Turk J Math
(2016) 40: $80-89$
(C) TÜBİTAK
doi:10.3906/mat-1503-46

Evaluation of spectrum of 2-periodic tridiagonal-Sylvester matrix

Emrah KILIÇ ${ }^{1}$, Talha ARIKAN ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, TOBB Economics and Technology University, Ankara, Çankaya, Turkey
${ }^{2}$ Department of Mathematics, Hacettepe University, Ankara, Çankaya, Turkey

| Received: 13.03 .2015 | Accepted/Published Online: 19.07 .2015 | Final Version: 01.01 .2016 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

The Sylvester matrix was first defined by JJ Sylvester. Some authors have studied the relationships between certain orthogonal polynomials and the determinant of the Sylvester matrix. Chu studied a generalization of the Sylvester matrix. In this paper, we introduce its 2 -periodic generalization. Then we compute its spectrum by left eigenvectors with a similarity trick.

Key words: Sylvester matrix, spectrum, determinant

1. Introduction

There has been increasing interest in tridiagonal matrices in many different theoretical fields, especially in applicative fields such as numerical analysis, orthogonal polynomials, engineering, telecommunication system analysis, system identification, signal processing (e.g., speech decoding, deconvolution), special functions, partial differential equations, and naturally linear algebra (see $[2,6,7,8,15]$). Some authors consider a general tridiagonal matrix of finite order and then describe its LU factorization and determine the determinant and inverse of a tridiagonal matrix under certain conditions (see [3, 9, 12, 13]).

The Sylvester type tridiagonal matrix $M_{n}(x)$ of order $(n+1)$ is defined as

$$
M_{n}(x)=\left[\begin{array}{ccccccc}
x & 1 & 0 & 0 & \cdots & 0 & 0 \\
n & x & 2 & 0 & \cdots & 0 & 0 \\
0 & n-1 & x & 3 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & \ddots & n-1 & 0 \\
0 & 0 & 0 & 0 & \cdots & x & n \\
0 & 0 & 0 & 0 & \cdots & 1 & x
\end{array}\right]
$$

and Sylvester [14] gave its determinant as

$$
\operatorname{det} M_{n}(x)=\prod_{k=0}^{n}(x+n-2 k)
$$

[^0]Askey [1] showed two ways to compute the determinant of $M_{n}(x)$, one matrix-theoretic and another based on orthogonal polynomials. He also explored their connection to orthogonal polynomials. For the relationships between orthogonal polynomials and other determinants of Sylvester type matrices related to Krawtchouk, Hahn, and Racah polynomials, we refer to [4]. Holtz [10] showed how the determinants in [14] can be evaluated by left eigenvectors of corresponding matrices coupled with a simple similarity trick.

Chu [5] generalized the Sylvester matrix by adding a new parameter,

$$
M_{n}(x, y)=\left[\begin{array}{cccccc}
x & 1 & & & & 0 \\
n & x+y & 2 & & & \\
& n-1 & x+2 y & \ddots & & \\
& & \ddots & \ddots & n-1 & \\
& & & 2 & x+(n-1) y & n \\
0 & & & & 1 & x+n y
\end{array}\right]
$$

and by using the method that Holtz used in [10] evaluated its determinant as

$$
\operatorname{det} M_{n}(x, y)=\prod_{k=0}^{n}\left(x+\frac{n y}{2}+\frac{n-2 k}{2} \sqrt{4+y^{2}}\right)
$$

via the generalized Fibonacci sequences.
In this paper, we consider a new generalization of the tridiogonal-Sylvester matrix. Then we compute its spectra and also determinant.

2. A periodic tridiagonal-Sylvester matrix

We define a 2 -period Sylvester matrix of order $(n+1)$ as follows :

$$
A_{n}(x, y)=\left[\begin{array}{cccccc}
x & 1 & & & & 0 \\
n & y & 2 & & & \\
& n-1 & x & \ddots & & \\
& & \ddots & \ddots & n-1 & \\
& & & 2 & a_{n-1}(x, y) & n \\
0 & & & & 1 & a_{n}(x, y)
\end{array}\right]
$$

where

$$
a_{n}(x, y)= \begin{cases}x & \text { if } n \text { is even } \\ y & \text { if } n \text { is odd }\end{cases}
$$

If we take $x=y$, then the matrix $A_{n}(x, x)$ gives the Sylvester matrix $M_{n}(x)$. Kılıç [11] studied the case $y=-x$.

