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Abstract: We introduce conformal anti-invariant submersions from almost Hermitian manifolds onto Riemannian
manifolds. We give examples, investigate the geometry of foliations that arose from the definition of a conformal

submersion, and find necessary and sufficient conditions for a conformal anti-invariant submersion to be totally geodesic.

We also check the harmonicity of such submersions and show that the total space has certain product structures.

Moreover, we obtain curvature relations between the base space and the total space, and find geometric implications of

these relations.
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1. Introduction

One of the main methods to compare two manifolds and transfer certain structures from a manifold to another

manifold is to define appropriate smooth maps between them. Given two manifolds, if the rank of a differential

map is equal to the dimension of the source manifold, then such maps are called immersions and if the rank of a

differential map is equal to the target manifold, then such maps are called submersions. Moreover, if these maps

are isometric between manifolds, then the immersion is called isometric immersion (Riemannian submanifold)

and the submersion is called Riemannian submersion. Riemannian submersions between Riemannian manifolds
were studied by O’Neill [18] and Gray [10]; for recent developments on the geometry of Riemannian submanifolds

and Riemannian submersions, see [4] and [8], respectively.

On the other hand, as a generalization of Riemannian submersions, horizontally conformal submersions

are defined as follows [2]: suppose that (M, gM ) and (B, gB ) are Riemannian manifolds and F : M −→ B is a

smooth submersion; then F is called a horizontally conformal submersion, if there is a positive function λ such

that

λ2 g
M
(X,Y ) = g

B
(F∗X,F∗Y )

for every X,Y ∈ Γ((kerF∗)
⊥). It is obvious that every Riemannian submersion is a particular horizontally

conformal submersion with λ = 1. We note that horizontally conformal submersions are special horizontally

conformal maps that were introduced independently by Fuglede [9] and Ishihara [15]. We also note that a

horizontally conformal submersion F : M −→ B is said to be horizontally homothetic if the gradient of its

dilation λ is vertical, i.e.

H(gradλ) = 0, (1.1)
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where H is the projection on the horizontal space (kerF∗p)
⊥ . For conformal submersions, see [2, 5, 6, 7, 8, 12].

One can see that Riemannian submersions are very special maps compared with conformal submersions.

Although conformal maps do not preserve distance between points contrary to isometries, they preserve angles

between vector fields. This property enables one to transfer certain properties of a manifold to another manifold

by deforming such properties.

A submanifold of a complex manifold is a complex (invariant) submanifold if the tangent space of the

submanifold at each point is invariant with respect to the almost complex structure of the manifold. Besides

complex submanifolds of a complex manifold, there is another important class of submanifolds called totally real

submanifolds. A totally real submanifold of a complex manifold is a submanifold of which the almost complex

structure of ambient manifold carries the tangent space of the submanifold at each point into its normal space.

Many authors have studied totally real submanifolds in various ambient manifolds and many interesting results

were obtained; see ([4], page: 322) for a survey on all these results.

As an analogue of holomorphic submanifolds, holomorphic submersions were introduced by Watson [21] in

the seventies by using the notion of an almost complex map. This notion has been extended to other manifolds;

see [8] for holomorphic submersions and their extensions to other manifolds. The main property of such maps

is that the vertical distributions and the horizontal distributions of such maps are invariant with respect to an

almost complex map. Therefore, the second author of the present paper considered a new submersion defined

on an almost Hermitian manifold such that the vertical distribution is anti-invariant with respect to the almost

complex structure [20]. He showed that such submersions have rich geometric properties and they are useful

for investigating the geometry of the total space. This new class of submersions, which is called anti-invariant

submersions, can be seen as an analogue of totally real submanifolds in the submersion theory. Anti-invariant

submersions have also been studied for different total manifolds; see [1, 14, 16, 17].

As a generalization of holomorphic submersions, conformal holomorphic submersions were studied by

Gudmundsson and Wood [13]. They obtained necessary and sufficient conditions for conformal holomorphic

submersions to be a harmonic morphism; see also [5, 6, 7] for the harmonicity of conformal holomorphic

submersions.

In this paper, we study conformal anti-invariant submersions as a generalization of anti-invariant Rie-

mannian submersions and investigate the geometry of the total space and the base space for the existence

of such submersions. The paper is organized as follows. In the second section, we gather the main notions

and formulas for other sections. In section 3, we introduce conformal anti-invariant submersions from almost

Hermitian manifolds onto Riemannian manifolds, give examples, and investigate the geometry of leaves of the

horizontal distribution and the vertical distribution. In section 4, we find necessary and sufficient conditions

for a conformal anti-invariant submersion to be harmonic and totally geodesic, respectively. In section 5, we

show that there are certain product structures on the total space of a conformal anti-invariant submersion. In

section 6, we study curvature relations between the total space and the base space, find several inequalities, and

obtain new results when the inequality becomes the equality.

2. Preliminaries

In this section, we define almost Hermitian manifolds, recall the notion of (horizontally) conformal submersions

between Riemannian manifolds, and give a brief review of basic facts of (horizontally) conformal submersions.

Let (M, g) be an almost Hermitian manifold. This means [22] that M admits a tensor field J of type
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(1, 1) on M such that, ∀X,Y ∈ Γ(TM), we have

J2 = −I, g(X,Y ) = g(JX, JY ). (2.1)

An almost Hermitian manifold M is called a Kähler manifold if

(∇XJ)Y = 0, ∀X,Y ∈ Γ(TM), (2.2)

where ∇ is the Levi-Civita connection on M .

Conformal submersions belong to a wide class of conformal maps and so we are going to recall their

definition but we will not study such maps in this paper.

Definition 2.1 ([2])Let φ : (Mm, g) → (Nn, h) be a smooth map between Riemannian manifolds, and let

x ∈ M . Then φ is called horizontally weakly conformal or semiconformal at x if either

(i) dφx = 0, or

(ii) dφx maps the horizontal space Hx = {ker(dφx)}⊥ conformally onto Tφ(x)N, i.e. dφx is surjective

and there exists a number Λ(x) ̸= 0 such that

h(dφx(X), dφx(Y )) = Λ(x)g(X,Y ) (X,Y ∈ Hx). (2.3)

Note that we can write the last equation more succinctly as

(φ∗h)x |Hx×Hx= Λ(x)gx |Hx×Hx .

A point x is of type (i) in Definition 2.1 if and only if it is a critical point of φ; we shall call a point of

type (ii) a regular point. At a critical point, dφx has rank 0; at a regular point, dφx has rank n and φ is a

submersion. The number Λ(x) is called the square dilation (of φ at x); it is necessarily nonnegative; its square

root λ(x) =
√

Λ(x) is called the dilation (of φ at x). The map φ is called horizontally weakly conformal or

semiconformal (on M ) if it is horizontally weakly conformal at every point of M . It is clear that if φ has no

critical points, then we call it a (horizontally) conformal submersion.

Next, we recall the following definition from [12]. Let F : M → N be a submersion. A vector field E

on M is said to be projectable if there exists a vector field Ĕ on N, such that F∗(Ex) = ĔF (x) for all x ∈ M .

In this case E and Ĕ are called F−related. A horizontal vector field Y on (M, g) is called basic, if it is

projectable. It is a well known fact that if Z̆ is a vector field on N, then there exists a unique basic vector field

Z on M , such that Z and Z̆ are F−related. The vector field Z is called the horizontal lift of Z̆ .

The fundamental tensors of a submersion were introduced in [18]. They play a similar role to that of the

second fundamental form of an immersion. More precisely, O’Neill’s tensors T and A defined for vector fields

E,F on M by

AEF = V∇
M

HEHF +H∇
M

HEVF (2.4)

TEF = H∇
M

VEVF + V∇
M

VEHF (2.5)

where V and H are the vertical and horizontal projections (see [8]). On the other hand, from (2.4) and (2.5),

we have

∇
M

V W = TV W + ∇̂V W (2.6)
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∇
M

V X = H∇
M

V X + TV X (2.7)

∇
M

XV = AXV + V∇
M

XV (2.8)

∇
M

XY = H∇
M

XY +AXY (2.9)

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), where ∇̂V W = V∇M

V W . If X is basic, then H∇M

V X = AXV .

