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Abstract: Let k be a field and X an indeterminate over k . In this note we prove that the domain k[[Xp, Xq]] (resp.

k[Xp,Xq] ) where p, q are relatively prime positive integers is always divisorial but k[[Xp,Xq, Xr]] (resp. k[Xp, Xq,Xr] )

where p, q, r are positive integers is not. We also prove that k[[Xq, Xq+1, Xq+2]] (resp. k[Xq, Xq+1, Xq+2] ) is divisorial

if and only if q is even. These are very special cases of well-known results on semigroup rings, but our proofs are mainly

concerned with the computation of the dual (equivalently the inverse) of the maximal ideal of the ring.
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1. Introduction

Let R be an integral domain and L its quotient field. For a nonzero (fractional) ideal I of R , the inverse (also

called the dual) of I is the R -submodule of L given by I−1 = {x ∈ L|xI ⊆ R} . The v -closure of I is the

(fractional) ideal Iv of R defined by Iv = (I−1)−1 . Clearly I ⊆ Iv and I is said to be divisorial (or a v -ideal)

if I = Iv , and the domain R is called divisorial provided that every nonzero ideal of R is divisorial. The class

of domains in which each nonzero ideal is divisorial was studied, independently and with different methods,

by Bass [10], Matlis [27], and Heinzer [19] in the 1960s. Following Bazzoni and Salce [12, 11], these domains

are now called divisorial domains. Among other results, Heinzer proved that an integrally closed domain is

divisorial if and only if it is a Prüfer domain with certain finiteness properties [19, Theorem 5.1]. According to

[5], the domain R = k[X2, X3] is probably the simplest example of an atomic domain that is not a half-factorial

domain (HFD for short) since X2 and X3 are each irreducible elements of R and X6 = X3X3 = X2X2X2 .

(Clearly R is atomic since R is a (one-dimensional) Noetherian domain. This may also be shown by an easy

degree argument.) The domain R is also of interest and has been studied extensively in several other contexts.

For example, R is also the simplest example of a non-seminormal domain, and hence Pic(R) ̸= Pic(R[T ])

(see [28]). Domains of the form k[[Xp, Xq]] , k[Xp, Xq] , k[[Xp, Xq, Xr]] , and k[Xp, Xq, Xr] where p, q , and

r are positive integers are extensively used as sources of examples and counter-examples in studying different

properties of integral domains (see, for instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 21, 20, 22, 25, 26, 29]).

The objective of this note is to study the divisoriality of those domains and present it as a unified reference

for interested authors. First we prove that k[[Xp, Xq]] (resp. k[Xp, Xq]) where p and q are relatively prime
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positive integers is always a divisorial domain; however, k[[Xp, Xq, Xr]] (resp. k[Xp, Xq, Xr]) is not. We also

prove that k[[Xq, Xq+1, Xq+2]] (resp. k[Xq, Xq+1, Xq+2]) is divisorial if and only is q is even. It is worth

mentioning that the results in this paper are very special cases of well-known results on numerical semigroup

rings. For instance, it is well known that if the semigroup has only two generators, then the ring is a hypersurface

and therefore Gorenstein, so every ideal is reflexive (equivalently divisorial). Also, a numerical semigroup ring

(power series or polynomials) is Gorenstein if and only if the semigroup is symmetric [24]. A one-dimensional

domain is Gorenstein if and only if the inverse of the maximal ideal is generated by two elements [10]. Thus,

the three-generator semigroups are symmetric if and only if the first generator is even. However, our proofs are

mainly concerned with the computation of the dual (equivalently the inverse) of the maximal ideal of the ring.

Unreferenced material is standard as in [18] and [23].

2. Main result

Theorem 2.1 ([10, Theorem 6.2, 6.3], [27, Theorem 3.8]) Let R be a local Noetherian domain with maximal

ideal M . The following are equivalent:

(1) R is divisorial.

(2) R has Krull dimension one and M−1/R is simple.

Our first theorem shows that the domain k[[Xp, Xq]] (resp. k[Xp, Xq]) where p and q are relatively prime is

always divisorial.