In this paper, our main purpose is to prove the determinant formula for the matrix $A_{n}(x, y)$:

$$
\operatorname{det} A_{n}(x, y)= \begin{cases}x \prod_{t=1}^{n / 2}\left(x y-4 t^{2}\right) & \text { if } n \text { is even } \\ \prod_{t=0}^{\lfloor n / 2\rfloor}\left(x y-(2 t+1)^{2}\right) & \text { if } n \text { is odd. }\end{cases}
$$

KILIÇ and ARIKAN/Turk J Math

We will frequently denote the matrix $A_{n}(x, y)$ by A_{n} and, $a_{n}(x, y)$ by a_{n}.
Let $\lambda_{1}=\frac{1}{2}(x+y)+\frac{1}{2} \delta$ and $\lambda_{2}=\frac{1}{2}(x+y)-\frac{1}{2} \delta$, where $\delta=\sqrt{(x-y)^{2}+(2 n)^{2}}$.
For the matrix A_{n} of order $(n+1)$ with odd n, define the vectors with $(n+1)$ dimension:

$$
z^{+}:=\left[\begin{array}{lllllll}
1 & \frac{(y-x)+\delta}{2 n} & 1 & \frac{(y-x)+\delta}{2 n} & \cdots & 1 & \frac{(y-x)+\delta}{2 n}
\end{array}\right]
$$

and

$$
z^{-}:=\left[\begin{array}{lllllll}
1 & \frac{(y-x)-\delta}{2 n} & 1 & \frac{(y-x)-\delta}{2 n} & \cdots & 1 & \frac{(y-x)-\delta}{2 n}
\end{array}\right] .
$$

For the matrix A_{n} of order $(n+1)$ with even n, define the vectors with $(n+1)$ dimension:

$$
s^{+}:=\left[\begin{array}{llllllll}
1 & \frac{(y-x)+\delta}{2 n} & 1 & \frac{(y-x)+\delta}{2 n} & \cdots & 1 & \frac{(y-x)+\delta}{2 n} & 1
\end{array}\right]
$$

and

$$
s^{-}:=\left[\begin{array}{llllllll}
1 & \frac{(y-x)-\delta}{2 n} & 1 & \frac{(y-x)-\delta}{2 n} & \cdots & 1 & \frac{(y-x)-\delta}{2 n} & 1
\end{array}\right] .
$$

We need the following results:

Lemma 1 For odd $n>0$, the matrix A_{n} has the eigenvalues λ_{1} and λ_{2} with the corresponding left eigenvectors z^{+}and z^{-}, respectively.

Proof To prove the claim, it is sufficient to show $z^{+} A_{n}=\lambda_{1} z^{+}$and $z^{-} A_{n}=\lambda_{2} z^{-}$. From the definition of A_{n}, we should prove that the k th components of $z^{ \pm} A_{n}$ are

$$
\begin{aligned}
z_{0}^{ \pm} x+z_{1}^{ \pm} n & =z_{0}^{ \pm} \lambda_{1,2} \quad \text { for } k=0 \\
z_{n-1}^{ \pm} n+z_{n}^{ \pm} y & =z_{n}^{ \pm} \lambda_{1,2} \quad \text { for } k=n
\end{aligned}
$$

and for $0<k<n$,

$$
k z_{k-1}^{ \pm}+a_{k} z_{k}^{ \pm}+(n-k) z_{k+1}^{ \pm}=z_{k}^{ \pm} \lambda_{1,2}
$$

where a_{n} is defined as before.
For the case $k=0$, we get

$$
x+n \frac{1}{2 n}[(y-x) \pm \delta]=\frac{1}{2}(x+y) \pm \frac{1}{2} \delta=\lambda_{1,2}
$$

as claimed. Now we consider the case $k=n$ and examine the equality $z^{+} A_{n}=\lambda_{1} z^{+}$. Thus, we get

$$
\begin{align*}
z_{n}^{+} \lambda_{1} & =\left(\frac{(y-x)+\delta}{2 n}\right)\left(\frac{(x+y)+\delta}{2}\right) \tag{2.1}\\
& =\frac{1}{2 n}\left(y^{2}-x y+y \delta+2 n^{2}\right) \\
& =n+\frac{y}{2 n}((y-x)+\delta) \tag{2.2}\\
& =z_{n-1}^{+} n+z_{n}^{+} y
\end{align*}
$$

