\emptyset . Y<Z$ means that $y<z$ for any $y \in Y$ and $z \in Z$.

Lemma 2.4 Let $f \in E O P_{X}$. Then $(f, e) \in \mathcal{R}^{*}$ for some idempotent $e \in E O P_{X}$. Consequently, the semigroup $E O P_{X}$ is left abundant.
Proof Assume that

$$
\{A \in X / E: A \cap f(X) \neq \emptyset\}=\left\{A_{1}<A_{2}<\ldots<A_{t}\right\}
$$

For each $A_{i}(1 \leq i \leq t)$, let $A_{i} \cap f(X)=\left\{a_{i 1}<a_{i 2}<\ldots<a_{i s}\right\}$. Write $a_{i 0}=\min A_{i}$ and $a_{i *}=\max A_{i}$ and then define $e_{i}: A_{i} \longrightarrow A_{i}$ by

$$
e_{i}(x)=\left\{\begin{array}{lll}
a_{i 1} & \text { if } & x \in\left[a_{i 0}, a_{i 1}\right] \\
a_{i l} & \text { if } & x \in\left(a_{i l-1}, a_{i l}\right](2 \leq l \leq s) \\
a_{i s} & \text { if } & x \in\left(a_{i s}, a_{i *}\right]
\end{array}\right.
$$

For every $A \in X / E$, define $e: X \rightarrow X$ by

$$
e(x)=\left\{\begin{array}{lll}
e_{i}(x) & \text { if } & x \in A_{i}(1 \leq i \leq t) \\
a_{11} & \text { if } & x \in A \text { where } \overline{1} \leq A<A_{1} \\
a_{i 1} & \text { if } & x \in A \text { where } A_{i-1}<A<A_{i}(2 \leq i \leq t) \\
a_{t s} & \text { if } & x \in A \text { where } A_{t}<A \leq \bar{n}
\end{array}\right.
$$

It is routine to show $e \in E O P_{X}, e^{2}=e$, and $e(X)=f(X)$. By Lemma 2.3, we have $(e, f) \in \mathcal{R}^{*}$.
In general, the semigroup $E O P_{X}$ is not right abundant; that is, there may be no idempotents in some \mathcal{L}^{*}-class of $E O P_{X}$. In what follows we pursue a necessary and sufficient condition under which the semigroup $E O P_{X}$ is abundant. For $f \in \mathcal{T}_{X}$, let $\pi(f)$ be the partition of X induced by $\operatorname{ker} f$, namely

$$
\pi(f)=\left\{f^{-1}(y): y \in f(X)\right\}
$$

and call $f^{-1}(y)$ a $\operatorname{ker} f$-class. For each $f \in T_{E}(X)$, let $E_{f}=E \vee \operatorname{ker} f$. Then E_{f} is the smallest equivalence relation on X containing both E and $\operatorname{ker} f$ and each E_{f}-class is a union of E-classes as well as a union of $\operatorname{ker} f$-classes. Moreover, $f(F) \subseteq A \in X / E$ for each E_{f}-class F.

Recall that, in [1], a transformation f is said to be normal if for each E_{f} class F, there is some E-class $A \subseteq F$ such that $A \cap K \neq \emptyset$ for each $\operatorname{ker} f$-class $K \subseteq F$.

Lemma 2.5 Let $e \in E O P_{X}$ be an idempotent. Then e is normal.
Proof The proof is similar to that of [8, Lemma 2.8] and it is omitted.

Lemma 2.6 Let $f \in E O P_{X}$. Then the following statements hold.
(1) f is normal if and only if there is an idempotent $e \in E O P_{X}$ such that kere $=k e r f$.
(2) The semigroup $E O P_{X}$ is abundant if and only if f is normal.

Proof (1) For the 'if' part, suppose that kere $=\operatorname{ker} f$ for some idempotent $e \in E O P_{X}$. It is clear that $E_{f}=E_{e}$ and f is normal.

For the 'only if' part, suppose that f is normal. For each E_{f}-class F, there is some E-class A such that $A \cap K \neq \emptyset$ for each ker f-class contained in F. Take $k \in A \cap K$ and define $e: K \rightarrow K$ by $e(K)=k$. To see $e \in E O P_{X}$, take E-class $B \subseteq F$ and $x, y \in B, x \leq y$. Obviously, $e(B) \subseteq e(F) \subseteq A$, which implies that $(e(x), e(y)) \in E$. Now assume that $x \in K_{x}$ and $y \in K_{y}$ where $K_{x}, K_{y} \in \pi(f)$. If $K_{x}=K_{y}$, then
$e(x)=e(y)$. If $K_{x} \neq K_{y}$, then $x \neq y$ and $f(x)<f(y)$. By the definition of e, we have $e(x)=k_{x}$ and $e(y)=k_{y}$ where $k_{x} \in A \cap K_{x}$ and $k_{y} \in A \cap K_{y}$. Now we assert that $k_{x}<k_{y}$. Indeed, if $k_{x}>k_{y}$, then $f(x)=f\left(k_{x}\right)>f\left(k_{y}\right)=f(y)$, which leads to a contradiction. Hence, $k_{x}<k_{y}$ and $e \in E O P_{X}$. It is routine to show that $e^{2}=e$ and kere $=\operatorname{ker} f$.
(2) The proof is similar to that of [8, Theorem 2.10] and it is also omitted.