It is easily seen that for x ∈ M, X ∈ Hx and V ∈ Vx the linear operators TV , AX : TxM → TxM are

skew-symmetric, that is

−g(TV E,G) = g(E, TV G) and − g(AXE,G) = g(E,AXG)

for all E,G ∈ TxM . We also see that the restriction of T to the vertical distribution T |kerF∗×kerF∗ is exactly

the second fundamental form of the fibers of F . Since TV is skew-symmetric we get: F has totally geodesic

fibers if and only if T ≡ 0. For the special case when F is horizontally conformal we have the following:

Proposition 2.2 ([12]) Let F : (Mm, g) → (Nn, h) be a horizontally conformal submersion with dilation λ

and X,Y be horizontal vectors; then

AXY =
1

2
{V [X,Y ]− λ2g(X,Y ) gradV(

1

λ2
)}. (2.10)

We see that the skew-symmetric part of A |(kerF∗)⊥×(kerF∗)⊥ measures the obstruction integrability of

the horizontal distribution (kerF∗)
⊥ .

We now recall the following curvature relations for a conformal submersion from [11] and [12].

Theorem 2.3 Let m > n ≥ 2 and (Mm, g,∇M

, R
M

) , (Nn, h,∇N

, R
N

) be two Riemannian manifolds with

their Levi-Civita connections and the corresponding curvature tensors. Let F : (M, g) → (N,h) be a horizontally

conformal submersion, with dilation λ : M → R+ and let RV be the curvature tensor of the fibres of F . If

X,Y, Z,H are horizontal and U, V,W,G vertical vectors, then

g(R
M

(U, V )W,G) = g(RV(U, V )W,G) + g(TUW,TV G)− g(TV W,TUG), (2.11)

g(R
M

(U, V )W,X) = g((∇
M

U T )V W,X)− g((∇
M

V T )UW,X), (2.12)

g(R
M

(U,X)Y, V ) = g((∇
M

U A)XY, V ) + g(AXU,AY V ) (2.13)

− g((∇
M

XT )UY, V )− g(TV Y, TUX)

+ λ2g(AXY, U)g(V, gradV(
1

λ2
)),
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g(R
M

(X,Y )Z,H) =
1

λ2
h(RN (X̆, Y̆ )Z̆, H̆) +

1

4
[g(V[X,Z],V[Y,H]) (2.14)

− g(V[Y,Z],V[X,H]) + 2g(V[X,Y ],V[Z,H])]

+
λ2

2
[g(X,Z)g(∇

M

Y grad(
1

λ2
),H)− g(Y,Z)g(∇

M

X grad(
1

λ2
),H)

+ g(Y,H)g(∇
M

X grad(
1

λ2
), Z)− g(X,H)g(∇

M

Y grad(
1

λ2
), Z)]

+
λ4

4
[(g(X,H)g(Y,Z)− g(Y,H)g(X,Z)) ∥ grad(

1

λ2
) ∥2

+ g(X(
1

λ2
)Y − Y (

1

λ2
)X,H(

1

λ2
)Z − Z(

1

λ2
)H)].

We also recall the notion of harmonic maps between Riemannian manifolds. Let (M, gM ) and (N, gN )

be Riemannian manifolds and suppose that φ : M → N is a smooth map between them. Then the differential

of φ∗ of φ can be viewed a section of the bundle Hom(TM,φ−1TN) → M, where φ−1TN is the pullback

bundle with fibers (φ−1TN)p = Tφ(p)N, p ∈ M . Hom(TM,φ−1TN) has a connection ∇ induced from the

Levi-Civita connection ∇M and the pullback connection. Then the second fundamental form of φ is given by

(∇φ∗)(X,Y ) = ∇φ
Xφ∗(Y )− φ∗(∇

M

XY ) (2.15)

for X,Y ∈ Γ(TM), where ∇φ is the pullback connection. It is known that the second fundamental form is

symmetric. A smooth map φ : (M, gM ) → (N, gN ) is said to be harmonic if trace(∇φ∗) = 0. On the other

hand, the tension field of φ is the section τ(φ) of Γ(φ−1TN) defined by

τ(φ) = divφ∗ =

m∑
i=1

(∇φ∗)(ei, ei), (2.16)

where {e1, ..., em} is the orthonormal frame on M . Then it follows that φ is harmonic if and only if τ(φ) = 0;

for details, see [2].

Finally, we recall the following lemma from [2].

Lemma 2.4 (Second fundamental form of an HC submersion) Suppose that F : M → N is a horizontally

conformal submersion. Then, for any horizontal vector fields X,Y and vertical vector fields V,W, we have

(i) (∇F∗)(X,Y ) = X(lnλ)F∗Y + Y (lnλ)F∗X − g(X,Y )F∗(grad lnλ);
(ii) (∇F∗)(V,W ) = −F∗(TV W );
(iii) (∇F∗)(X,V ) = −F∗(∇M

X V ) = −F∗(AXV ).

3. Conformal anti-invariant submersions

In this section, we define conformal anti-invariant submersions from an almost Hermitian manifold onto a

Riemannian manifold and investigate the effect of the existence of conformal anti-invariant submersions on the

source manifold and the target manifold. However, we first present the following notion.

Definition 3.1 Let M be a complex m-dimensional almost Hermitian manifold with Hermitian metric g and

almost complex structure J and N be a Riemannian manifold with Riemannian metric g′ . A horizontally
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conformal submersion F : (Mm, g) → (Nn, g′) with dilation λ is called a conformal anti-invariant submersion

if the distribution kerF∗ is anti-invariant with respect to J, i.e. J(kerF∗) ⊆ (kerF∗)
⊥ .

Let F : (M, g, J) → (N, g′) be a conformal anti-invariant submersion from an almost Hermitian manifold

(M, g, J) to a Riemannian manifold (N, g′). First of all, from Definition 3.1, we have J(kerF∗)
⊥∩kerF∗ ̸= {0} .

We denote the complementary orthogonal distribution to J(kerF∗) in (kerF∗)
⊥ by µ . Then we have

(kerF∗)
⊥ = J(kerF∗)⊕ µ. (3.1)

It is easy to see that µ is an invariant distribution of (kerF∗)
⊥, under the endomorphism J . Thus, for

X ∈ Γ((kerF∗)
⊥), we have

JX = BX + CX, (3.2)

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ). On the other hand, since F∗((kerF∗)
⊥) = TN and F is a conformal

submersion, using (3.2) we derive 1
λ2 g

′(F∗JV, F∗CX) = 0, for every X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗),

which implies that

TN = F∗(J(kerF∗))⊕ F∗(µ). (3.3)

Example 3.2 Every anti-invariant Riemannian submersion is a conformal anti-invariant submersion with

λ = 1 , where 1 is the identity function.

We say that a conformal anti-invariant submersion is proper if λ ̸= 1. We now present an example of a proper

conformal anti-invariant submersion. In the following R2m denotes the Euclidean 2m-space with the standard

metric. An almost complex structure J on R2m is said to be compatible if (R2m, J) is complex analytically

isometric to the complex number space Cm with the standard flat Kählerian metric. We denote by J the

compatible almost complex structure on R2m defined by

J(a1, ..., a2m) = (−a2m−1,−a2m, ..., a1, a2).

Example 3.3 Let F be a map defined by

F : R4 −→ R2

(x1, x2, x3, x4) (ex3 sinx4, e
x3 cosx4).

Then F is a conformal anti-invariant submersion with λ = ex3 .

Lemma 3.4 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rieman-

nian manifold (N, g′) . Then we have

g(CY, JV ) = 0 (3.4)

and

g(∇
M

XCY, JV ) = −g(CY, JAXV ) (3.5)

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) .
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Proof For Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), since BY ∈ Γ(kerF∗) and JV ∈ Γ((kerF∗)

⊥), using (2.1),

we get (3.4). Now, using (3.4), (2.2), and (2.8), we obtain

g(∇
M

XCY, JV ) = −g(CY, JAXV )− g(CY, JV∇
M

XV ).

Since JV∇M

XV ∈ Γ(J kerF∗), we obtain (3.5). 2

We now study the integrability of the distribution (kerF∗)
⊥ and then we investigate the geometry of the

leaves of kerF∗ and (kerF∗)
⊥ . We note that it is known that the distribution kerF∗ is integrable.

Theorem 3.5 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then the following assertions are equivalent to each other;

a) (kerF∗)
⊥ is integrable,

b) 1
λ2 g

′(∇F
Y F∗CX −∇F

XF∗CY, F∗JV ) = g(AXBY −AY BX, JV )
−g(H grad lnλ,CY )g(X, JV )
+g(H grad lnλ,CX)g(Y, JV )
−2g(CX, Y )g(H grad lnλ, JV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) .

Proof For Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), we see from Definition 3.1, JV ∈ Γ((kerF∗)

⊥) and

JY ∈ Γ(kerF∗ ⊕ µ). Thus using (2.1) and (2.2), for X ∈ Γ((kerF∗)
⊥) we get

g([X,Y ] , V ) = g(∇
M

XJY, JV )− g(∇
M

Y JX, JV ).

