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Abstract: In this study, for dual octonions in dual 8−space D8 over the domain of coefficients D, we give a matrix

that is similar to a Hamilton operator. By means of this matrix a new motion is defined and this motion is proven to be

homothetic. For this one parameter dual homothetic motion, we prove some theorems about dual velocities, dual pole

points, and dual pole curves. Furthermore, after defining dual accelerations, we show that the motion defined by the

regular order m dual curve, at every t -instant, has only one acceleration center of order (m− 1) .
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1. Introduction

John T. Graves discovered octonions in 1843. Arthur Cayley also discovered them independently and, on

account of this, they are sometimes referred to as Cayley numbers.

The octonions form a normed division algebra over real numbers. They are nonassociative and non-

commutative but alternative, which is a weaker form of associativity. Octonions have applications in string

theory, special relativity, and quantum logic. They have some interesting features and are related to a number

of exceptional structures, such as exceptional Lie groups, in mathematics.

The set of dual numbers D =
{
â = a+ εa∗ : ε ̸= 0, ε2 = 0, a, a∗ ∈ R

}
is a commutative ring with a unit.

Dual numbers were introduced by Clifford [4] in the 19th century. They were applied to describe rigid

body motions in three- dimensional space by Koltelnikov [7]. With the help of dual numbers, Yaglom [9]

described geometrical objects in three- dimensional space. The notion of dual angle is defined by Study [8].

Recently, dual numbers have found applications in many areas such as in kinematics, dynamics, robotics,

computer aided geometrical design, mechanism design and modeling of rigid bodies, group theory, and field

theory.

In [6], a curve, which is represented by bicomplex numbers, in a hypersurface in E4 is considered; then by

the help of this curve a homothetic motion is defined. In this study, we considered a dual curve in dual 8−space

over the domain of coefficients D. We defined a homothetic motion by means of this dual curve. Under some

conditions, this homothetic motion satisfies all of the properties in [10, 11]. For one parameter dual homothetic

motion, we give some results about dual velocities, dual pole points, and dual pole curves. Moreover, after

defining dual accelerations, we prove that the motion defined by the regular order m dual curve, at every

t -instant, has only one acceleration center of order (m− 1) . We hope that these results will contribute to the
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geometry of dual spaces and hence to the study of applications of physics and kinematics. Some recent papers

on homothetic motions include [2, 5].

2. Dual 8−space, dual quaternions, and dual octonions

The set of all 8-tuples of dual numbers, i.e.

D8 = {α̃ = (α̂0, α̂1, α̂2, α̂3, α̂4, α̂5, α̂6, α̂7) : α̂i ∈ D, 0 ≤ i ≤ 7}

is called dual 8-space and denoted by D8. It is a module over the ring D. Elements of D8 are called dual

vectors. A dual vector α̃ can be written as α̃ = −→α +ε−→α ∗ = (−→α ,−→α ∗), where −→α = (α0, α1, α2, α3, α4, α5, α6, α7)

and −→α ∗ = (α∗
0, α

∗
1, α

∗
2, α

∗
3, α

∗
4, α

∗
5, α

∗
6, α

∗
7) are vectors in R8. The norm of α̃ ∈ D8 is given by

∥α̃∥ =

√
α̂0

2
+ α̂1

2
+ α̂2

2
+ α̂3

2
+ α̂4

2
+ α̂5

2
+ α̂6

2
+ α̂7

2
.

A dual vector with norm 1 is called a dual unit vector.

A dual quaternion is given by

Q = Q̂0 + Q̂1i+ Q̂2j + Q̂3k,

where Q̂0, Q̂1, Q̂2, Q̂3 ∈ D and the products of {1, i, j, k} are given as in the following table

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

.

Note that

DC =
{
Q̂0 + Q̂1i : Q̂0, Q̂1 ∈ D, i2 = −1

}
is the set of dual complex numbers and

Q̂0 + Q̂1i+ Q̂2j + Q̂3k = (Q̂0 + Q̂1i) + (Q̂2 + Q̂3i)j = W + Zj,

where W = Q̂0 + Q̂1i and Z = Q̂2 + Q̂3i are dual complex numbers and j2 = −1.

Thus, dual quaternions can be viewed as pairs of dual complex numbers. The set of dual quaternions is

given as follows:

HD =
{
Q = Q̂0 + Q̂1i+ Q̂2j + Q̂3k : Q̂0, Q̂1, Q̂2, Q̂3 ∈ D

}
=

{
W + Zj : W,Z ∈ DC, j

2 = −1
}
= DC ×DC.

