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Abstract: In this paper we prove that a ring R in which every finitely generated projective R -module lifts modulo

J(R) is a refinement ring if and only if R
J(R)

is a refinement ring. We also prove that the refinement property for rings

is Morita invariant. Several examples are constructed as well.
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1. Introduction

The study of refinement monoids has a rich history. Dobbertin [8] in 1982 defined the monoid (M,+, 0) to be

a refinement monoid if the following conditions are satisfied :

(1) There are no nonzero inverse elements, i.e. if x+ y = 0, then x = y = 0.

(2) M has the refinement property; that is, given xi, yj ∈ M with
∑

i xi =
∑

j yj , there are zij ∈ M

(i < n, j < m , where n,m ∈ N and n,m ⩾ 2) such that xi =
∑

j zij and yj =
∑

i zij .

Note that we need only to show the above property for m = n = 2. After him many authors,

like Ara and Pardo [1], Brookfield [4], and Moreira [11], studied refinement monoids. Huang [9] in 2011

defined a ring R to be a refinement ring if the monoid of finitely generated projective R -modules is a

refinement monoid. Following Chen [5], a ring R is an exchange ring if for any R -module M and any two

decompositions M = A ⊕ B =
⊕

i∈I Ai , where AR
∼= R and index set I is finite, there exist A′

i ⊆ Ai such

that M = A⊕ (
⊕

i∈I A
′
i ).

In this article we investigate some elementary properties of refinement rings. In Section 2 it is shown

that every projective-free ring is a refinement ring and we make an example of a refinement ring that is not

projective-free. We also construct an example of a ring that is not a refinement ring. We prove that if R is a

refinement ring then every finitely generated projective left R -module is isomorphic to a direct sum of left ideals

generated by idempotents. We show that for any ring R such that finitely generated projective R -modules

lift modulo J(R), R is a refinement ring if and only if R
J(R) is a refinement ring. Finally, we prove that the

refinement property is closed under the finite direct product and Morita equivalent.

Throughout, all rings are associative with identity and all modules are unitary left R-modules. For

any ring R , FP (R) denotes the set of all finitely generated projective left R -modules, V (R) the monoid of
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isomorphic classes [P ] of finitely generated projective left R -modules whose addition is defined by [P ] + [Q] =

[P ⊕Q] , and Mn(R) the ring of all n× n matrices over R .

2. Refinement rings

We begin this section by recalling the concept of projective-free rings that is central to our work (for more

information, see [5]).

Following Cohn [6], a ring R with invariant basis property is said to be projective-free if every finitely

generated projective R -module is free.

Definition 2.1 A ring R is said to be right (left) refinement if the monoid of finitely generated projective right

(left) R -modules is refinement, i.e. A1 ⊕ A2
∼= B1 ⊕ B2 implies that there exist R-modules Cij , 1 ⩽ i, j ⩽ 2

such that Ai
∼= Ci1 ⊕ Ci2 and Bj

∼= C1j ⊕ C2j .

As there exists a duality functor HomR(−, R) between the category of finitely generated projective left

R -modules and the category of finitely generated projective right R -modules, every right refinement ring is left

refinement and conversely, so we use refinement instead of right or left refinement.

In 1964, Crawley and Jonsson [7] proved that the monoid of finitely generated projective modules of every

exchange ring has the refinement property. It is also easy to see that every projective-free ring is a refinement

ring. However, in the following example we see that every refinement ring is not always projective-free or

exchange.

Example 2.2 If R = M2(R) , where R is the ring of real numbers, then R is a refinement ring, but it is not

projective-free. Also, Z (the ring of integer numbers) is a refinement ring that is not exchange.

Proof As R is a field, it is also a refinement ring. We will see later that the refinement property is Morita

invariant, so R is a refinement ring. Also, R2 is a projective left R -module that it is not free, so R is not

projective-free. On the other hand, Z is projective-free and so refining, but it cannot be an exchange ring. To

see this, notice that Z is commutative with no nontrivial idempotents. If it is an exchange ring, then by [15,

Theorem 1], it must be a local ring. 2

We see that the class of refinement rings is very large, so it is not easy to find a ring that does not have

the refinement property. Here we give an example of a monoid that is not refined.