Then from (3.2) we have

g([X,Y ] , V ) = g(∇
M

XBY, JV ) + g(∇
M

XCY, JV )

− g(∇
M

Y BX, JV )− g(∇
M

Y CX, JV ).

Since F is a conformal submersion, using (2.8) and (2.9) we arrive at

g([X,Y ] , V ) = g(AXBY −AY BX, JV ) +
1

λ2
g′(F∗(∇

M

XCY ), F∗JV )

− 1

λ2
g′(F∗(∇

M

Y CX), F∗JV ).

Thus, from (2.15) and Lemma 2.4 (i) we derive

g([X,Y ] , V ) = g(AXBY −AY BX, JV )− g(H grad lnλ,X)g(CY, JV )

− g(H grad lnλ,CY )g(X,JV ) + g(X,CY )g(H grad lnλ, JV )

+
1

λ2
g′(∇F

XF∗CY, F∗JV ) + g(H grad lnλ, Y )g(CX, JV )

+ g(H grad lnλ,CX)g(Y, JV )− g(Y,CX)g(H grad lnλ, JV )

− 1

λ2
g′(∇F

Y F∗CX,F∗JV ).

49
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Moreover, using (3.4), we obtain

g([X,Y ] , V ) = g(AXBY −AY BX, JV )− g(H grad lnλ,CY )g(X, JV )

+ g(H grad lnλ,CX)g(Y, JV )− 2g(CX, Y )g(H grad lnλ, JV )

− 1

λ2
g′(∇F

Y F∗CX −∇F
XF∗CY, F∗JV ),

which proves (a) ⇔ (b). 2

From Theorem 3.5, we deduce the following, which shows that a conformal anti-invariant submersion

with integrable (kerF∗)
⊥ turns out to be a horizontally homothetic submersion.

Theorem 3.6 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then any two conditions below imply the third:

(i) (kerF∗)
⊥ is integrable

(ii) F is horizontally homothetic.
(iii) g′(∇F

Y F∗CX −∇F
XF∗CY, F∗JV ) = λ2g(AXBY −AY BX, JV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) .

Proof For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), from Theorem 3.5, we have

g([X,Y ] , V ) = g(AXBY −AY BX, JV )− g(H grad lnλ,CY )g(X, JV )

+ g(H grad lnλ,CX)g(Y, JV )− 2g(CX, Y )g(H grad lnλ, JV )

− 1

λ2
g′(∇F

Y F∗CX −∇F
XF∗CY, F∗JV ).

Now, if we have (i) and (iii), then we arrive at

−g(H grad lnλ,CY )g(X, JV ) + g(H grad lnλ,CX)g(Y, JV )

−2g(CX, Y )g(H grad lnλ, JV ) = 0. (3.6)

Now, taking Y = JV in (3.6) for V ∈ Γ(kerF∗) and using (3.4), we get

g(H grad lnλ,CX)g(V, V ) = 0.

Hence λ is a constant on Γ(µ). On the other hand, taking Y =CX in (3.6) for X∈Γ(µ) and using (3.4) we

derive

−g(H grad lnλ,C2X)g(X, JV ) + g(H grad lnλ,CX)g(CX, JV )

−2g(CX,CX)g(H grad lnλ, JV ) = 0;

hence, we arrive at

g(CX,CX)g(H grad lnλ, JV ) = 0.

From the above equation, λ is a constant on Γ(J(kerF∗)). Similarly, one can obtain the other assertions. 2

We say that a conformal anti-invariant submersion is a conformal Lagrangian submersion if J(kerF∗) =

(kerF∗)
⊥ . From Theorem 3.5, we have the following.
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Corollary 3.7 Let F : (M, g, J) → (N, g′) be a conformal Lagrangian submersion, where (M, g, J) is a Kähler

manifold and (N, g′) is a Riemannian manifold. Then the following assertions are equivalent to each other;

(i) (kerF∗)
⊥ is integrable.

(ii) AXJY = AY JX
(iii) (∇F∗)(Y, JX) = (∇F∗)(X, JY )

for X,Y ∈ Γ((kerF∗)
⊥) .

Proof For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), we see from Definition 3.1, JV ∈ Γ((kerF∗)

⊥) and

JY ∈ Γ(kerF∗). From Theorem 3.5 we have

g([X,Y ] , V ) = g(AXBY −AY BX, JV )− g(H grad lnλ,CY )g(X, JV )

+ g(H grad lnλ,CX)g(Y, JV )− 2g(CX, Y )g(H grad lnλ, JV )

− 1

λ2
g′(∇F

Y F∗CX −∇F
XF∗CY, F∗JV ).

Since F is a conformal Lagrangian submersion, we derive

g([X,Y ] , V ) = g(AXBY −AY BX, JV ) = 0,

which shows (i) ⇔ (ii). On the other hand, using Definition 3.1 and (2.8) we arrive at

g(AXBY, JV )− g(AY BX, JV ) =
1

λ2
g′(F∗AXBY,F∗JV )− 1

λ2
g′(F∗AY BX,F∗JV )

=
1

λ2
g′(F∗(∇

M

XBY ), F∗JV )− 1

λ2
g′(F∗(∇

M

Y BX), F∗JV ).

Now, using (2.15), we obtain

1

λ2
{g′(F∗(∇

M

XBY ), F∗JV )− g′(F∗(∇
M

Y BX), F∗JV )}

=
1

λ2
g′(−(∇F∗)(X,BY ) +∇F

XF∗BY,F∗JV )

− 1

λ2
g′(−(∇F∗)(Y,BX) +∇F

Y F∗BX,F∗JV ).

Since BX,BY ∈ Γ(kerF∗), we derive

g(AXBY, JV )− g(AY BX, JV ) =
1

λ2
{g′((∇F∗)(Y,BX)− (∇F∗)(X,BY ), F∗JV )}

which tells us that (ii) ⇔ (iii). 2

For the geometry of leaves of the horizontal distribution, we have the following theorem.

Theorem 3.8 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then the following assertions are equivalent to each other:

(i) (kerF∗)
⊥ defines a totally geodesic foliation on M.

(ii) 1
λ2 g

′(∇F
XF∗CY, F∗JV ) = −g(AXBY, JV ) + g(H grad lnλ,CY )g(X, JV )

−g(H grad lnλ, JV )g(X,CY )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) .
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Proof From (2.1), (2.2), (2.8), (2.9), (3.2), and (3.1) we get

g(∇
M

XY, V ) = g(AXBY, JV ) + g(H∇
M

XCY, JV ).

Since F is a conformal submersion, using (2.15) and Lemma 2.4 (i) we arrive at

g(∇
M

XY, V ) = g(AXBY, JV )− 1

λ2
g(H grad lnλ,X)g′(F∗CY, F∗JV )

− 1

λ2
g(H grad lnλ,CY )g′(F∗X,F∗JV )

+
1

λ2
g(X,CY )g′(F∗(grad lnλ), F∗JV ) +

1

λ2
g′(∇F

XF∗CY, F∗JV ).

Moreover, using (3.1) and (3.2) we obtain

g(∇
M

XY, V ) = g(AXBY, JV )− g(H grad lnλ,CY )g(X, JV )

+ g(H grad lnλ, JV )g(X,CY ) +
1

λ2
g′(∇F

XF∗CY, F∗JV ),

which proves (i) ⇔ (ii). 2

From Theorem 3.8, we also deduce the following characterization.

Theorem 3.9 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then any two conditions below imply the third:

(i) (kerF∗)
⊥ defines a totally geodesic foliation on M.

(ii) F is horizontally homothetic.
(iii) g′(∇F

XF∗CY, F∗JV ) = −λ2g(AXBY, JV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) .

Proof For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), from Theorem 3.8, we have

g(∇
M

XY, V ) = g(AXBY, JV )− g(H grad lnλ,CY )g(X, JV )

+ g(H grad lnλ, JV )g(X,CY ) +
1

λ2
g′(∇F

XF∗CY, F∗JV ).

Now, if we have (i) and (iii), then we obtain

−g(H grad lnλ,CY )g(X, JV ) + g(H grad lnλ, JV )g(X,CY ) = 0. (3.7)

Now, taking X = CY in (3.7) and using (3.4), we get

g(H grad lnλ, JV )g(CY,CY ) = 0.

Thus, λ is a constant on Γ(J(kerF∗)). On the other hand, taking X = JV in (3.7) and using (3.4) we derive

g(H grad lnλ,CY )g(V, V ) = 0.