as claimed. To complete the proof, we show the last case $0<k<n$. Now we examine this case under two conditions: for even k,

$$
\begin{aligned}
& k z_{k-1}^{+}+x z_{k}^{+}+(n-k) z_{k+1}^{+} \\
& =k\left(\frac{1}{2 n}((y-x)+\delta)\right)+x+(n-k)\left(\frac{1}{2 n}((y-x)+\delta)\right) \\
& =x+n\left(\frac{1}{2 n}((y-x)+\delta)\right) \\
& =\frac{1}{2}(x+y)+\frac{1}{2} \delta=\lambda_{1}=z_{k}^{+} \lambda_{1}
\end{aligned}
$$

and for odd k,

$$
\begin{aligned}
k z_{k-1}^{ \pm}+y z_{k}^{ \pm}+(n-k) z_{k+1}^{ \pm} & =k+y\left(\frac{1}{2 n}((y-x)+\delta)\right)+(n-k) \\
& =n+y\left(\frac{1}{2 n}((y-x)+\delta)\right)
\end{aligned}
$$

which, by equations (2.1) and (2.2), equals

$$
\left(\frac{1}{2 n}((y-x)+\delta)\right)\left(\frac{1}{2}((x+y)+\delta)\right)=z_{k}^{+} \lambda_{1}
$$

The proof is thus completed for the case $z^{+} A_{n}=\lambda_{1} z^{+}$. The other case, $z^{-} A_{n}=\lambda_{2} z^{-}$, can be similarly shown.

Lemma 2 For even $n>0$, the matrix A_{n} has the eigenvalues λ_{1} and λ_{2} with the corresponding left eigenvectors s^{+}and s^{-}, respectively.

Proof The proof can be done similar to the proof of the previous Lemma.
For odd $n>0$, we define a $(n+1) \times(n+1)$ matrix T_{n} as

$$
T_{n}=\left[\begin{array}{ccccccc}
z_{0}^{+} & z_{1}^{+} & \vdots & z_{2}^{+} & \cdots & z_{n-1}^{+} & z_{n}^{+} \\
z_{0}^{-} & z_{1}^{-} & \vdots & z_{2}^{-} & \cdots & z_{n-1}^{-} & z_{n}^{-} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
& & \vdots & & & & \\
0_{(n-1) \times 2} & & \vdots & & I_{n-1} & &
\end{array}\right]
$$

where $0_{(n-1) \times 2}$ is the zero matrix of order $(n-1) \times 2$ and I_{n} is the identity matrix of order n.

We can obtain the inverse of the matrix T_{n} as follows:

$$
T_{n}^{-1}=\left[\begin{array}{cccccccccc}
\frac{(x-y)+\delta}{2 \delta} & \frac{\delta-(x-y)}{2 \delta} & \vdots & -1 & 0 & -1 & 0 & \cdots & -1 & 0 \\
\frac{n}{\delta} & -\frac{n}{\delta} & \vdots & 0 & -1 & 0 & -1 & \cdots & 0 & -1 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
& 0_{(n-1) \times 2} & \vdots & & & & & & & \\
& & \vdots & & I_{n-1} & & & & & \\
& & \vdots & & & & & & &
\end{array}\right]
$$

Thus, we can see that the matrix A_{n} is similar to the matrix $E_{n}:=T_{n} A_{n} T_{n}^{-1}$ via the matrix T_{n} as shown:

$$
T_{n} A_{n} T_{n}^{-1}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \vdots & 0_{2 \times(n-1)} \\
0 & \lambda_{2} & \vdots & \\
\cdots & \cdots & \cdots & \cdots \\
\frac{n(n-1)}{\delta} & -\frac{n(n-1)}{\delta} & \vdots & \\
0_{(n-2) \times 2} & & \vdots & W_{n-1}
\end{array}\right]
$$

where the matrix W_{n-1} of order $(n-1)$ is given by

$$
W_{n-1}=\left[\begin{array}{ccccccc}
x & 4-n & 0 & 1-n & \cdots & 0 & 1-n \\
n-2 & y & 4 & 0 & \cdots & \cdots & 0 \\
0 & n-3 & x & 5 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 3 & y & n-1 & 0 \\
\vdots & & & \ddots & 2 & x & n \\
0 & \cdots & \cdots & \cdots & 0 & 1 & y
\end{array}\right]
$$

