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Abstract: The Sylvester matrix was first defined by JJ Sylvester. Some authors have studied the relationships between

certain orthogonal polynomials and the determinant of the Sylvester matrix. Chu studied a generalization of the Sylvester

matrix. In this paper, we introduce its 2-periodic generalization. Then we compute its spectrum by left eigenvectors

with a similarity trick.
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1. Introduction

There has been increasing interest in tridiagonal matrices in many different theoretical fields, especially in

applicative fields such as numerical analysis, orthogonal polynomials, engineering, telecommunication system

analysis, system identification, signal processing (e.g., speech decoding, deconvolution), special functions, partial

differential equations, and naturally linear algebra (see [2, 6, 7, 8, 15]). Some authors consider a general

tridiagonal matrix of finite order and then describe its LU factorization and determine the determinant and

inverse of a tridiagonal matrix under certain conditions (see [3, 9, 12, 13]).

The Sylvester type tridiagonal matrix Mn(x) of order (n+ 1) is defined as

Mn(x) =



x 1 0 0 · · · 0 0
n x 2 0 · · · 0 0

0 n− 1 x 3
. . . 0 0

...
...

. . .
. . .

. . .
. . .

...

0 0 0
. . .

. . . n− 1 0
0 0 0 0 · · · x n
0 0 0 0 · · · 1 x


and Sylvester [14] gave its determinant as

detMn(x) =

n∏
k=0

(x+ n− 2k).

∗Correspondence: tarikan@hacettepe.edu.tr

2010 AMS Mathematics Subject Classification: 15A36, 15A18, 15A15.

80
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Askey [1] showed two ways to compute the determinant of Mn(x), one matrix-theoretic and another based

on orthogonal polynomials. He also explored their connection to orthogonal polynomials. For the relationships

between orthogonal polynomials and other determinants of Sylvester type matrices related to Krawtchouk,

Hahn, and Racah polynomials, we refer to [4]. Holtz [10] showed how the determinants in [14] can be evaluated

by left eigenvectors of corresponding matrices coupled with a simple similarity trick.

Chu [5] generalized the Sylvester matrix by adding a new parameter,

Mn(x, y) =



x 1 0
n x+ y 2

n− 1 x+ 2y
. . .

. . .
. . . n− 1
2 x+ (n− 1)y n

0 1 x+ ny


,

and by using the method that Holtz used in [10] evaluated its determinant as

detMn(x, y) =
n∏

k=0

(x+
ny

2
+

n− 2k

2

√
4 + y2),

via the generalized Fibonacci sequences.

In this paper, we consider a new generalization of the tridiogonal-Sylvester matrix. Then we compute its

spectra and also determinant.

2. A periodic tridiagonal-Sylvester matrix

We define a 2-period Sylvester matrix of order (n+ 1) as follows :

An(x, y) =



x 1 0
n y 2

n− 1 x
. . .

. . .
. . . n− 1
2 an−1 (x, y) n

0 1 an (x, y)


,

where

an (x, y) =

{
x if n is even,
y if n is odd.

If we take x = y , then the matrix An(x, x) gives the Sylvester matrix Mn (x) . Kılıç [11] studied the case

y = −x .

In this paper, our main purpose is to prove the determinant formula for the matrix An(x, y) :

detAn(x, y) =


x

n/2∏
t=1

(xy − 4t2) if n is even,

⌊n/2⌋∏
t=0

(xy − (2t+ 1)2) if n is odd.
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We will frequently denote the matrix An(x, y) by An and, an (x, y) by an.

Let λ1 = 1
2 (x+ y) + 1

2δ and λ2 = 1
2 (x+ y)− 1

2δ , where δ =
√
(x− y)2 + (2n)2.

For the matrix An of order (n+ 1) with odd n , define the vectors with (n+ 1) dimension:

z+ :=
[
1 (y−x)+δ

2n 1 (y−x)+δ
2n · · · 1 (y−x)+δ

2n

]
and

z− :=
[
1 (y−x)−δ

2n 1 (y−x)−δ
2n · · · 1 (y−x)−δ

2n

]
.

For the matrix An of order (n+ 1) with even n, define the vectors with (n+ 1) dimension:

s+ :=
[
1 (y−x)+δ

2n 1 (y−x)+δ
2n · · · 1 (y−x)+δ

2n 1
]

and

s− :=
[
1 (y−x)−δ

2n 1 (y−x)−δ
2n · · · 1 (y−x)−δ

2n 1
]
.

We need the following results:

Lemma 1 For odd n > 0, the matrix An has the eigenvalues λ1 and λ2 with the corresponding left eigenvectors

z+ and z−, respectively.