From the above equation, λ is a constant on Γ(µ). Similarly, one can obtain the other assertions. 2

In particular, if F is a conformal Lagrangian submersion, then we have the following.
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Corollary 3.10 Let F : (M, g, J) → (N, g′) be a conformal Lagrangian submersion, where (M, g, J) is a

Kähler manifold and (N, g′) is a Riemannian manifold. Then the following assertions are equivalent to each

other;

(i) (kerF∗)
⊥ defines a totally geodesic foliation on M.

(ii) AXJY = 0
(iii) (∇F∗)(X, JY ) = 0

for X,Y ∈ Γ((kerF∗)
⊥) .

Proof For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), we see from Definition 3.1, JV ∈ Γ((kerF∗)

⊥) and

JY ∈ Γ(kerF∗). From Theorem 3.8 we have

g(∇
M

XY, V ) = g(AXBY, JV )− g(H grad lnλ,CY )g(X, JV )

+ g(H grad lnλ, JV )g(X,CY ) +
1

λ2
g′(∇F

XF∗CY, F∗JV ).

Since F is a conformal Lagrangian submersion, we derive

g(∇
M

XY, V ) = g(AXBY, JV ),

which shows (i) ⇔ (ii). On the other hand, using (2.8) we get

g(AXBY, JV ) = g(∇
M

XBY, JV ).

Since F is a conformal submersion, we have

g(AXBY, JV ) =
1

λ2
g′(F∗(∇

M

XBY ), F∗JV ).

Then using (2.15) we get

g(AXBY, JV ) = − 1

λ2
g′((∇F∗)(X,BY ), F∗JV ),

which tells that (ii) ⇔ (iii). 2

In the sequel we are going to investigate the geometry of leaves of the distribution kerF∗ .

Theorem 3.11 Let F : (M, g, J) → (N, g′) be a conformal anti-invariant submersion, where (M, g, J) is a

Kähler manifold and (N, g′) is a Riemannian manifold. Then the following assertions are equivalent to each

other:

(i) kerF∗ defines a totally geodesic foliation on M.

(ii) − 1
λ2 g

′(∇F
JWF∗JV, F∗JCX) =g(TV JW,BX)+g(JW, JV )g(H grad lnλ, JCX)

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥) .

Proof For V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), from (2.1), (2.2), (2.7), and (3.2) we get

g(∇
M

V W,X) = g(TV JW,BX) + g(H∇
M

V JW,CX).

Since ∇M

is torsion free and [V, JW ] ∈ Γ(kerF∗), we obtain

g(∇
M

V W,X) = g(TV JW,BX) + g(∇
M

JWV,CX).
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Using (2.2) and (2.9) we have

g(∇
M

V W,X) = g(TV JW,BX) + g(∇
M

JWJV, JCX);

here we have used that µ is invariant. Since F is a conformal submersion, using (2.15) and Lemma 2.4 (i) we

obtain

g(∇
M

V W,X) = g(TV JW,BX)− 1

λ2
g(H grad lnλ, JW )g′(F∗JV, F∗JCX)

− 1

λ2
g(H grad lnλ, JV )g′(F∗JW,F∗JCX)

+ g(JW, JV )
1

λ2
g′(F∗ grad lnλ, F∗JCX) +

1

λ2
g′(∇F

JWF∗JV, F∗JCX).

Moreover, using (3.1) and (3.2) we derive

g(∇
M

V W,X) = g(TV JW,BX) + g(JW, JV )g(H grad lnλ, JCX)

+
1

λ2
g′(∇F

JWF∗JV, F∗JCX)

which proves (i) ⇔ (ii). 2

From Theorem 3.11, we deduce the following result.

Theorem 3.12 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then any two conditions below imply the third:

(i) kerF∗ defines a totally geodesic foliation on M.
(ii) λ is a constant on Γ(µ).
(iii) 1

λ2 g
′(∇F

JWF∗JV, F∗JCX) = −g(TV JW, JX)

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥) .

Proof For V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), from Theorem 3.11, we have

g(∇
M

V W,X) = g(TV JW,BX) + g(JW, JV )g(H grad lnλ, JCX)

+
1

λ2
g′(∇F

JWF∗JV, F∗JCX).

Now, if we have (i) and (iii), then we get

g(JW, JV )g(H grad lnλ, JCX) = 0.

From the above equation, λ is a constant on Γ(µ). Similarly, one can obtain the other assertions. 2

If F is a conformal Lagrangian submersion, then (3.3) implies that TN = F∗(J(kerF∗)). Hence we have

the following.

Corollary 3.13 Let F : (M, g, J) → (N, g′) be a conformal Lagrangian submersion, where (M, g, J) is a

Kähler manifold and (N, g′) is a Riemannian manifold. Then the following assertions are equivalent to each

other;
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(i) kerF∗ defines a totally geodesic foliation on M.
(ii) TV JW = 0

for V,W ∈ Γ(kerF∗) .

Proof For V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), from Theorem 3.11 we have

g(∇
M

V W,X) = g(TV JW,BX) + g(JW, JV )g(H grad lnλ, JCX)

+
1

λ2
g′(∇F

JWF∗JV, F∗JCX).

Since F is a conformal Lagrangian submersion, we get

g(∇
M

V W,X) = g(TV JW,BX),

which shows (i) ⇔ (ii). 2

4. Harmonicity of conformal anti-invariant submersions

In this section, we are going to find necessary and sufficient conditions for conformal anti-invariant submersions

to be harmonic. We also investigate the necessary and sufficient conditions for such submersions to be totally

geodesic.

Theorem 4.1 Let F : (M2m+2r, g, J) → (Nm+2r, g′) be a conformal anti-invariant submersion, where (M, g, J)

is a Kähler manifold and (N, g′) is a Riemannian manifold. Then the tension field τ of F is

τ(F ) = −mF∗(µ
kerF∗) + (2−m− 2r)F∗(grad lnλ), (4.1)

where µkerF∗ is the mean curvature vector field of the distribution of kerF∗ .

Proof Let {e1, ..., em, Je1, ..., Jem, µ1, ..., µ2r} be an orthonormal basis of Γ(TM) such that {e1, ..., em} is

an orthonormal basis of Γ(kerF∗), {Je1, ..., Jem} is an orthonormal basis of Γ(J kerF∗), and {µ1, ..., µ2r} is

an orthonormal basis of Γ(µ). Then the trace of the second fundamental form (restriction to kerF∗ × kerF∗ )

is given by

tracekerF∗∇F∗ =
m∑
i=1

(∇F∗)(ei, ei).

Then using (2.15) we obtain

tracekerF∗∇F∗ = −mF∗(µ
kerF∗). (4.2)

In a similar way, we have

trace(kerF∗)
⊥
∇F∗ =

m∑
i=1

(∇F∗)(Jei, Jei) +
2r∑
i=1

(∇F∗)(µi, µi).
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Using Lemma 2.4 (i) we arrive at

trace(kerF∗)
⊥
∇F∗ =

m∑
i=1

2g(grad lnλ, Jei)F∗(Jei)−mF∗(grad lnλ)

+
2r∑
i=1

2g(grad lnλ, µi)F∗(µi)− 2rF∗(grad lnλ).

Since F is a conformal anti-invariant submersion, for p ∈ M and 1≤ i≤m, 1≤h≤r , { 1
λ(p)F∗p(Jei),

1
λ(p)F∗p(µh)}

is an orthonormal basis of TF (p)N ; thus we derive

trace(kerF∗)
⊥
∇F∗ =

m∑
i=1

2g′(F∗(grad lnλ),
1

λ
F∗(Jei))

1

λ
F∗(Jei)−mF∗(grad lnλ)

+

2r∑
i=1

2g′(F∗(grad lnλ),
1

λ
F∗(µi))

1

λ
F∗(µi)− 2rF∗(grad lnλ)

= (2−m− 2r)F∗(grad lnλ). (4.3)

Then proof follows from (4.2) and (4.3). 2

From Theorem 4.1 we deduce that:

Theorem 4.2 Let F : (M2m+2r, g, J) → (Nm+2r, g′) be a conformal anti-invariant submersion, where (M, g, J)

is a Kähler manifold and (N, g′) is a Riemannian manifold. Then any two conditions below imply the third:

(i) F is harmonic
(ii) The fibers are minimal
(iii) F is a horizontally homothetic map.

Proof From (4.1), we have

τ(F ) = −mF∗(µ
kerF∗) + (2−m− 2r)F∗(grad lnλ).