Considering the 2×2 principal submatrix of E_{n}, it is clearly seen that λ_{1} and λ_{2} are two eigenvalues of E_{n}

We focus on the matrix A_{n} for odd n up to now. By considering the matrix A_{n} for even n, we define a matrix Y_{n} of order $(n+1)$ as shown:

$$
Y_{n}=\left[\begin{array}{ccccccc}
s_{0}^{+} & s_{1}^{+} & \vdots & s_{2}^{+} & \cdots & s_{n-1}^{+} & s_{n}^{+} \\
s_{0}^{-} & s_{1}^{-} & \vdots & s_{2}^{-} & \cdots & s_{n-1}^{-} & s_{n}^{-} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
& & & & & & \\
0_{(n-1) \times 2} & & \vdots & & I_{n-1} & &
\end{array}\right]
$$

where $0_{(n-1) \times 2}$ and I_{n} are defined as before.

We also obtain the inverse matrix Y_{n}^{-1} in the form

$$
Y_{n}^{-1}=\left[\begin{array}{ccccccccc}
\frac{x-y+\delta}{2 \delta} & -\frac{x-y-\delta}{2 \delta} & \vdots & -1 & 0 & -1 & \cdots & 0 & -1 \\
\frac{n}{\delta} & -\frac{n}{\delta} & \vdots & 0 & -1 & 0 & \cdots & -1 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0_{(n-1) \times 2} & & \vdots & & I_{n-1} & & & &
\end{array}\right]
$$

Thus, the matrix A_{n} is similar to matrix $D_{n}:=Y_{n} A_{n} Y_{n}^{-1}$ via the matrix Y_{n}, given by

$$
Y_{n} A_{n} Y_{n}^{-1}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \vdots & 0_{2 \times(n-1)} \\
0 & \lambda_{2} & \vdots & \\
\cdots & \cdots & \cdots & \cdots \\
\frac{n(n-1)}{\delta} & -\frac{n(n-1)}{\delta} & \vdots & \\
0_{(n-2) \times 2} & & \vdots & Q_{n-1}
\end{array}\right]
$$

where the matrix Q_{n-1} of order $(n-1)$ is given by

$$
Q_{n-1}=\left[\begin{array}{cccccccc}
x & 4-n & 0 & 1-n & \cdots & 0 & 1-n & 0 \\
n-2 & y & 4 & 0 & \cdots & & \cdots & 0 \\
0 & n-3 & x & 5 & \ddots & & & \vdots \\
\vdots & 0 & n-4 & y & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & n-2 & \ddots & \vdots \\
& & & \ddots & 3 & x & n-1 & 0 \\
\vdots & & & & \ddots & 2 & y & n \\
0 & \cdots & & & \cdots & 0 & 1 & x
\end{array}\right]
$$

Consequently, by the above results, the matrix A_{n} has two eigenvalues λ_{1} and λ_{2} for each n. To compute the remaining eigenvalues of matrix A_{n}, we will give some auxiliary results.

Now we define an upper triangular matrix U_{n} of order n as follows:

$$
U_{n}=\left[\begin{array}{cccccc}
1 & 0 & -1 & 0 & \cdots & 0 \\
& 1 & 0 & -1 & \ddots & \vdots \\
& & 1 & 0 & \ddots & 0 \\
& & & \ddots & \ddots & -1 \\
& & & & 1 & 0 \\
0 & & & & & 1
\end{array}\right]
$$

and U_{n}^{-1} can be found as follows for even n :

$$
U_{n}^{-1}=\left[\begin{array}{ccccccc}
1 & 0 & 1 & 0 & \cdots & 1 & 0 \\
& 1 & 0 & 1 & \ddots & & 1 \\
& & 1 & 0 & & & 0 \\
& & & \ddots & \ddots & \ddots & \vdots \\
& & & & \ddots & \ddots & 1 \\
& & & & & \ddots & 0 \\
0 & & & & & & 1
\end{array}\right]
$$

For odd n, the matrix U_{n}^{-1} takes the following form:

$$
U_{n}^{-1}=\left[\begin{array}{ccccccc}
1 & 0 & 1 & 0 & \cdots & 0 & 1 \\
& 1 & 0 & 1 & \ddots & \ddots & 0 \\
& & 1 & 0 & \ddots & \ddots & \vdots \\
& & & \ddots & \ddots & 1 & 0 \\
& & & & 1 & 0 & 1 \\
& & & & & 1 & 0 \\
0 & & & & & & 1
\end{array}\right]
$$

