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Abstract: The Sylvester matrix was first defined by JJ Sylvester. Some authors have studied the relationships between
certain orthogonal polynomials and the determinant of the Sylvester matrix. Chu studied a generalization of the Sylvester
matrix. In this paper, we introduce its 2-periodic generalization. Then we compute its spectrum by left eigenvectors

with a similarity trick.
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1. Introduction

There has been increasing interest in tridiagonal matrices in many different theoretical fields, especially in
applicative fields such as numerical analysis, orthogonal polynomials, engineering, telecommunication system
analysis, system identification, signal processing (e.g., speech decoding, deconvolution), special functions, partial
differential equations, and naturally linear algebra (see [2, 6, 7, 8, 15]). Some authors consider a general
tridiagonal matrix of finite order and then describe its LU factorization and determine the determinant and
inverse of a tridiagonal matrix under certain conditions (see [3, 9, 12, 13]).

The Sylvester type tridiagonal matrix M, (x) of order (n+ 1) is defined as

T 1 0 O 0 0
n x 2 0 0 0
0 n—1 =z 3 0 0
M, (x) =
0 0 0 n—1 0
0 0 0 0 T n
0 0 0 0 1 oz
and Sylvester [14] gave its determinant as

det M, (z) = ﬁ(m +n — 2k).
k=0
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Askey [1] showed two ways to compute the determinant of M, (), one matrix-theoretic and another based
on orthogonal polynomials. He also explored their connection to orthogonal polynomials. For the relationships
between orthogonal polynomials and other determinants of Sylvester type matrices related to Krawtchouk,
Hahn, and Racah polynomials, we refer to [4]. Holtz [10] showed how the determinants in [14] can be evaluated
by left eigenvectors of corresponding matrices coupled with a simple similarity trick.

Chu [5] generalized the Sylvester matrix by adding a new parameter,

[z 1 0
n r+y 2
n—1 x+2
My (z.y) = ! :
n—1

2 z+(n—-1)y n

| 0 1 T+ ny |

and by using the method that Holtz used in [10] evaluated its determinant as

- -2k ——
k=0

via the generalized Fibonacci sequences.
In this paper, we consider a new generalization of the tridiogonal-Sylvester matrix. Then we compute its

spectra and also determinant.

2. A periodic tridiagonal-Sylvester matrix

We define a 2-period Sylvester matrix of order (n+ 1) as follows :

T 1 0
n Y 2
n—1 =
An(z,y) = :
n—1
2 Ap—1 (‘r7y) n
L 0 1 an (2,y) |

where
x if n is even,

an (2,y) = { y if n is odd.

If we take & = y, then the matrix A, (z,x) gives the Sylvester matrix M, (z). Kilig [1 1] studied the case
y=—x.

In this paper, our main purpose is to prove the determinant formula for the matrix A, (x,y) :

n/2
x [] (vy — 4t%) if n is even,
t=1
det A, (x,y) =
ln/2]
[T (zy — (2t +1)%) if nis odd.
=0
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We will frequently denote the matrix A, (z,y) by A, and, a, (z,y) by a,.
Let Ay = 4(z +y) + 36 and Ay = 3(x +y) — 30, where § = \/(z — y)% + (2n)2.
For the matrix A,, of order (n+ 1) with odd n, define the vectors with (n + 1) dimension:

and
z7 = [ 1 (y;g;)*é 1 (;,722)76 e 1 (972‘7275 ]
For the matrix A,, of order (n+ 1) with even n, define the vectors with (n + 1) dimension:
stim[1 Lol g sy et ]
and
8_::[1 % 1 % e 1 W 1}.

We need the following results:

Lemma 1 For odd n > 0, the matriz A, has the eigenvalues A\ and Ao with the corresponding left eigenvectors
2T and 2=, respectively.
Proof To prove the claim, it is sufficient to show 2zt A, = A\ 2T and 2~ A, = A3z~ . From the definition of

A,, , we should prove that the kth components of z*A,, are

izoia: +2iin =2E N, for k=0,
n+zify=2f\o for k=n,

Zn—1

and for 0 < k < n,

+ + + +
kzj_ | +agz; +(n— k)zk+1 = 2 A\1,2,

where a,, is defined as before.

For the case k =0, we get
:17+77,f[( — )i(‘)‘]:,( + ):I:f(;:/\Q
m Yy Y 9 x Yy 9 1,25

as claimed. Now we consider the case k = n and examine the equality 2T A,, = A\2T. Thus, we get

Zi/\lz((y2:2)+6> ((:c+g)+6> 2.1)

1
= %(y2 — zy + yd + 2n?)

=n+ - ((y—2) +9) (2.2)

— 7t +
=z, +2,Y,
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as claimed. To complete the proof, we show the last case 0 < k£ < n. Now we examine this case under two

conditions: for even k,
kz | +axz 4+ (n— k)z,';_l
= (=) +8)) + ot (=) (5 (=) +0)
=k (y—z x+ (n 5, ((y—
=t (5 (=) +9)
=z+n{5-((y-=z

1 1
and for odd &,

1
kz,:f_l —Hulzki +(n— k‘)z,irl =k+y <%((y —x)+ 6)) +(n—k)

1
0ty (-0 +9).
which, by equations (2.1) and (2.2), equals

(3 -2 +9) (3@+0+0) =n.