Now, if we have (i) and (ii) then F is a horizontally homothetic map. 2

We also have the following result.

Corollary 4.3 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . If m+ 2r = 2 then F is harmonic if and only if the fibers are minimal.

Now we obtain necessary and sufficient conditions for a conformal anti-invariant submersion to be totally

geodesic. We recall that a differentiable map F between two Riemannian manifolds is called totally geodesic if

(∇F∗)(X,Y ) = 0, for all X,Y ∈ Γ(TM).

A geometric interpretation of a totally geodesic map is that it maps every geodesic in the total space into a

geodesic in the base space in proportion to arc lengths.

Theorem 4.4 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . If F is a totally geodesic map then
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−∇F
XF∗Y = F∗(J(AXJY1 + V∇

M

XBY2 +AXCY2) + C(H∇
M

XJY1

+AXBY2 +H∇
M

XCY2)) (4.4)

for any X ∈ Γ((kerF∗)
⊥) and Y = Y1 + Y2 ∈ Γ(TM), where Y1 ∈ Γ(kerF∗) and Y2 ∈ Γ((kerF∗)

⊥) .

Proof Using (2.2) and (2.15) we have

(∇F∗)(X,Y ) = ∇F
XF∗Y + F∗(J∇

M

XJY )

for any X ∈ Γ((kerF∗)
⊥) and Y ∈ Γ(TM). Then from (2.8), (2.9), and (3.2) we get

(∇F∗)(X,Y ) = ∇F
XF∗Y + F∗(JAXJY1 +BH∇

M

XJY1 + CH∇
M

XJY1 +BAXBY2

+ CAXBY2 + JV∇
M

XBY2 + JAXCY2 +BH∇
M

XCY2 + CH∇
M

XCY2)

for any Y = Y1 + Y2 ∈ Γ(TM), where Y1 ∈ Γ(kerF∗) and Y2 ∈ Γ((kerF∗)
⊥). Thus taking into account the

vertical parts, we find

(∇F∗)(X,Y ) = ∇F
XF∗Y + F∗(J(AXJY1 + V∇

M

XBY2 +AXCY2) + C(H∇
M

XJY1

+AXBY2 +H∇
M

XCY2)),

which gives our assertion. 2

We now present the following definition.

Definition 4.5 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then F is called a (J kerF∗, µ)-totally geodesic map if

(∇F∗)(JU,X) = 0, for U ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

In the sequel we show that this notion has an important effect on the character of the conformal submersion.

Theorem 4.6 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then F is a (J kerF∗, µ)-totally geodesic map if and only if F is a horizontally

homothetic map.

Proof For U ∈ Γ(kerF∗) and X ∈ Γ(µ), from Lemma 2.4 (i), we have

(∇F∗)(JU,X) = JU(lnλ)F∗(X) +X(lnλ)F∗(JU)− g(JU,X)F∗(grad lnλ).

From the above equation, if F is a horizontally homothetic then (∇F∗)(JU,X) = 0. Conversely, if (∇F∗)(JU,X) =

0, we obtain

JU(lnλ)F∗(X) +X(lnλ)F∗(JU) = 0. (4.5)

Taking the inner product in (4.5) with F∗(JU) and since F is a conformal submersion, we write

g(grad lnλ, JU)g′(F∗X,F∗JU) + g(grad lnλ,X)g′(F∗JU, F∗JU) = 0.
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The above equation implies that λ is a constant on Γ(µ). On the other hand, taking the inner product in (4.5)

with F∗X , we have

g(grad lnλ, JU)g′(F∗X,F∗X) + g(grad lnλ,X)g′(F∗JU, F∗X) = 0.

From the above equation, it follows that λ is a constant on Γ(J(kerF∗)). Thus λ is a constant on Γ((kerF∗)
⊥).

Hence the proof is complete. 2

Here we present another characterization of totally geodesic, conformal anti-invariant submersions.

Theorem 4.7 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then F is a totally geodesic map if and only if

(i) TUJV = 0 and H∇M

U JV ∈ Γ(J kerF∗),
(ii) F is a horizontally homothetic map,

(iii) ∇̂V BX + TV CX = 0

TV BX +H∇M

V CX ∈ Γ(J kerF∗)

for X,Y ∈ Γ((kerF∗)
⊥) and U, V ∈ Γ(kerF∗) .

Proof For any U, V ∈ Γ(kerF∗), from (2.2) and (2.15) we have

(∇F∗)(U, V ) = F∗(J∇
M

U JV ).

Then (3.2) and (2.7) imply

(∇F∗)(U, V ) = F∗(JTUJV + CH∇
M

U JV ).

From the above equation, (∇F∗)(U, V ) = 0 if and only if

F∗(JTUJV + CH∇
M

U JV ) = 0. (4.6)

This implies TUJV = 0 and H∇M

U JV ∈ Γ(J kerF∗). On the other hand, from Lemma 2.4 (i) we derive

(∇F∗)(X,Y ) = X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)− g(X,Y )F∗(grad lnλ)

for any X,Y ∈ Γ(µ). It is obvious that if F is horizontally homothetic, it follows that (∇F∗)(X,Y ) = 0.

Conversely, if (∇F∗)(X,Y ) = 0, taking Y = JX in the above equation, for any X ∈ Γ(µ) we get

X(lnλ)F∗(JX) + JX(lnλ)F∗(X) = 0. (4.7)

Taking the inner product in (4.7) with F∗JX , we obtain

g(grad lnλ,X)λ2g(JX, JX) + g(grad lnλ, JX)λ2g(X,JX) = 0. (4.8)

From (4.8), λ is a constant on Γ(µ). On the other hand, for U, V ∈ Γ(kerF∗), from Lemma 2.4 (i) we have

(∇F∗)(JU, JV ) = JU(lnλ)F∗(JV ) + JV (lnλ)F∗(JU)− g(JU, JV )F∗(grad lnλ).

Again if F is horizontally homothetic, then (∇F∗)(JU, JV ) = 0. Conversely, if (∇F∗)(JU, JV ) = 0, putting

U instead of V in the above equation, we derive

2JU(lnλ)F∗(JU)− g(JU, JU)F∗(grad lnλ) = 0. (4.9)
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Taking the inner product in (4.9) with F∗JU and since F is a conformal submersion, we have

g(JU, JU)λ2g(grad lnλ, JU) = 0.

From the above equation, λ is a constant on Γ(J kerF∗). Thus λ is a constant on Γ((kerF∗)
⊥). Now, for

X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), from (2.2) and (2.15) we get

(∇F∗)(X,V ) = F∗(J∇
M

V JX).

Using (3.2) and (2.7) we have

(∇F∗)(X,V ) = F∗(CTV BX + J∇̂V BX + CH∇
M

V CX + JTV CX).

Thus (∇F∗)(X,V ) = 0 if and only if

F∗(CTV BX + J∇̂V BX + CH∇
M

V CX + JTV CX) = 0.

Thus the proof is complete. 2

5. Decomposition theorems

In this section, we obtain decomposition theorems by using the existence of conformal anti-invariant submersions.

First, we recall the following results from [19]. Let g be a Riemannian metric tensor on the manifold B = M×N

and assume that the canonical foliations DM and DN intersect perpendicularly everywhere. Then g is the

metric tensor of

(i) a twisted product M ×f N if and only if DM is a totally geodesic foliation and DN is a totally

umbilic foliation,

(ii) a warped product M ×f N if and only if DM is a totally geodesic foliation and DN is a spheric

foliation, i.e. it is umbilic and its mean curvature vector field is parallel.

We note that in this case, from [3] we have

∇XU = X(lnf)U (5.1)

for X ∈ Γ(TM) and U ∈ Γ(TN), where ∇ is the Levi-Civita connection on M ×N.

(iii) a usual product of Riemannian manifolds if and only if DM and DN are totally geodesic foliations.

Our first decomposition theorem for a conformal anti-invariant submersion comes from Theorem 3.8 and

Theorem 3.11 in terms of the second fundamental forms of such submersions.

Theorem 5.1 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then M is a locally product manifold of the form M(kerF∗)⊥ ×M(kerF∗) if

1

λ2
g′(∇F

XF∗CY, F∗JV ) = −g(AXBY, JV ) + g(H grad lnλ,CY )g(X, JV )

− g(H grad lnλ, JV )g(X,CY )

and

− 1

λ2
g′(∇F

JWF∗JV, F∗JCX) = g(TV JW,BX) + g(JW, JV )g(H grad lnλ, JCX)

59
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for V,W ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥) , where M(kerF∗)⊥ and M(kerF∗) are integral manifolds of the

distributions (kerF∗)
⊥ and (kerF∗) . Conversely, if M is a locally product manifold of the form M(kerF∗)⊥ ×

M(kerF∗) then we have

1

λ2
g′(∇F

XF∗CY, F∗JV ) = g(H grad lnλ,CY )g(X, JV )− g(H grad lnλ, JV )g(X,CY )

and

− 1

λ2
g′(∇F

JWF∗JV, F∗JCX) = g(JW, JV )g(H grad lnλ, JCX).