Then both the matrices W_{n} and Q_{n} are similar to the same tridiagonal matrix G_{n} of order n; that is, they satisfy the equations

$$
G_{n}:=U_{n}^{-1} W_{n} U_{n} \text { and } G_{n}:=U_{n}^{-1} Q_{n} U_{n}
$$

with

$$
G_{n}=\left[\begin{array}{ccccccc}
x & 1 & & & & & 0 \\
n-1 & y & 2 & & & & \\
& n-2 & x & 3 & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & 3 & a_{n-3} & n-2 & \\
0 & & & & 2 & a_{n-2} & n-1 \\
0 & & & & & 1 & a_{n-1}
\end{array}\right]
$$

and a_{n} is defined as before.
For further computations, we define a $(n+1) \times(n+1)$ matrix U via the matrix U_{n} as follows:

$$
U=\left[\begin{array}{ccc}
I_{2} & \vdots & 0_{2 \times(n-1)} \\
\cdots & \vdots & \cdots \\
0_{(n-1) \times 2} & \vdots & U_{n-1}
\end{array}\right]
$$

and then it can be easily seen that

$$
U^{-1}=\left[\begin{array}{ccc}
I_{2} & \vdots & 0_{2 \times(n-1)} \\
\cdots & \vdots & \cdots \\
0_{(n-1) \times 2} & \vdots & U_{n-1}^{-1}
\end{array}\right]
$$

For both even and odd cases, we get

$$
U^{-1} E_{n} U=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \vdots & 0_{2 \times(n-1)} \\
0 & \lambda_{2} & \vdots & \ldots \\
\cdots & \cdots & \cdots & \cdots \\
\frac{n(n-1)}{\delta} & -\frac{n(n-1)}{\delta} & \vdots & \\
0_{(n-2) \times 2} & & \vdots & U_{n-1}^{-1} W_{n-1} U_{n-1}
\end{array}\right]
$$

and

$$
U^{-1} D_{n} U=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \vdots & 0_{2 \times(n-1)} \\
0 & \lambda_{2} & \vdots & \\
\cdots & \cdots & \cdots & \cdots \\
\frac{n(n-1)}{\delta} & -\frac{n(n-1)}{\delta} & \vdots & \\
0_{(n-2) \times 2} & & \vdots & U_{n-1}^{-1} Q_{n-1} U_{n-1}
\end{array}\right]
$$

In general, we obtain that $U^{-1} E_{n} U$ and $U^{-1} D_{n} U$ are reduced to a block form:

$$
U^{-1} E_{n} U=U^{-1} D_{n} U=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \vdots & 0_{2 \times(n-1)} \tag{2.3}\\
0 & \lambda_{2} & \vdots & \\
\cdots & \cdots & \cdots & \cdots \\
\frac{n(n-1)}{\delta} & -\frac{n(n-1)}{\delta} & \vdots & \\
0_{(n-2) \times 2} & & \vdots & G_{n-1}
\end{array}\right]
$$

where G_{n} is defined as before.
Up to now, the following results have been obtained:

$$
\begin{align*}
& E_{n}=T_{n} A_{n} T_{n}^{-1} \quad \text { for odd } n \\
& D_{n}=Y_{n} A_{n} Y_{n}^{-1} \quad \text { for even } n \tag{2.4}\\
& G_{n}=U_{n}^{-1} W_{n} U_{n} \quad \text { for odd } n \\
& G_{n}=U_{n}^{-1} Q_{n} U_{n} \quad \text { for even } n
\end{align*}
$$

From the definition of G_{n}, one can see that $G_{n}=A_{n-1}$ and both $U^{-1} E_{n} U$ and $U^{-1} D_{n} U$ can be rewritten in the following lower-triangular form:

$$
\left[\begin{array}{cc}
\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}\right) & 0 \\
* & A_{n-2}
\end{array}\right] .
$$