Proof To prove the claim, it is sufficient to show z+An = λ1z
+ and z−An = λ2z

− . From the definition of

An , we should prove that the k th components of z±An are

z±0 x+ z±1 n = z±0 λ1,2 for k = 0,
z±n−1n+ z±n y = z±n λ1,2 for k = n,

and for 0 < k < n,

kz±k−1 + akz
±
k + (n− k)z±k+1 = z±k λ1,2,

where an is defined as before.

For the case k = 0, we get

x+ n
1

2n
[(y − x)± δ] =

1

2
(x+ y)± 1

2
δ = λ1,2,

as claimed. Now we consider the case k = n and examine the equality z+An = λ1z
+. Thus, we get

z+n λ1 =

(
(y − x) + δ

2n

)(
(x+ y) + δ

2

)
(2.1)

=
1

2n
(y2 − xy + yδ + 2n2)

= n+
y

2n
((y − x) + δ) (2.2)

= z+n−1n+ z+n y,
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as claimed. To complete the proof, we show the last case 0 < k < n . Now we examine this case under two

conditions: for even k,

kz+k−1 + xz+k + (n− k)z+k+1

= k

(
1

2n
((y − x) + δ)

)
+ x+ (n− k)

(
1

2n
((y − x) + δ)

)
= x+ n

(
1

2n
((y − x) + δ)

)
=

1

2
(x+ y) +

1

2
δ = λ1 = z+k λ1,

and for odd k,

kz±k−1 + yz±k + (n− k)z±k+1 = k + y

(
1

2n
((y − x) + δ)

)
+ (n− k)

= n+ y

(
1

2n
((y − x) + δ)

)
,

which, by equations (2.1) and (2.2), equals

(
1

2n
((y − x) + δ)

)(
1

2
((x+ y) + δ)

)
= z+k λ1.

The proof is thus completed for the case z+An = λ1z
+ . The other case, z−An = λ2z

−, can be similarly shown.
2

Lemma 2 For even n > 0, the matrix An has the eigenvalues λ1 and λ2 with the corresponding left eigen-

vectors s+ and s−, respectively.

Proof The proof can be done similar to the proof of the previous Lemma. 2

For odd n > 0, we define a (n+ 1)× (n+ 1) matrix Tn as

Tn =



z+0 z+1
... z+2 · · · z+n−1 z+n

z−0 z−1
... z−2 · · · z−n−1 z−n

· · · · · · · · · · · · · · · · · · · · ·
...

0(n−1)×2

... In−1


,

where 0(n−1)×2 is the zero matrix of order (n− 1)× 2 and In is the identity matrix of order n.
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We can obtain the inverse of the matrix Tn as follows:

T−1
n =



(x−y)+δ
2δ

δ−(x−y)
2δ

... −1 0 −1 0 · · · −1 0

n
δ −n

δ

... 0 −1 0 −1 · · · 0 −1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0(n−1)×2

...

... In−1

...


.

Thus, we can see that the matrix An is similar to the matrix En := TnAnT
−1
n via the matrix Tn as

shown:

TnAnT
−1
n =



λ1 0
... 02×(n−1)

0 λ2

...
· · · · · · · · · · · ·

n(n−1)
δ −n(n−1)

δ

...

0(n−2)×2

... Wn−1


,

where the matrix Wn−1 of order (n− 1) is given by

Wn−1 =



x 4− n 0 1− n · · · 0 1− n
n− 2 y 4 0 · · · · · · 0

0 n− 3 x 5
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . 3 y n− 1 0

...
. . . 2 x n

0 · · · · · · · · · 0 1 y


.

Considering the 2 × 2 principal submatrix of En , it is clearly seen that λ1 and λ2 are two eigenvalues

of En.

We focus on the matrix An for odd n up to now. By considering the matrix An for even n, we define

a matrix Yn of order (n+ 1) as shown:

Yn =


s+0 s+1

... s+2 · · · s+n−1 s+n

s−0 s−1
... s−2 · · · s−n−1 s−n

· · · · · · · · · · · · · · · · · · · · ·

0(n−1)×2

... In−1


,

where 0(n−1)×2 and In are defined as before.
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We also obtain the inverse matrix Y −1
n in the form

Y −1
n =


x−y+δ

2δ −x−y−δ
2δ

... −1 0 −1 · · · 0 −1

n
δ −n

δ

... 0 −1 0 · · · −1 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0(n−1)×2

... In−1

 .

Thus, the matrix An is similar to matrix Dn := YnAnY
−1
n via the matrix Yn , given by

YnAnY
−1
n =



λ1 0
... 02×(n−1)

0 λ2

...
· · · · · · · · · · · ·

n(n−1)
δ −n(n−1)

δ

...