Example 2.3 If M = {0, 1, 1
2} , where 1 + 1 = 1 + 0 = 1 + 1

2 = 1
2 + 1 = 1

2 + 1
2 = 1 , then (M,+, 0) is a

commutative monoid that is not refined, because the equation 1 + 1 = 1
2 + 1

2 cannot be refined.

To find a ring that is not a refinement ring, we use Bergman’s Theorem [3].

Bergman’s Theorem

Let K be a field and M be a commutative monoid with a distinguished element 1 ̸= 0 such that:

(1) ∀x, y ∈ M,x+ y = 0 ⇒ x = y = 0.

(2) ∀x ∈ M, ∃y ∈ M such that x+ y = n · 1 for some n ∈ N .

Then there exists a hereditary K -algebra R such that V (R) ∼= M as monoid [3].
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It is straightforward to verify that the monoid M = {0, 1, 1
2} of Example 2.3 satisfies the hypotheses of

Bergman’s Theorem. So we have the following:

Proposition 2.4 There is a ring that is not a refinement ring.

Proof It is enough to consider the ring that is obtained by applying Bergman’s Theorem to the monoid

constructed in Example 2.3. 2

Now we give an example from [8] of a refinement monoid that has a nonrefinement submonoid.

Example 2.5 Let A = {0, 1, 2, · · · , n, n+1, · · · } (the set of all nonnegative integers), and B = {0, 2, 3, · · · , n, n+
1, · · · } , and (A, 0,+) and (B, 0,+) are two monoids where B is a submonoid of A and A is a refinement

monoid, while B is not, since 2 + 4 = 3 + 3 cannot be refined.

The previous example shows that the submonoid of a refinement monoid is not necessarily a refinement
one.

In 1972 Warfield [16] proved that over any exchange ring every projective module is isomorphic to a direct

sum of cyclic left ideals that are generated by idempotents; we have the same statement for projective modules

over refinement rings.

Theorem 2.6 Let R be a refinement ring; then every finitely generated projective left R -module is isomorphic

to a direct sum of cyclic left ideals that are generated by idempotent elements.

Proof Let P be a finitely generated projective R -module; then P ⊕ Q ∼= Rn for some positive integer

n and some R -module Q . As R is a refinement ring, there are projective left R -modules I1, I2, · · · , In and

J1, J2, · · · , Jn , such that I1⊕I2⊕· · ·⊕In ∼= P , J1⊕J2⊕· · ·⊕Jn ∼= Q and I1⊕J1 ∼= R, I2⊕J2 ∼= R · · · In⊕Jn ∼= R .

Thus, there are ei = e2i ∈ R such that Rei ∼= Ii for all i = 1, 2, · · · , n . Hence, we have P =
∑n

i=1 Rei . 2

Corollary 2.7 Let A1, · · · , An be finitely projective right modules over a refinement ring R . Then there exist

orthogonal idempotents e1, · · · , ek ∈ R and nonnegative integers tij such that each Ai
∼= ti1(e1R)⊕· · ·⊕tik(ekR).

Proof By an application of Theorem 2.6, the proof is exactly similar to the proof of [13, Theorem 2.1] 2

Lemma 2.8 Let B and C be finitely generated projective R -modules over a commutative refinement ring R .

If B/BP ∼= C/CP for all prime ideal P of R , then B ∼= C .