Theorem 2.2 Let 1 < p < q be positive integers such that p and q are relatively prime, R = k[[Xp, Xq]] (resp.

R = k[Xp, Xq]) and M = (Xp, Xq) . Then M−1 = k[[Xp, Xq, Xp(q−1)−q]] (resp. M−1 = k[Xp, Xq, Xp(q−1)−q])

and R is divisorial.

Proof For simplicity we put R = k[[Xp, Xq]] and M = (Xp, Xq). Since p and q are relatively prime,

(p − 1)(q − 1) − 1 is the largest positive integer that is not expressible as pα + qβ with α, β positive in-

tegers. Thus, for every n ≥ (p − 1)(q − 1), n = pα + qβ with α, β positive integers and so Xn ∈ R .

Now let f ∈ M−1 ⊆ X−pR and set f = X−pg for some g ∈ R . Write g =
∑

α,β≥0

a(α,β)X
pα+qβ . Since

Xq ∈ M , Xq−pg = fXq ∈ R . Thus,
∑

α,β≥0

a(α,β)X
p(α−1)+q(β+1) ∈ R . If α ≥ 1, then Xp(α−1)+q(β+1) ∈ R .

If α = 0 and β ≥ p − 1, then β + 1 ≥ p and so β + 1 = sp + r for some positive integers s ≥ 1

and 0 ≤ r < p . Thus, −p + (β + 1)q = −p + (sp + r)q = (sq − 1)p + rq and since sq − 1 and r are

positive integers, Xp(α−1)+q(β+1) = X−p+(β+1)q = X(sq−1)p+rq ∈ R . Hence, if α = 0 and β < p − 1,

Xp(α−1)+q(β+1) ̸∈ R and so a(α,β) = 0. Therefore, g =
∑

β≥p−1

a(0,β)X
qβ +

∑
α≥1,β≥0

a(α,β)X
pα+qβ . Thus,

f = X−pg =
∑

β≥p−1

a(0,β)X
−p+qβ +

∑
α≥1,β≥0

a(α,β)X
p(α−1)+qβ . Set h =

∑
α≥1,β≥0

a(α,β)X
p(α−1)+qβ . For every

α ≥ 1, Xp(α−1)+qβ ∈ R and so h ∈ R . Also, for every β ≥ p , if β = sp + r for some positive integers

s ≥ 1 and 0 ≤ r < p , then −p + qβ = −p + (sp + r)q = (sq − 1)p + rq and so X−p+qβ = X(sq−1)p+rq ∈ R .

Thus,
∑

β≥p−1

a(0,β)X
−p+qβ = a(0,p−1)X

−p+q(p−1) +
∑
β≥p

a(0,β)X
−p+qβ = a(0,p−1)X

(p−1)q−q + U where U =
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∑
β≥p

a(0,β)X
−p+qβ ∈ R . Hence, f = a(0,p−1)X

(p−1)q−q + U + h ∈ R+ kXp(q−1)−q ⊆ k[[Xp, Xq, Xp(q−1)−q]] and

therefore M−1 ⊆ k[[Xp, Xq, Xp(q−1)−q]] .

Conversely, since XpXp(q−1)−q = X(p−1)q = (Xq)p−1 ∈ R and XqXp(q−1)−q = Xp(q−1) = (Xp)q−1 ∈ R ,

k[[Xp, Xq, Xp(q−1)−q]] ⊆ M−1 . Hence, M−1 =

k[[Xp, Xq, Xp(q−1)−q]] = R + kXp(q−1)−q and so R ⊆ M−1 is a minimal extension. By Theorem 2.1, R is

divisorial.