From (2.3) and (2.4) we get the following recurrence relation for $\operatorname{det} A_{n}$:

$$
\begin{aligned}
& \operatorname{det} A_{0}=x \\
& \operatorname{det} A_{1}=x y-1 \\
& \operatorname{det} A_{n}=\lambda_{1} \lambda_{2} \operatorname{det} A_{n-2}=\left(x y-n^{2}\right) \operatorname{det} A_{n-2}
\end{aligned}
$$

for $n>1$.
Therefore, we have the spectrum of the matrix A_{n} : for even n,

$$
\lambda\left(A_{n}\right)=\left\{\frac{1}{2}(x+y) \mp \frac{1}{2} \sqrt{(x-y)^{2}+(4 k)^{2}}\right\}_{k=1}^{n / 2} \cup\{x\}
$$

and for odd n,

$$
\lambda\left(A_{n}\right)=\left\{\frac{1}{2}(x+y) \mp \frac{1}{2} \sqrt{(x-y)^{2}+(4 k+2)^{2}}\right\}_{k=0}^{\lfloor n / 2\rfloor} .
$$

By considering spectrum of the matrix A_{n} and recurrence relation of $\operatorname{det} A_{n}$, we deduce that for even n,

$$
\operatorname{det} A_{n}(x, y)=x \prod_{t=1}^{n / 2}\left(x y-(2 t)^{2}\right)
$$

and for odd n,

$$
\operatorname{det} A_{n}(x, y)=\prod_{t=0}^{\lfloor n / 2\rfloor}\left(x y-(2 t+1)^{2}\right)
$$

As we stated earlier, if we take $x=y$, then for even n,

$$
\operatorname{det} A_{n}(x, x)=x \prod_{t=1}^{n / 2}\left(x^{2}-(2 t)^{2}\right)
$$

and for odd n,

$$
\operatorname{det} A_{n}(x, x)=\prod_{t=0}^{\lfloor n / 2\rfloor}\left(x^{2}-(2 t+1)^{2}\right)
$$

which, by combining, give us the single formula

$$
\operatorname{det} A_{n}(x, x)=\prod_{k=0}^{n}(x+n-2 k)
$$

which is equal to $\operatorname{det} M_{n}(x)$.
Note that if we take $y=-x$ then we obtain the results in [11].

References

[1] Askey R. Evaluation of Sylvester Type Determinants Using Orthogonal Polynomials. Advances in Analysis. Hackensack, NJ, USA: World Scientific, 2005.
[2] Bunse-Gerstner A, Byers R, Mehrmann V. A chart of numerical methods for structured eigenvalue problems. SIAM J Matrix Anal Appl 1992; 13: 419-453.
[3] Burden RL, Fairs JD, Reynolds AC. Numerical Analysis. 2nd ed. Boston, MA, USA: Prindle, Weber \& Schmidt, 1981.
[4] Chu W. Eigenvectors of tridiagonal matrices of Sylvester type. Calcolo 2008; 45: 217-233.
[5] Chu W. Fibonacci polynomials and Sylvester determinant of tridiagonal matrix. Appl Math Comput 2010; 216: 1018-1023.
[6] El-Mikkawy M. A fast algorithm for evaluating nth order tri-diagonal determinants. J Comput Appl Math 2004; 166: 581-584.
[7] El-Mikkawy M, Karawia A. Inversion of general tridiagonal matrices. Appl Math Letters 2006; 19: 712-720.
[8] Fischer CF, Usmani RA. Properties of some tridiagonal matrices and their application to boundary value problems. SIAM J Numer Anal 1969; 6: 127-142.
[9] Hager WW. Applied Numerical Linear Algebra. Englewood Cliffs, NJ, USA: Prentice-Hall, 1988.
[10] Holtz O. Evaluation of Sylvester Type Determinants Using Block-Triangularization. Advances in Analysis. Hackensack, NJ, USA: World Scientific, 2005.
[11] Kıliç E. Sylvester-tridiagonal matrix with alternating main diagonal entries and its spectra. Inter J Nonlinear Sci Num Simulation 2013; 14: 261-266.
[12] Lehmer DH. Fibonacci and related sequences in periodic tridiagonal matrices. Fibonacci Quart 1975; 13: 150-158.
[13] Meurant G. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM J Matrix Anal Appl 1992; 13: 707-728.
[14] Sylvester JJ. Theoreme sur les determinants. Nouvelles Annales de Math 1854; 13: 305 (in French).
[15] Zhao H, Zhu G, Xiao P. A backward three-term recurrence relation for vector valued continued fractions and its applications. J Comput Appl Math 2002; 142: 389-400.

[^0]: *Correspondence: tarikan@hacettepe.edu.tr
 2010 AMS Mathematics Subject Classification: 15A36, 15A18, 15A15.