Proof By Corollary 2.7, there exist orthogonal idempotents e1, · · · , ek ∈ R such that B ∼= t11(e1R) ⊕ · · · ⊕
t1k(ekR) and C ∼= t21(e1R) ⊕ · · · ⊕ t2k(ekR). If B ≇ C , then we have an index j such that ej ̸= 0 and

t1j ̸= t2j . As the intersection of all prime ideals of R (i.e. prime radical) is nil, we can find a prime ideal

P of R such that ej ̸∈ P ; otherwise, ej ∈ R is nilpotent, and hence ej = 0. On the other hand, for each

i ̸= j , eiej = 0 ∈ P , and then ei ∈ P . This shows that B/BP ∼= t1j(R/P ) and C/CP ∼= t2j(R/P ). As R is

commutative, we easily get t1j = t2j , which is absurd. This completes the proof. 2

Theorem 2.9 Let R be a commutative refinement ring. For any A,B,C in FP(R) and any n ∈ N , we have:

(1) If nA ∼= nB then, A ∼= B .

(2) If A⊕B ∼= A⊕ C then, B ∼= C .
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Proof Suppose that nB ∼= nC (n ≥ 1). Let P be a prime ideal of R . Then n(B/BP ) ∼= n(C/CP ). In view

of Corollary 2.7, there exist orthogonal idempotents e1, · · · , em ∈ R and nonnegative integers tij such that B ∼=
t11(e1R)⊕· · ·⊕ t1m(emR) and C ∼= t21(e1R)⊕· · ·⊕ t2m(emR). As ei(1−ei) ∈ P , we see that ei = 0, 1 in R/P .

Let ei = 1 (1 ≤ i ≤ k) and ei = 0 (k+1 ≤ i ≤ m). Then B/BP ∼= B ⊗R (R/P ) ∼= (t11 + · · ·+ t1k)(R/P ) and

C/CP ∼= C⊗R(R/P ) ∼= (t21+· · ·+t2k)(R/P ). This shows that n(t11+· · ·+t1k)(R/P ) ∼= n(t21+· · ·+t2k)(R/P ).

As R is commutative, we get n(t11+ · · ·+ t1k) = n(t21+ · · ·+ t2k). We infer that t11+ · · ·+ t1k = t21+ · · ·+ t2k ,

and so B/BP ∼= C/CP . Therefore, B ∼= C , in terms of Lemma 2.8.

(2) Suppose that A⊕ B ∼= A⊕ C . Since R is commutative, it follows by [5, page 291] that nB ∼= nC

for some n ≥ 1. In light of (1), we get B ∼= C . 2

We recall that a module M is said to be stably free if there exist finitely generated free modules F , F ′

such that M ⊕ F ′ ∼= F .

Corollary 2.10 Every stably free module over a commutative refinement ring is free.

Proof Let M be a stable free module over a commutative ring R . Write M ⊕mR ∼= nR(m,n ≥ 1). Then

n ≥ m as R is commutative. Hence, M ⊕mR ∼= (n−m)R⊕mR . In view of Theorem 2.9, M ∼= (n−m)R , as

desired. 2

By Theorem 2.9, to show that a commutative ring R is not a refinement ring, it is enough to show that

the monoid of finitely generated projective R -modules does not have the n -cancellation property.

Example 2.11 Let R = Z[
√
−5] and P = 2R + 2(1 +

√
−5) . Then we have 2R ∼= 2P as R -module, but

R ≇ P . (See, e.g., Example 2.19D of [10] .)

Example 2.12 Let R = Z[
√
−5], S = Q[

√
−5] , and T = Z[X] . It is easy to show that R is a quotient of T

and a subring of S . Also, S, T are projective-free, so they are refinement rings, but R is not a refinement ring.

As R is a commutative ring that does not have the n-cancellation property, it is not a refinement ring.

Definition 2.13 Let I be a two-sided ideal of a ring R . We say that every finitely generated projective module

lifts modulo I , if for every finitely generated projetive R
I -module Q, there exists a finitely generated projective

R -module P such that P
IP

∼= Q .

In 1977 Nicholson proved that a ring R is an exchange ring if and only if idempotents can be lifted

modulo J(R) and R
J(R) has the exchange property [12]. We extend this assertion with a small change for the

refinement property.