From Corollary 3.10 and Corollary 3.13, we have the following theorem.

Theorem 5.2 Let F be a conformal Lagrangian submersion from a Kähler manifold (M, g, J) to a Riemannian

manifold (N, g′) . Then M is a locally product manifold if AXJY = 0 and TV JW = 0 for X,Y ∈ Γ((kerF∗)
⊥)

and V,W ∈ Γ(kerF∗) .

Next we obtain a decomposition theorem related to the notion of twisted product manifold. However, we

first recall the adjoint map of a map. Let F : (M1, g1) → (M2, g2) be a map between Riemannian manifolds

(M1, g1) and (M2, g2). Then the adjoint map ∗F∗ of F∗ is characterized by g1(x,
∗ F∗p1y) = g2(F∗p1x, y) for

x ∈ Tp1M1, y ∈ TF (p1)M2 and p1 ∈ M1. Considering Fh
∗ at each p1 ∈ M1 as a linear transformation

Fh
∗p1

: ((kerF∗)
⊥(p1), g1

p1((kerF∗)⊥(p1))
) → (rangeF∗(p2), g2p2((rangeF∗)(p2))

),

we will denote the adjoint of Fh
∗ by ∗Fh

∗p1
. Let ∗F∗p1 be the adjoint of F∗p1 : (Tp1M1, g1p1 ) → (Tp2M2, g2p2 ).

Then the linear transformation

(∗F∗p1)
h : rangeF∗(p2) → (kerF∗)

⊥(p1)

defined by (∗F∗p1)
hy =∗ F∗p1y, where y ∈ Γ(rangeF∗p1), p2 = F (p1), is an isomorphism and (Fh

∗p1
)−1 =

(∗F∗p1)
h =∗ Fh

∗p1
.

Theorem 5.3 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then M is a locally twisted product manifold of the form M(kerF∗) ×λ M(kerF∗)⊥ if

and only if (kerF∗)
⊥ is integrable,

− 1

λ2
g′(∇F

JWF∗JV, F∗JCX) = g(TV JW,BX) + g(JW, JV )g(H grad lnλ, JCX) (5.2)

and

g(X,Y )H = −BAXBY + CY (lnλ)BX −BH grad lnλg(X,CY )

−J∗F∗(∇F
XF∗CY ) (5.3)

for V,W ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥), where M(kerF∗)⊥ and M(kerF∗) are integral manifolds of the

distributions (kerF∗)
⊥ and (kerF∗) and H is the mean curvature vector field of M(kerF∗)⊥ .
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Proof For V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), from (2.1), (2.2), (2.7), and (3.2) we have

g(∇
M

V W,X) = g(TV JW,BX) + g(H∇
M

V JW,CX).

Since ∇M

is torsion free and [V, JW ] ∈ Γ(kerF∗), we obtain

g(∇
M

V W,X) = g(TV JW,BX) + g(∇
M

JWV,CX).

Using (2.2) and (2.9) we get

g(∇
M

V W,X) = g(TV JW,BX) + g(∇
M

JWJV, JCX).

Since F is a conformal submersion, using (2.15) and Lemma 2.4 (i) we arrive at

g(∇
M

V W,X) = g(TV JW,BX)− 1

λ2
g(H grad lnλ, JW )g′(F∗JV, F∗JCX)

− 1

λ2
g(H grad lnλ, JV )g′(F∗JW,F∗JCX)

+ g(JW, JV )
1

λ2
g′(F∗ grad lnλ, F∗JCX) +

1

λ2
g′(∇F

JWF∗JV, F∗JCX).

Moreover, using (3.1) and (3.2) we conclude that

g(∇
M

V W,X) = g(TV JW,BX) + g(JW, JV )g(H grad lnλ, JCX)

+
1

λ2
g′(∇F

JWF∗JV, F∗JCX).

Thus it follows that M(kerF∗) is totally geodesic if and only if the equation (5.2) is satisfied. On the other hand,

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), from (2.1), (2.2), (2.8), (2.9), and (3.2) we obtain

g(∇
M

XY, V ) = g(AXBY + V∇
M

XBY, JV ) + g(AXCY +H∇
M

XCY, JV ).

Thus from (3.1) we get

g(∇
M

XY, V ) = g(AXBY, JV ) + g(H∇
M

XCY, JV ).

Since F is a conformal submersion, using (2.15) and Lemma 2.4 (i) we arrive at

g(∇
M

XY, V ) = g(AXBY, JV )− 1

λ2
g(H grad lnλ,X)g′(F∗CY, F∗JV )

− 1

λ2
g(H grad lnλ,CY )g′(F∗X,F∗JV )

+
1

λ2
g(X,CY )g′(F∗(grad lnλ), F∗JV ) +

1

λ2
g′(∇F

XF∗CY, F∗JV ).

Moreover, using (3.1) and (3.2) we derive

g(∇
M

XY, V ) = g(AXBY, JV )− g(H grad lnλ,CY )g(X, JV )

+ g(H grad lnλ, JV )g(X,CY ) +
1

λ2
g′(∇F

XF∗CY, F∗JV ).
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Using (2.2) we conclude that M(kerF∗)⊥ is totally umbilical if and only if the equation (5.3) is satisfied. 2

However, in the sequel, we show that the notion of conformal anti-invariant submersion puts some

restrictions on the total space for locally warped product manifold.

Theorem 5.4 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . If M is a locally warped product manifold of the form M(kerF∗)⊥ ×λ M(kerF∗) , then

either F is a horizontally homothetic submersion or the fibers are one-dimensional.

Proof For V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), from (2.2), (2.6), and (5.1) we get

−X(lnλ)g(U, V ) = JV (lnλ)g(U, JX).

For X ∈ Γ(µ), we derive

−X(lnλ)g(U, V ) = 0.

From the above equation, we conclude that λ is a constant on Γ(µ). For X = JU ∈ Γ(J(kerF∗)) we obtain

JU(lnλ)g(U, V ) = JV (lnλ)g(U,U). (5.4)

Interchanging the roles of V and U in (5.4) we arrive at

JV (lnλ)g(U, V ) = JU(lnλ)g(V, V ). (5.5)

From (5.4) and (5.5) we get

JU(lnλ) = JU(lnλ)
g(U, V )2

∥ U ∥2∥ V ∥2
. (5.6)

From (5.6), either λ is a constant on Γ(J kerF∗) or Γ(J kerF∗) is one-dimensional. Thus proof is complete. 2

Remark 5.5 In fact, the result implies that there are no conformal anti-invariant submersions from Kähler

manifold (M, g, J) the form M(kerF∗)⊥ ×λ M(kerF∗) to a Riemannian manifold under certain conditions.

6. Curvature relations for conformal anti-invariant submersions

In this section, we investigate the sectional curvatures of the total space, the base space, and the fibers of a

conformal anti-invariant submersion. Let F be a conformal anti-invariant submersion from a Kähler manifold

M to a Riemannian manifold N . We denote the Riemannian curvature tensors of M , N , and any fiber F−1(x)

by RM , RN , and R̂, respectively.

Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Riemannian

manifold (N, g′). We denote by K the sectional curvature, defined for any pair of nonzero orthogonal vectors

X and Y on M by the formula

K(X,Y ) =
R(X,Y, Y,X)

∥X∥2∥Y ∥2
. (6.1)

62
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Theorem 6.1 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) and let KM , K̂ , and KN be the sectional curvatures of the total space M, fibers, and

the base space N, respectively. If X,Y are horizontal and U, V vertical vectors, then

KM (U, V ) =
1

λ2
KN (F∗JU, F∗JV )− 3

4
∥ V [JU, JV ] ∥2−λ

2

2
{g(∇

M

JU grad(
1

λ2
), JU)

+ g(∇
M

JV grad(
1

λ2
), JV )}+ λ4

4
{∥ grad(

1

λ2
) ∥2

+ ∥ JU(
1

λ2
)JV − JV (

1

λ2
)JU ∥2}, (6.2)

KM (X,Y ) = K̂(BX,BY ) +
1

λ2
KN (F∗CX,F∗CY )− 3

4
∥ V [CX,CY ] ∥2

+
λ2

2
{g(CX,CY )g(∇

M

CY grad(
1

λ2
), CX)

− g(CY,CY )g(∇
M

CX grad(
1

λ2
), CX) + g(CY,CX)g(∇

M

CX grad(
1

λ2
), CY )

− g(CX,CX)g(∇
M

CY grad(
1

λ2
), CY )}

+
λ4

4
{(g(CX,CX)g(CY,CY )− g(CY,CX)g(CX,CY )) ∥ grad(

1

λ2
) ∥2

+ ∥ CX(
1

λ2
)CY − CY (

1

λ2
)CX ∥2}+ ∥ TBXBY ∥2 −g(TBY BY, TBXBX)

+ g((∇
M

BXA)CY CY,BX)+ ∥ ACY BX ∥2 −g((∇
M

CY T )BXCY,BX)

− ∥ TBXCY ∥2 +g((∇
M

BY A)CXCX,BY )+ ∥ ACXBY ∥2

− g((∇
M

CXT )BY CX,BY )− ∥ TBY CX ∥2 (6.3)

and

KM (X,U) =
1

λ2
KN (F∗CX,F∗JU)− 3

4
∥ V [CX, JU ] ∥2

− λ2

2
{g(CX,CX)g(∇

M

JU grad(
1

λ2
), JU)

+ g(∇
M

CX grad(
1

λ2
), CX)}+ λ4

4
{g(CX,CX) ∥ grad(

1

λ2
) ∥2

+∥ CX(
1

λ2
)JU − JU(

1

λ2
)CX ∥2}+g((∇

M

BXA)JUJU,BX)+∥ AJUBX ∥2

− g((∇
M

JUT )BXJU,BX)− ∥ TBXJU ∥2 . (6.4)

Proof Since M is a Kähler manifold, we have KM (U, V ) = KM (JU, JV ). Considering (2.14) and (6.1), we
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obtain

KM (U, V )=KM (JU, JV )=g(RM (JU, JV )JV, JU)=
1

λ2
g′(RN (F∗JU, F∗JV )F∗JV, F∗JU)

+
1

4
{g(V [JU, JV ] ,V [JV, JU ])− g(V [JV, JV ] ,V [JU, JU ])

+ 2g(V [JU, JV ] ,V [JV, JU ])}

+
λ2

2
{g(JU, JV )g(∇

M

JV grad(
1

λ2
), JU)− g(JV, JV )g(∇

M

JU grad(
1

λ2
), JU)

+ g(JV, JU)g(∇
M

JU grad(
1

λ2
), JV )− g(JU, JU)g(∇

M

JV grad(
1

λ2
), JV )}

+
λ4

4
{(g(JU, JU)g(JV, JV )− g(JV, JU)g(JU, JV )) ∥ grad(

1

λ2
) ∥2

+ g(JU(
1

λ2
)JV − JV (

1

λ2
)JU, JU(

1

λ2
)JV − JV (

1

λ2
)JU)}

for unit vector fields U and V . By straightforward computations, we get (6.2).

For unit vector fields X and Y, since M is a Kähler manifold and using (3.2), we have

KM (X,Y ) = KM (JX, JY ) =KM (BX,BY ) +KM (CX,CY )

+KM (BX,CY ) +KM (CX,BY ). (6.5)

Using (2.11), we derive

KM (BX,BY ) = g(RM (BX,BY )BY,BX) = g(R̂(BX,BY )BY,BX)

+g(TBXBY, TBY BX)− g(TBY BY, TBXBX)

= K̂(BX,BY )+ ∥ TBXBY ∥2 −g(TBY BY, TBXBX). (6.6)

In a similar way, using (2.14), we arrive at

KM (CX,CY )=g(RM (CX,CY )CY,CX)=
1

λ2
g′(RN (F∗CX,F∗CY )F∗CY, F∗CX)

+
1

4
{g(V [CX,CY ] ,V [CY,CX])− g(V [CY,CY ] ,V [CX,CX])

+2g(V [CX,CY ] ,V [CY,CX])}

+
λ2

2
{g(CX,CY )g(∇

M

CY grad(
1

λ2
), CX)− g(CY,CY )g(∇

M

CX grad(
1

λ2
), CX)

+g(CY,CX)g(∇
M

CX grad(
1

λ2
), CY )− g(CX,CX)g(∇

M

CY grad(
1

λ2
), CY )}

+
λ4

4
{(g(CX,CX)g(CY,CY )− g(CY,CX)g(CX,CY )) ∥ grad(

1

λ2
) ∥2

+g(CX(
1

λ2
)CY − CY (

1

λ2
)CX,CX(

1

λ2
)CY − CY (

1

λ2
)CX)}.
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Moreover, by direct calculations, we obtain

KM (CX,CY ) =
1

λ2
KN (F∗CX,F∗CY )− 3

4
∥ V [CX,CY ] ∥2

+
λ2

2
{g(CX,CY )g(∇

M

CY grad(
1

λ2
), CX)− g(CY,CY )g(∇

M

CX grad(
1

λ2
), CX)

+g(CY,CX)g(∇
M

CX grad(
1

λ2
), CY )− g(CX,CX)g(∇

M

CY grad(
1

λ2
), CY )}

+
λ4

4
{(g(CX,CX)g(CY,CY )− g(CY,CX)g(CX,CY )) ∥ grad(

1

λ2
) ∥2

+ ∥ CX(
1

λ2
)CY − CY (

1

λ2
)CX ∥2}. (6.7)

In a similar way, using (2.13) we have

KM (BX,CY ) = g(RM (BX,CY )CY,BX) = g((∇
M

BXA)CY CY,BX)+ ∥ ACY BX ∥2

− g((∇
M

CY T )BXCY,BX)− ∥ TBXCY ∥2 . (6.8)

Lastly, since M is a Kähler manifold and using (2.13) we obtain

KM (CX,BY ) = KM (BY,CX) = g(RM (BY,CX)CX,BY ) = g((∇
M

BY A)CXCX,BY )

+ ∥ ACXBY ∥2 −g((∇
M

CXT )BY CX,BY )− ∥ TBY CX ∥2 . (6.9)

Writing (6.6), (6.7), (6.8), and (6.9) in (6.5) we get (6.3).

For unit vector fields X and U, since M is a Kähler manifold and from (3.2), we have

KM (X,U) = KM (JX, JU) = KM (BX, JU) +KM (CX, JU). (6.10)

Using (2.13), we get

KM (BX, JU) = g(RM (BX, JU)JU,BX) = g((∇
M

BXA)JUJU,BX)+ ∥ AJUBX ∥2

− g((∇
M

JUT )BXJU,BX)− ∥ TBXJU ∥2 . (6.11)

In a similar way, using (2.14) we obtain

KM (CX, JU)=g(RM (CX, JU)JU,CX)=
1

λ2
g′(RN (F∗CX,F∗JU)F∗JU, F∗CX)

+
1

4
{g(V [CX, JU ] ,V [JU,CX])− g(V [JU, JU ] ,V [CX,CX])

+2g(V [CX, JU ] ,V [JU,CX])}

+
λ2

2
{g(CX, JU)g(∇

M

JU grad(
1

λ2
), CX)− g(JU, JU)g(∇

M

CX grad(
1

λ2
), CX)

+g(JU,CX)g(∇
M

CX grad(
1

λ2
), JU)− g(CX,CX)g(∇

M

JU grad(
1

λ2
), JU)}

+
λ4

4
{(g(CX,CX)g(JU, JU)− g(JU,CX)g(CX, JU)) ∥ grad(

1

λ2
) ∥2

+ ∥ CX(
1

λ2
)JU − JU(

1

λ2
)CX ∥2}. (6.12)
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AKYOL and ŞAHİN/Turk J Math

Then (6.4) follows by (6.10), (6.11), and (6.12). 2

From Theorem 6.1, we have the following results.

Corollary 6.2 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then we have

K̂(U, V ) ≤ 1

λ2
KN (F∗JU, F∗JV )− λ2

2
{g(∇

M

JU grad(
1

λ2
), JU) + g(∇

M

JV grad(
1

λ2
), JV )}

+
λ4

4
{∥ grad(

1

λ2
) ∥2 + ∥ JU(

1

λ2
)JV − JV (

1

λ2
)JU ∥2}+ g(TV V, TUU)

for U, V ∈ Γ(kerF∗) . The equality case is satisfied if and only if the fibers are totally geodesic and J kerF∗ is

integrable.