Recall that, in [1], an equivalence relation E on X is said to be simple if there is exactly one E-class $(\neq X)$ containing more than one point and the other E-classes are singletons, and E is said to be n-bounded if the cardinality of each E-class is not more than n.

Lemma 2.7 Let E be an equivalence relation on X. Then the following statements hold.
(1) If E is either simple or 2 -bounded, then each $f \in E O P_{X}$ is normal.
(2) If E is neither simple nor 2-bounded, then $E O P_{X}$ is not abundant.

Proof (1) The proof is to similar to that of Lemmas 2.12 and 2.13 of [8].
(2) Assume that $A=\left\{a_{1}<a_{2}<\ldots<a_{s}\right\} \in X / E$ and $B=\left\{b_{1}<b_{2}<\ldots<b_{t}\right\} \in X / E$ for $s \geq 3, t \geq 2$. Now define $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}a_{1} & \text { if } x=a_{1} \\ a_{2} & \text { if } x \in\left\{a_{2}, a_{3}, \ldots, a_{s}, b_{1}\right\} \\ a_{3} & \text { if } x \in\left\{b_{2}, b_{3}, \ldots, b_{t}\right\} \\ x & \text { otherwise }\end{cases}
$$

It is clear that $f \in E O P_{X}$ and all E_{f}-class are $F=A \cup B$ and $C \in X / E$ with $C \neq A, C \neq B$. Moreover, there are exactly three $\operatorname{ker} f$-classes K_{1}, K_{2}, and K_{3} contained in F, where

$$
K_{1}=\left\{a_{1}\right\}, K_{2}=\left\{a_{2}, a_{3}, \ldots, a_{s}, b_{1}\right\}, K_{3}=\left\{b_{2}, b_{3}, \ldots, b_{t}\right\} .
$$

However, there is no E-class $D \subseteq F$ such that $D \cap K_{i} \neq \emptyset$ for $i=1,2,3$, so f is not normal. Therefore, $E O P_{X}$ is not abundant.

Clearly, if $|X|=3$, then E is both simple and 2-bounded, so the semigroup $E O P_{X}$ is abundant. If $|X|=4$, then E is either simple or 2-bounded and the semigroup $E O P_{X}$ is also abundant. Thus, we have the main result in this paper.

Theorem 2.8 Let E be a nontrivial equivalence on the finite totally ordered set $X=\{1<2<\ldots<n\}(n \geq 3)$. Then the following statements hold.
(1) If $|X|=3$ or $|X|=4$, then the semigroup $E O P_{X}$ is abundant.
(2) If $|X| \geq 5$, then the semigroup $E O P_{X}$ is abundant if and only if E is either simple or 2-bounded.

Acknowledgments

We would like to thank the referee for his/her valuable suggestions and comments, which helped to improve the presentation of this paper. This paper was supported by National Natural Science Foundation of China (Nos. U1404101, 11261018, 11426092).

SUN and HAN/Turk J Math

References

[1] Araujo J, Konieczny J. Semigroups of transformations preserving an equivalence relation and a cross-section. Comm Alg 2004; 32: 1917-1935.
[2] Clifford AH, Preston GB. The Algebraic Theory of Semigroups, Vol I. Providence, RI, USA: American Mathematical Society, 1961.
[3] Fountain JB. Adequate semigroups. P Edinburgh Math Soc 1979; 22: 113-125.
[4] Fountain JB. Abundant semigroups. P Lond Math Soc 1982; 44: 103-129.
[5] Liapin ES. Semigroups. Moscow: Fizmatgiz, 1960 (in Russian).
[6] Ma MY, You TJ, Luo SS, Yang Y, Wang L. Regularity and Green's relations for finite E-order-preserving transformations semigroups. Semigroup Forum 2010; 80: 164-173.
[7] Pei HS, Deng WN. The natural order for the E-order-preserving transformation semigroups. Asian Eur J Math 2012; 5: 1250035.
[8] Pei HS, Zhou HJ. Abundant semigroups of transformations preserving an equivalence relation. Algebr Colloq 2011; 18: 77-82.
[9] Sun L. A note on abundance of certain semigroups of transformations with restricted range. Semigroup Forum 2013; 87: 681-684.
[10] Sun L, Wang LM. Abundance of the semigroup of all transformations of a set that reflect an equivalence relation. J Algebra Appl 2014; 13: 1350088.
[11] Umar A. On the semigroups of order-decreasing finite full transformations. Proc Roy Soc Edinburgh Sect A 1992; 120: 129-142.
[12] Yang HB, Yang XL. Automorphisms of partition order-decreasing transformation monoids. Semigroup Forum 2012; 85: 513-524.

[^0]: ${ }^{1}$ In order to prevent any chance of confusion, recall that in [2] transformations are written on the right of their arguments, while the description of Green's relations in [2, Section 2.2] should be left-right dualized to be applied in the present paper's setting.