Theorem 2.14 Let R be a ring such that finitely generated projective R -modules lift modulo J(R) . Then R

is a refinement ring if and only if R
J(R) is a refinement ring.

Proof Let R be a refinement ring. Suppose that P ′
1 ⊕ P ′

2
∼= Q′

1 ⊕ Q′
2 as finitely generated projective left

R
J(R) -modules. As every finitely generated projective R -module lifts modulo J(R), then there are P1, P2, Q1
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and Q2 ∈ FP (R) such that P1

J(R)P1

∼= P ′
1,

P2

J(R)P2

∼= P ′
2,

Q1

J(R)Q1

∼= Q′
1 and Q2

J(R)Q2

∼= Q′
2 . Thus, we have:

P1

J(R)P1
⊕ P2

J(R)P2

∼=
Q1

J(R)Q1
⊕ Q2

J(R)Q2

⇒ P1 ⊕ P2

J(R)(P1 ⊕ P2)

∼=
Q1 ⊕Q2

J(R)(Q1 ⊕Q2)
.

Since J(R) is a superfluous ideal, we have by [2, Theorem 5] P1⊕P2
∼= Q1 ⊕Q2 . Since R is a refinement ring,

there are P11, P12, Q11, and Q12 such that

P1
∼= P11 ⊕ P12, P2

∼= Q11 ⊕Q12

and
P11 ⊕Q11

∼= Q1, P12 ⊕Q12
∼= Q2.

We then get:

P11 ⊕ P12

J(R)(P11 ⊕ P12)
∼=

P1

J(R)(P1)
,

Q11 ⊕Q12

J(R)(Q11 ⊕Q12
) ∼=

P2

J(R)P2
.

Thus,

P ′
1
∼=

P1

J(R)P1

∼=
P11

J(R)P11
⊕ P12

J(R)P12
,

P ′
2
∼=

P2

J(R)P2

∼=
Q11 ⊕Q12

J(R)(Q11 ⊕Q12)
,

Q′
1
∼=

Q1

J(R)Q1

∼=
P11

J(R)P11
⊕ Q11

J(R)Q11
,

Q′
2
∼=

Q2

J(R)Q2

∼=
P12

J(R)P12
⊕ Q12

J(R)Q12
.

Then R
J(R) is a refinement ring.

Conversely, assume that R
J(R) is a refinement ring, and suppose that P1⊕P2

∼= Q1⊕Q2 , for P1, P2, Q1, Q2 ∈

FP (R). We have:

P1 ⊕ P2

J(R)(P1 ⊕ P2)
∼=

Q1 ⊕Q2

J(R)(Q1 ⊕Q2)
∼=

P1

J(R)P1
⊕ P2

J(R)P2

∼=
Q1

J(R)Q1
⊕ Q2

J(R)Q2
.

Since R
J(R) is a refinement ring, there are P ′

1, P
′
2, Q

′
1 and Q′

2 ∈ FP ( R
J(R) ) such that

P1

J(R)P1

∼= P ′
1 ⊕ P ′

2,
P2

J(R)P2

∼= Q′
1 ⊕Q′

2,
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Q1

J(R)Q1

∼= P ′
1 ⊕Q′

1,
Q2

J(R)Q2

∼= P ′
2 ⊕Q′

2.

As every finitely generated projective R -module lifts modulo J(R), there exist finitely generated projective

R -modules P11, P12, Q11, and Q12 such that P11

J(R)P11

∼= P ′
1,

P12

J(R)P12

∼= P ′
2,

Q11

J(R)Q11

∼= Q′
1 , and

Q12

J(R)Q22

∼= Q′
2 ,

and then
P1

J(R)P1

∼=
P11

J(R)P11
⊕ P12

J(R)P12

∼=
P11 ⊕ P12

J(R)(P11 ⊕ P12)
,

P2

J(R)P2

∼=
Q11

J(R)Q11
⊕ Q12

J(R)Q12

∼=
Q11 ⊕Q12

J(R)(Q11 ⊕Q12)
,

Q1

J(R)Q1

∼=
P11

J(R)P11
⊕ Q11

J(R)Q11

∼=
P11 ⊕Q11

J(R)(P11 ⊕Q11)
,

Q2

J(R)Q2

∼=
P12

J(R)P12
⊕ Q12

J(R)Q12

∼=
P12 ⊕Q12

J(R)(P12 ⊕Q12)
.