Proof From (6.2), we have

KM (U, V ) =
1

λ2
KN (F∗JU, F∗JV )− 3

4
∥ V [JU, JV ] ∥2 −λ2

2
{g(∇

M

JU grad(
1

λ2
), JU)

+g(∇
M

JV grad(
1

λ2
), JV )}+λ4

4
{∥ grad(

1

λ2
) ∥2+∥ JU(

1

λ2
)JV−JV (

1

λ2
)JU ∥2}.

Using ([18], Corollary 1, page: 465), we get

K̂(U, V )+ ∥ TUV ∥2 −g(TV V, TUU) =
1

λ2
KN (F∗JU, F∗JV )− 3

4
∥ V [JU, JV ] ∥2

−λ2

2
{g(∇

M

JU grad(
1

λ2
), JU)+g(∇

M

JV grad(
1

λ2
), JV )}

+
λ4

4
{∥ grad(

1

λ2
) ∥2+∥ JU(

1

λ2
)JV−JV (

1

λ2
)JU ∥2}, (6.13)

which gives the assertion. 2

We also have the following result.

Corollary 6.3 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then we have

K̂(U, V ) ≥ 1

λ2
KN (F∗JU, F∗JV )− 3

4
∥ V [JU, JV ] ∥2 −λ2

2
{g(∇

M

JU grad(
1

λ2
), JU)

+ g(∇
M

JV grad(
1

λ2
), JV )}− ∥ TUV ∥2 +g(TV V, TUU)

for U, V ∈ Γ(kerF∗) . The equality case is satisfied if and only if F is a homothetic submersion.

Corollary 6.4 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-
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mannian manifold (N, g′) . Then we have

KM (X,Y ) ≥ K̂(BX,BY ) +
1

λ2
KN (F∗CX,F∗CY )− 3

4
∥ V [CX,CY ] ∥2

+
λ2

2
{g(CX,CY )g(∇

M

CY grad(
1

λ2
), CX)

− g(CY,CY )g(∇
M

CX grad(
1

λ2
), CX) + g(CY,CX)g(∇

M

CX grad(
1

λ2
), CY )

− g(CX,CX)g(∇
M

CY grad(
1

λ2
), CY )}

+
λ4

4
{(g(CX,CX)g(CY,CY )− g(CY,CX)g(CX,CY )) ∥ grad(

1

λ2
) ∥2}

− g(TBY BY, TBXBX)− g((∇
M

CY T )BXCY,BX) + g((∇
M

BXA)CY CY,BX)

−∥ TBXCY ∥2+g((∇
M

BY A)CXCX,BY )−g((∇
M

CXT )BY CX,BY )−∥ TBY CX ∥2

+ ∥ ACXBY ∥2

for X,Y ∈Γ((kerF∗)
⊥) . The equality holds if and only if for any X,Y ∈ Γ((kerF∗)

⊥) one has TBXBY = 0,

ACY BX = 0 and either rankµ = 1 or gradλ |µ= 0.

Proof By direct calculations and using (6.3) we arrive at

KM (X,Y )− ∥ TBXBY ∥2 − ∥ ACY BX ∥2 −λ4

4
∥ CX(

1

λ2
)CY − CY (

1

λ2
)CX ∥2

≥ K̂(BX,BY ) +
1

λ2
KN (F∗CX,F∗CY )− 3

4
∥ V [CX,CY ] ∥2

+
λ2

2
{−g(CY,CY )g(∇

M

CX grad(
1

λ2
), CX) + g(CY,CX)g(∇

M

CX grad(
1

λ2
), CY )

−g(CX,CX)g(∇
M

CY grad(
1

λ2
), CY ) + g(CX,CY )g(∇

M

CY grad(
1

λ2
), CX)}

+
λ4

4
{(g(CX,CX)g(CY,CY )− g(CY,CX)g(CX,CY )) ∥ grad(

1

λ2
) ∥2}

−g(TBY BY, TBXBX)−g((∇
M

CY T )BXCY,BX)+g((∇
M

BXA)CY CY,BX)

−∥ TBXCY ∥2+g((∇
M

BY A)CXCX,BY )−g((∇
M

CXT )BY CX,BY )−∥ TBY CX ∥2

+∥ ACXBY ∥2 .

This gives the inequality. For the equality case

∥ TBXBY ∥2 + ∥ ACY BX ∥2 +
λ4

4
∥ CX(

1

λ2
)CY − CY (

1

λ2
)CX ∥2= 0.

Hence we obtain for any X,Y ∈ Γ((kerF∗)
⊥), TBXBY=0, ACY BX=0 and either rankµ = 1 or gradλ |µ= 0.

2

In a similar way, we have the following result.
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Corollary 6.5 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then we have

KM (X,Y )≤K̂(BX,BY )+
1

λ2
KN (F∗CX,F∗CY )−λ2

2
{g(CX,CY )g(∇

M

CY grad(
1

λ2
), CX)

− g(CY,CY )g(∇
M

CX grad(
1

λ2
), CX) + g(CY,CX)g(∇

M

CX grad(
1

λ2
), CY )

− g(CX,CX)g(∇
M

CY grad(
1

λ2
), CY )}

+
λ4

4
{(g(CX,CX)g(CY,CY )− g(CY,CX)g(CX,CY )) ∥ grad(

1

λ2
) ∥2

+ ∥ CX(
1

λ2
)CY − CY (

1

λ2
)CX ∥2}+ ∥ TBXBY ∥2 −g(TBY BY, TBXBX)

+ g((∇
M

BXA)CY CY,BX)+ ∥ ACY BX ∥2 −g((∇
M

CY T )BXCY,BX)

+g((∇
M

BY A)CXCX,BY )+∥ ACXBY ∥2−g((∇
M

CXT )BY CX,BY )−∥ TBY CX ∥2

for X,Y ∈ Γ((kerF∗)
⊥) . The equality case is satisfied if and only if TBXCY = 0 and [CX,CY ] ∈ Γ(H) .

Corollary 6.6 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then we have

KM (X,U) ≥ 1

λ2
KN (F∗CX,F∗JU)− 3

4
∥ V [CX, JU ] ∥2

− λ2

2
{g(CX,CX)g(∇

M

JU grad(
1

λ2
), JU)

+ g(∇
M

CX grad(
1

λ2
), CX)}+ g((∇

M

BXA)JUJU,BX)

− g((∇
M

JUT )BXJU,BX)− ∥ TBXJU ∥2

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗) . The equality case is satisfied if and only if AJUBX = 0 , grad( 1

λ2 ) = 0

and F is a horizontally homothetic submersion. We note that in this case λ is a constant function if M is

connected.

Proof By straightforward computations and using (6.4) we obtain

KM (X,U)− ∥ AJUBX ∥2 −λ4

4
{g(CX,CX) ∥ grad(

1

λ2
) ∥2

− ∥ CX(
1

λ2
)JU − JU(

1

λ2
)CX ∥2} ≥ 1

λ2
KN (F∗CX,F∗JU)− 3

4
∥ V [CX, JU ] ∥2

−λ2

2
{g(CX,CX)g(∇

M

JU grad(
1

λ2
), JU) + g(∇

M

CX grad(
1

λ2
), CX)}

+g((∇
M

BXA)JUJU,BX)− g((∇
M

JUT )BXJU,BX)− ∥ TBXJU ∥2 .

This gives the inequality. For the equality case

∥ AJUBX ∥2 +
λ4

4
{g(CX,CX) ∥ grad(

1

λ2
) ∥2 + ∥ CX(

1

λ2
)JU − JU(

1

λ2
)CX ∥2} = 0.
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Thus we derive AJUBX=0 and grad( 1
λ2 )=0, CX( 1

λ2 )JU−JU( 1
λ2 )CX=0, which shows that F is horizontally

homothetic. 2

Finally we have the following inequality.

Corollary 6.7 Let F be a conformal anti-invariant submersion from a Kähler manifold (M, g, J) to a Rie-

mannian manifold (N, g′) . Then we have

KM (X,U) ≤ 1

λ2
KN (F∗CX,F∗JU)− λ2

2
{g(CX,CX)g(∇

M

JU grad(
1

λ2
), JU)

+ g(∇
M

CX grad(
1

λ2
), CX)}

+
λ4

4
{g(CX,CX) ∥ grad(

1

λ2
) ∥2 + ∥ CX(

1

λ2
)JU − JU(

1

λ2
)CX ∥2}

+ g((∇
M

BXA)JUJU,BX)+ ∥ AJUBX ∥2 −g((∇
M

JUT )BXJU,BX)

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗) . The equality case is satisfied if and only if TBXJU = 0 and

[CX, JU ] ∈ H .
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