A similar argument shows that if R = k[Xp, Xq] and M = (Xp, Xq), then M−1 = k[Xp, Xq, Xp(q−1)−q] =

R+ kXp(q−1)−q . Now let Q be any maximal ideal of R . If Q ̸= M , then RQ = k[X]N for some maximal ideal

N of k[X] = R′ and so RQ is divisorial. If Q = M , then RM ⊆ (MRM )−1 = M−1RM is a minimal extension

and by Theorem 2.1, RM is divisorial. It follows that R is divisorial. 2

While the domain k[[Xp, Xq]] (resp. k[Xp, Xq]) where p and q are relatively prime is always divisorial,

this is not the case for k[[Xp, Xq, Xr]] (resp. k[Xp, Xq, Xr]) even if p < q < r are pairwise relatively

prime positive integers as is shown by the next proposition. Since the domain R = k[[Xp, Xq, Xr]] (resp.

R = k[Xp, Xq, Xr]) is a Noetherian domain with integral closure R′ = k[[X]] (resp. R′ = k[X]) and

M = (Xp, Xq, Xq) is a noninvertible maximal ideal of R of height one, it is a t-ideal (and so a v -ideal

or divisorial), R ⊊ M−1 = (M : M) ⊆ R′ .

Proposition 2.3 Let k be a field, q a positive integer, Rq = k[[Xq, Xq+1, Xq+2]] (resp. Rq = k[Xq, Xq+1, Xq+2]),

and Mq = (Xq, Xq+1, Xq+2) . Then M−1
q = k[[X]] (resp. M−1

q = k[X]) if and only if q = 3 . In this case Rq

is not divisorial.

Proof Set R = Rq and M = Mq and suppose that M−1 = k[[X]] (resp. M−1 = k[X]). Then

Xq+3 = X.Xq+2 ∈ R and so Xq+3 = (Xq)r for some positive integer r . Then q + 3 = rq and so (r− 1)q = 3.

Thus, r = 2 and q = 3.

Conversely, assume that q = 3. Then R = k[[X3, X4, X5]] (resp. R = k[X3, X4, X5]) and clearly Xn ∈ R for

every n ≥ 3. Let f ∈ M−1 and set f = X−3g for some g ∈ R . Write g = a0 + a3X
3 + a4X

4 + a5X
5 +X6h

where h ∈ k[[X]] (resp. h ∈ k[X]). Since X4, X5 ∈ M , Xg = X4f,X2g = X5f ∈ R . Thus, a0 = 0 and so

f = X−3g = a3+a4X+a5X
2+X3h ∈ k[[X]] . Thus M−1 ⊆ k[[X]] and so M−1 = k[[X]] (resp. M−1 = k[X]).

Finally, since R ⊊ k[[X2, X3]] ⊊ k[[X]] = M−1 , R is not divisorial. 2

Theorem 2.4 Let q ≥ 2 be a positive integer, Rq = k[[Xq, Xq+1, Xq+2]] (resp. Rq = k[Xq, Xq+1, Xq+2]),

and M = (Xq, Xq+1, Xq+2) .

(1) If q is odd, then M−1 = R+ kX
q(q−1)

2 −1 + kX
q(q−1)

2 −2 and so Rq is not divisorial.

(2) If q is even, then M−1 = R+ kX
q2

2 −1 and so Rq is divisorial.

Proof (1) Assume that q = 2r + 1. Then q(q−1)
2 − 1 = rq − 1 and q(q−1)

2 − 2 = rq − 2. Now since

Xrq−1Xq = Xrq+q−1 = Xrq+2r = Xr(q+2) = (Xq+2)r ∈ R , Xrq−1Xq+1 = Xrq+q = Xq(r+1) = (Xq)r+1 ∈ R

and Xrq−1Xq+2 = Xrq+q+1 = XrqXq+1 ∈ R , kX
q(q−1)

2 −1 = kXrq−1 ⊆ M−1 . Similarly, since Xrq−2Xq =
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X(r−1)(q+2)+q+1 = (Xq+2)r−1Xq+1 ∈ R , Xrq−2Xq+1 = Xrq+q−1 ∈ R and

Xrq−2Xq+2 = Xrq+q = Xq(r+1) = (Xq)r+1 ∈ R , kX
q(q−1)

2 −2 = kXrq−2 ⊆ M−1 . Thus, R ⊊ R+ kX
q(q−1)

2 −1 ⊊

R+ kX
q(q−1)

2 −1 + kX
q(q−1)

2 −2 ⊆ M−1 and therefore R is not divisorial.