Again by [2, Theorem 5],

P1
∼= P11 ⊕ P12 , P2

∼= Q11 ⊕Q12

Q1
∼= P11 ⊕Q11 , Q2

∼= P12 ⊕Q12.

2

Lemma 2.15 If I is a two-sided ideal of a ring R such that every idempotent can be lifted modulo I and R
I

be a refinement ring, then every finitely generated projective R-module lifts modulo I.

Proof Let Q be a finitely generated projective R
I -module. As R

I is a refinement ring, then by Theorem 2.6,

Q ∼=
⊕n

i=1
R
I ei ∼=

⊕n
i=1

R
I (ei + I). Since idempotents lift modulo I , there exist f2

i = fi ∈ R, i = 1, 2, · · · , n

such that ei − fi ∈ I , so
⊕n

i=1
R
I (ei + I) ∼=

⊕n
i=1

R
I (fi + I) ∼=

⊕n
i=1 Rfi⊕n

i=1 I(Rfi)
∼= P

IP for some finitely generated

projective R -module P . 2

Theorem 2.16 Let I be a two-sided ideal of a ring R contained in J(R) such that every idempotent of R lifts

modulo I and R
I be a refinement ring. Then R is a refinement ring.

Proof As I ⊆ J(R), we can easily verify that I is a superfluous ideal. Also, every idempotent lifts modulo

J(R). Therefore, the result follows from Theorem 2.14 and Lemma 2.15. 2

Corollary 2.17 Let I be a nil ideal of a ring R . If R
I is refinement ring, then R is a refinement ring.

Proof Since I is a nil ideal then we have by [14, Lemma 2] that finitely generated projective R -modules lift

modulo I . Now assume that I + K = R for some ideal K of R . Then 1 = x + y for some x ∈ I, y ∈ K .

Since I is a nil ideal of R , for some n ∈ N , we get xn = (1 − y)n = 0. Now for some y′ ∈ K we have,

(1− y)n = 1− y′ = 0. That shows that 1 = y′ and y′ ∈ K , and then K = R . Therefore, I is superfluous. An

application of Theorem 2.16 completes the proof. 2
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Corollary 2.18 Let R be a ring such that Soc2(R) is a finitely generated ideal contained in J(R) . Then R

is a refinement ring if and only if R
Soc(R) is a refinement ring.

Proof As Soc2(R) is a finitely generated ideal, we see by [14, Theorem 2] that every finitely generated

projective R -module lifts modulo Soc(R). The result follows from Theorem 2.16. 2

Now we want to investigate the refinement property under ring homomorphism.

Proposition 2.19 Let f : R −→ S and g : S −→ R be two ring homomorphisms such that gf = 1R and

Ker(g) ⊆ J(S) . Then R is a refinement ring if and only if S is a refinement ring.

Proof Let A,B,C,D ∈ FP (S) and A⊕B ∼= C ⊕D . Then A⊗g R⊕B ⊗g R ∼= C ⊗g R⊕D ⊗g R . As R is

a refinement ring, we have

A⊗g R ∼= A′ ⊕ C ′, B ⊗g R ∼= B′ ⊕D′

such that

C ⊗g R ∼= A′ ⊕B′, D ⊗g R ∼= C ′ ⊕D′.

Hence,

A⊗g R ∼= A′ ⊕ C ′ ∼= A′ ⊗R R⊕ C ′ ⊗R R

∼= A′ ⊗gf R⊕ C ′ ⊗gf R ∼= (A′ ⊗f S ⊕ C ′ ⊗f S)⊗g R.