The proof is thus completed for the case 2T A,, = A\;2zT. The other case, 2z~ A,, = A\y2~, can be similarly shown.
O

Lemma 2 For even n > 0, the matriz A, has the eigenvalues A1 and Ay with the corresponding left eigen-

vectors st and s~, respectively.
Proof The proof can be done similar to the proof of the previous Lemma. O

For odd n > 0, we define a (n+ 1) x (n+ 1) matrix T,, as

+ + + + +
20 21 Z2 Zp-1 #
Zg Zy Z9 Zp—1 Zn
T, = ... ’
L 0(n—1)><2 : I J

where 0(,,_1)x2 is the zero matrix of order (n — 1) x 2 and I, is the identity matrix of order n.
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We can obtain the inverse of the matrix T,, as follows:

[ z—y)+0 6—(z— :
&y rw) i 1 0 —100 -1 0
n ~n 0 -1 0 -1 0 -1
T, =
" O(n—1)x2
Infl

Thus, we can see that the matrix A, is similar to the matrix E, := T, A,T, L via the matrix 7T, as

shown:
A 0 D Oax(n—1)
0 Ao
TnAnTrjl = e 3
n(n—1) _n(n—=1)
o 8
L O(n—2)x2 Wi |

where the matrix W,,_; of order (n — 1) is given by

[ 4—n 0 1-—n 0 1—n
n—2 Y 4 0 0
0 n—3 = 5
Wn—1:
3 y n-—1 0
: T n
L O 0 1 y o

Considering the 2 x 2 principal submatrix of E, , it is clearly seen that A\; and Ay are two eigenvalues

of E,,.
We focus on the matrix A, for odd n up to now. By considering the matrix A, for even n, we define

a matrix Y,, of order (n + 1) as shown:

+ + + + +
50 51 S2 Sp—1 Sn
So S So N s
0 1 2 n—1 Sn
L 0(n—1)><2 Iy i

where 0¢,_1)x2 and I, are defined as before.
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We also obtain the inverse matrix Y, ! in the form

rd rd -1 0 -1 0 -1
yol— 2 -n 0 -1 0 -1 0
0(n—1)><2 I

Thus, the matrix A,, is similar to matrix D,, :=Y,,A,,Y,"! via the matrix Y,,, given by

Al 0 02><(n71)
0 A :
Y, A, Y, = 2 ’
n(n—1) __n(n—1)
s 5
L O(n—2)x2 C Quor

where the matrix @,—1 of order (n — 1) is given by

r x 4—n 0 1—n 0 1—-n 07
n—2 y 4 0 0
0 n—3 T 5

Qn—l =

Consequently, by the above results, the matrix A,, has two eigenvalues A\; and A, for each n. To compute

the remaining eigenvalues of matrix A, , we will give some auxiliary results.

Now we define an upper triangular matrix U, of order n as follows:

10 -1 0 - 0
1 0 -1 :

U, = 1 0 0 |,
-1
1 0

| 0 I

85



KILIC and ARIKAN/Turk J Math

and U, ! can be found as follows for even n :

101 0 1 0]
10 1 1
1 0
Ut =
1
.0
L O 1]

For odd n, the matrix U, ! takes the following form:

(101 0 -~ 0 1
1o 1 . .0

1 0

Ut =

1 0
1 0 1
10
_0 1_

Then both the matrices W,, and Q,, are similar to the same tridiagonal matrix G,, of order n; that is,
they satisfy the equations
G, :=U'W,U, and G, :=U,'Q,U,,
with

3 ap_3 n—2
2 Ap_o n—1
0 1 Ap—1 i

and a,, is defined as before.

For further computations, we define a (n + 1) x (n + 1) matrix U via the matrix U, as follows:

L 5 Oaxn
U= : ,
0(n,—1)><2 Unfl
and then it can be easily seen that
I 02><(n—1)
U*l _ .
O(n—1)x2 Ut
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For both even and odd cases, we get

A1 0 02><(n71)
0 A2 :
U'E,U = e
n(n—1) _n(n-1)
6 o
L 0(n72)><2 U»;,llwnflUnfl _
and
A 0 025 (n—1)
0 A2 :
U'D,U = .
n(n—1) _n(n=1)
o 0
L 0(n—2)><2 UnifllanlUnfl J

In general, we obtain that U~ 'E, U and U~'D,U are reduced to a block form:

A1 0 D Oax(n-1)
0 As :
U'E,U=U"'D,U = , (2.3)
n(n—1) _n(n-1)
5 5
L O(n—2)x2 : Gn-1 |

where G,, is defined as before.

Up to now, the following results have been obtained:
E, =T,A, T, " for odd n,
D, =Y,A,Y, ' for even n, (2.4)
G, = U, 'W,U, for odd n,
G, = Un_lQnUn for even n.

From the definition of G, one can see that G, = A,_; and both U 'E,U and U~'D,U can be

rewritten in the following lower-triangular form:

Diag()\l, )\2) 0
* An—2

From (2.3) and (2.4) we get the following recurrence relation for det A, :
det Ag = z,
det Ay = zy — 1,

det A, = A Aadet A,—o = (xy — n2) det A,,_o,
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for n > 1.
Therefore, we have the spectrum of the matrix A, : for even n,

/2

M) = {5+ F VTP AP Ufa)

n
k=

and for odd n,
[n/2]

M) = {50 F g/ 2R

By considering spectrum of the matrix A,, and recurrence relation of det A,,, we deduce that for even n,

n/2
det A, (x,y) = xH(xy —(2t)?)
t=1
and for odd n,
[n/2]
det A, (z,y) = H (zy — (2t +1)?).

t=0

As we stated earlier, if we take x = y, then for even n,

n/2
det A, (z,x) = xH(an —(2t)?)
t=1
and for odd n,
[n/2]
det A, (z,2) = H (x? — (2t + 1)),
t=0

which, by combining, give us the single formula

n

det A, (z,2) = H(m +n—2k),

k=0
which is equal to det M, (x).
Note that if we take y = —z then we obtain the results in [11].
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