(2) Assume that q = 2r . Then q2

2 − 1 = rq − 1. Since Xrq−1Xq = Xrq+q−1 = (Xq+2)r−1Xq+1 ∈ R ,

Xrq−1Xq+1 = (Xq)r+1 ∈ R and Xrq−1Xq+2 = Xrq+q+1 = (Xq)rXq+1 ∈ R , kXrq−1 ⊆ M−1 and so

R+ kXrq−1 ⊆ M−1 .

Conversely, it is easy to check that Xn ∈ R for every n ≥ rq . Now let f ∈ M−1 ⊆ X−qR and write f = X−qg

for some g ∈ R . Set g = a0+aqX
q+aq+1X

q+1+aq+2X
q+2+a2qX

2q+a2q+1X
2q+1+a2q+2X

2q+2+a2q+3X
2q+3+

a2q+4X
2q+4 + a3qX

3q + a3q+1X
3q+1 + a3q+2X

3q+2 + a3q+3X
3q+3 + a3q+4X

3q+4 + a3q+5X
3q+5 + a3q+6X

3q+6 +

a4qX
4q + · · · + a4q+6X

4q+6 + a4q+7X
4q+7 + a4q+8X

4q+8 + · · · + a(r−1)qX
(r−1)q + a(r−1)q+1X

(r−1)q+1 + · · · +

a(r−1)q+2r−4X
(r−1)q+2r−4+a(r−1)q+2r−3X

(r−1)q+2r−3+a(r−1)q+2(r−1)X
(r−1)q+2(r−1)+arqX

rq+arq+1X
rq+1+

arq+2X
rq+2 + arq+3X

rq+3 + arq+4X
rq+4 + · · ·+ a(r+1)q−2X

(r+1)q−2 +

a(r+1)q−1X
(r+1)q−1 + a(r+1)qX

(r+1)q + . . . .

Since Xq+1, Xq+2 ∈ M , Xg = Xq+1f and X2g = Xq+2f are in R and so a0 = aq+2 = a2q+4 = a3q+6 = · · · =
a(r−1)q+2(r−1) = 0 and a0 = aq+1 = a2q+3 = a3q+5 = · · · = a(r−1)q+2r−3 = 0. Hence,

g = aqX
q+a2qX

2q+a2q+1X
2q+1+a2q+2X

2q+2+a3qX
3q+a3q+1X

3q+1+a3q+2X
3q+2+a3q+3X

3q+3+a3q+4X
3q+4+

a4qX
4q+· · ·+a4q+6X

4q+6+· · ·+a(r−1)qX
(r−1)q+a(r−1)q+1X

(r−1)q+1+· · ·+a(r−1)q+2r−4X
(r−1)q+2r−4+arqX

rq+

arq+1X
rq+1 + arq+2X

rq+2 + arq+3X
rq+3 + arq+4X

rq+4 + . . . .

Thus, f = X−qg = aq+a2qX
q+a2q+1X

q+1+a2q+2X
q+2+a3qX

2q+a3q+1X
2q+1+a3q+2X

2q+2+a3q+3X
2q+3+

a3q+4X
2q+4+a4qX

3q+· · ·+a4q+6X
3q+6+· · ·+a(r−1)qX

(r−2)q+a(r−1)q+1X
(r−2)q+1+· · ·+a(r−1)q+2r−4X

(r−2)q+2r−4+

arqX
(r−1)q + arq+1X

(r−1)q+1 + arq+2X
(r−1)q+2 + arq+3X

(r−1)q+3 + arq+4X
(r−1)q+4 + · · ·+

a(r+1)q−2X
rq−2 + a(r+1)q−1X

rq−1 + a(r+1)qX
rq + · · · ∈ R + kXrq−1 and therefore M−1 = R + kXrq−1 . Since

the extension R ⊊ M−1 is minimal, by Theorem 2.1, R is divisorial. 2
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