As g is surjective, we get S
Ker(g)

∼= R . Hence,

A⊗g
S

Ker(g)
∼= (A′ ⊗f S ⊕ C ′ ⊗f S)⊗g

S

Ker(g)
.

It follows from Ker(g) ⊆ J(S) that

A ∼= A′ ⊗f S ⊕ C ′ ⊗f S.

Similarly, we get

B ∼= B′ ⊗f S ⊕D′ ⊗f S,

C ∼= A′ ⊗f S ⊕B′ ⊗f S,

D ∼= C ′ ⊗f S ⊕D′ ⊗f S.

This implies that S is a refinement ring.

Conversely, assume that for any A,B,C,D ∈ FP (R), A⊕B ∼= C ⊕D . We get

A⊗f S ⊕B ⊗f S ∼= C ⊗f S ⊕D ⊗f S.

Since S is a refinement ring, we have

A⊗f S ∼= A′ ⊕ C ′, B ⊗f S ∼= B′ ⊕D′.

Also,

C ⊗f S ∼= A′ ⊕B′, D ⊗f S ∼= C ′ ⊕D′.
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It follows from A⊗f S ∼= A′ ⊕ C ′ that

A⊗gf R ∼= A⊗f S ⊗g R ∼= A′ ⊗g R⊕ C ′ ⊗g R.

As gf = 1, we see that

A ∼= A′ ⊗g R⊕ C ′ ⊗g R.

Likewise, we get

B ∼= B′ ⊗g R⊕D′ ⊗g R,

C ∼= A′ ⊗g R⊕B′ ⊗g R,

D ∼= C ′ ⊗g R⊕D′ ⊗g R.

This completes the proof. 2

Corollary 2.20 For a ring R , the following statements are equivalent.

(1) R is a refinement ring.

(2) R[[x1, x2, ..., xn]] is a refinement ring.

Proof Let f : R → R[[x1, x2, ..., xn]] be defined by f(r) = r , and let g : R[[x1, x2, ..., xn]] → R be defined by

g(ϕ(x1, x2, ..., xn) = ϕ(0, 0, ..., 0). Then gf = 1R and Ker(g) ⊆ J(R[[x1, x2, ..., xn]]) . Then the result follows

from Proposition 2.19. 2

Most of the properties that we know, such as, for example, the exchange property, are Morita invariant

and closed under a finite direct product. In the next theorem we prove that these facts also hold for refinement

rings.

Theorem 2.21 Let R,R1 , and R2 be rings and let P be a finitely generated R -progenerator. Then the

following statements hold.

(1) R1 ×R2 is a refinement ring if and only if R1 and R2 are refinement rings.

(2) If R is a refinement ring, then every ring S that is Morita equivalent to R is a refinement ring. In

particular, for any full idempotent e ∈ R and any n ∈ N , eRe and Mn(R) are refinement rings.

(3) The ring EndR(P ) is a refinement ring.

(4) If the Krull–Schmidt Theorem holds for finitely generated projective R -modules, then R is a refine-

ment ring.

Proof

(1). Let R1 and R2 be refinement rings. Since V (R1 × R2) ∼= V (R1) × V (R2) and the multiplication

of two refinement monoids is refinement, then R1 × R2 is refinement. Conversely, assume that R1 × R2 is a

refinement ring. Then V (R1 ×R2) is a refinement monoid that implies that V (R1) and V (R2) are refinement

monoids. Then R1 and R2 are refinement rings.

(2). Since the V functor is invariant by Morita equivalence, the result is clear.

(3). As P is a finitely generated projective generator, P ∼= e(Rn) for some n ∈ N and e ∈ Mn(R), a

full idempotent, so End(P )R ∼= eMn(R)e , and now the assertion follows from (2).

(4). If P1 ⊕Q1
∼= P2 ⊕Q2 for P1, Q1, P2, Q2 ∈ V (R), then Pi

∼= σi(Qi), (1 ≤ i ≤ 2) for some permuta-

tion. Thus, R is a refinement ring. 2
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