0(n−2)×2

... Qn−1


,

where the matrix Qn−1 of order (n− 1) is given by

Qn−1 =



x 4− n 0 1− n · · · 0 1− n 0
n− 2 y 4 0 · · · · · · 0

0 n− 3 x 5
. . .

...
... 0 n− 4 y

. . .
. . .

. . .
. . .

. . . n− 2
. . .

...
. . . 3 x n− 1 0

...
. . . 2 y n

0 · · · · · · 0 1 x


.

Consequently, by the above results, the matrix An has two eigenvalues λ1 and λ2 for each n. To compute

the remaining eigenvalues of matrix An , we will give some auxiliary results.

Now we define an upper triangular matrix Un of order n as follows:

Un =



1 0 −1 0 · · · 0

1 0 −1
. . .

...

1 0
. . . 0

. . .
. . . −1
1 0

0 1


,
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and U−1
n can be found as follows for even n :

U−1
n =



1 0 1 0 · · · 1 0

1 0 1
. . . 1

1 0 0
. . .

. . .
. . .

...
. . .

. . . 1

. . . 0
0 1


.

For odd n, the matrix U−1
n takes the following form:

U−1
n =



1 0 1 0 · · · 0 1

1 0 1
. . .

. . . 0

1 0
. . .

. . .
...

. . .
. . . 1 0
1 0 1

1 0
0 1


.

Then both the matrices Wn and Qn are similar to the same tridiagonal matrix Gn of order n ; that is,

they satisfy the equations

Gn := U−1
n WnUn and Gn := U−1

n QnUn,

with

Gn =



x 1 0
n− 1 y 2

n− 2 x 3
. . .

. . .
. . .

3 an−3 n− 2
2 an−2 n− 1

0 1 an−1


and an is defined as before.

For further computations, we define a (n+ 1)× (n+ 1) matrix U via the matrix Un as follows:

U =


I2

... 02×(n−1)

· · ·
... · · ·

0(n−1)×2

... Un−1

 ,

and then it can be easily seen that

U−1 =


I2

... 02×(n−1)

· · ·
... · · ·

0(n−1)×2

... U−1
n−1

 .
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For both even and odd cases, we get

U−1EnU =



λ1 0
... 02×(n−1)

0 λ2

...
· · · · · · · · · · · ·

n(n−1)
δ −n(n−1)

δ

...

0(n−2)×2

... U−1
n−1Wn−1Un−1


and

U−1DnU =



λ1 0
... 02×(n−1)

0 λ2

...
· · · · · · · · · · · ·

n(n−1)
δ −n(n−1)

δ

...

0(n−2)×2

... U−1
n−1Qn−1Un−1


.

In general, we obtain that U−1EnU and U−1DnU are reduced to a block form:

U−1EnU = U−1DnU =



λ1 0
... 02×(n−1)

0 λ2

...
· · · · · · · · · · · ·

n(n−1)
δ −n(n−1)

δ

...

0(n−2)×2

... Gn−1


, (2.3)

where Gn is defined as before.

Up to now, the following results have been obtained:

En = TnAnT
−1
n for odd n,

Dn = YnAnY
−1
n for even n, (2.4)

Gn = U−1
n WnUn for odd n,

Gn = U−1
n QnUn for even n.

From the definition of Gn, one can see that Gn = An−1 and both U−1EnU and U−1DnU can be

rewritten in the following lower-triangular form:[
Diag(λ1, λ2) 0

∗ An−2

]
.

From (2.3) and (2.4) we get the following recurrence relation for detAn :

detA0 = x,

detA1 = xy − 1,

detAn = λ1λ2 detAn−2 = (xy − n2) detAn−2,
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for n > 1.

Therefore, we have the spectrum of the matrix An : for even n,

λ(An) =

{
1

2
(x+ y)∓ 1

2

√
(x− y)2 + (4k)2

}n/2

k=1

∪ {x}

and for odd n,

λ(An) =

{
1

2
(x+ y)∓ 1

2

√
(x− y)2 + (4k + 2)2

}⌊n/2⌋

k=0

.

By considering spectrum of the matrix An and recurrence relation of detAn, we deduce that for even n,

detAn(x, y) = x

n/2∏
t=1

(xy − (2t)2)

and for odd n,

detAn(x, y) =

⌊n/2⌋∏
t=0

(xy − (2t+ 1)2).

As we stated earlier, if we take x = y, then for even n,

detAn(x, x) = x

n/2∏
t=1

(x2 − (2t)2)

and for odd n,

detAn(x, x) =

⌊n/2⌋∏
t=0

(x2 − (2t+ 1)2),

which, by combining, give us the single formula

detAn(x, x) =

n∏
k=0

(x+ n− 2k),

which is equal to detMn (x) .

Note that if we take y = −x then we obtain the results in [11].
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