Now we define

(W1 + Z1j) (W2 + Z2j) =
(
W1W2 − Z2Z1

)
+
(
Z1W2 + Z2W1

)
,

where Z denotes the conjugate of Z ∈ DC. This product in HD is readily seen to be the product defined in

terms of i, j, k.
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Let
OD = {K = Ω+Ψe : Ω,Ψ ∈ HD} ,

where e is an arbitrary unit with e2 = −1. We define the product in OD as follows:

K1K2 = (Ω1 +Ψ1e) (Ω2 +Ψ2e) =
(
Ω1Ω2 −Ψ2Ψ1

)
+
(
Ψ1Ω2 +Ψ2Ω1

)
e, (2.1)

where Ωi,Ψi ∈ HD,Ki ∈ OD and the conjugate Ω of the dual quaternion Ω = P̂0 + P̂1i + P̂2j + P̂3k is

P̂0 − P̂1i − P̂2j − P̂3k. Note that OD becomes a noncommutative and nonassociative, but alternative (i.e.

(K1K1)K2 = K1(K1K2), (K1K2)K2 = K1(K2K2), for K1,K2 ∈ OD.) ring. The elements of OD are called

dual octonions. Unlike the real octonions, dual octonions do not form a division ring. It is known that the set

of real octonions forms a noncommutative, nonassociative, but alternative division ring. [3, 12].

We can also give the product in OD similar to Hamilton operators (see [1]), which has been given in

(2.1).

If K = Ω + Ψe ∈ OD,Ω = P̂0 + P̂1i + P̂2j + P̂3k ∈ HD,Ψ = P̂4 + P̂5i + P̂6j + P̂7k ∈ HD, P̂i ∈ D, then

N+ is defined as

N+ (K) =



P̂0 −P̂1 −P̂2 −P̂3 −P̂4 −P̂5 −P̂6 −P̂7

P̂1 P̂0 −P̂3 P̂2 −P̂5 P̂4 P̂7 −P̂6

P̂2 P̂3 P̂0 −P̂1 −P̂6 −P̂7 P̂4 P̂5

P̂3 −P̂2 P̂1 P̂0 −P̂7 P̂6 −P̂5 P̂4

P̂4 P̂5 P̂6 P̂7 P̂0 −P̂1 −P̂2 −P̂3

P̂5 −P̂4 P̂7 −P̂6 P̂1 P̂0 P̂3 −P̂2

P̂6 −P̂7 −P̂4 P̂5 P̂2 −P̂3 P̂0 P̂1

P̂7 P̂6 −P̂5 −P̂4 P̂3 P̂2 −P̂1 P̂0



N+ (K) =

[
H+(Ω) −MT

M H−(Ω)

]
,

where M is a 4 × 4 dual matrix and H+ and H− are dual Hamilton operators (i.e. quaternion replaced by

dual quaternion). By means of the definition of N+, the multiplication of K1,K2 ∈ OD is given by

K1K2 = N+ (K1)K2.

3. Homothetic motion in dual 8−space

Let us consider the following parametrized dual curve:

α̃ : I ⊂ R −→ D8 given by,

α̃ (t) = (α̂0 (t) , α̂1 (t) , α̂2 (t) , α̂3 (t) , α̂4 (t) , α̂5 (t) , α̂6 (t) , α̂7 (t)), for ∀t ∈ I

α̃ (t) = −→α (t) + ε−→α ∗ (t),

where −→α (t) = (α0 (t) , α1 (t) , α2 (t) , α3 (t) , α4 (t) , α5 (t) , α6 (t) , α7 (t)) , (the real part of α̃ (t) is called indica-

trix),
−→α ∗ (t) = (α∗

0 (t) , α
∗
1 (t) , α

∗
2 (t) , α

∗
3 (t) , α

∗
4 (t) , α

∗
5 (t) , α

∗
6 (t) , α

∗
7 (t))
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are curves in R8. If the real valued functions αi (t) and α∗
i (t), 0 ≤ i ≤ 7 are differentiable then the dual space

curve α̃ (t) is differentiable in D8. We suppose that the curve α̃ (t) is a differentiable regular order m dual

curve. (i.e.
∥∥α̃(m) (t)

∥∥ ̸= 0). Corresponding to α̃ (t) the operator B̃ = N+ (α̃ (t)) is given by the following dual

matrix:

B̃ =



α̂0 (t) −α̂1 (t) −α̂2 (t) −α̂3 (t) −α̂4 (t) −α̂5 (t) −α̂6 (t) −α̂7 (t)
α̂1 (t) α̂0 (t) −α̂3 (t) α̂2 (t) −α̂5 (t) α̂4 (t) α̂7 (t) −α̂6 (t)
α̂2 (t) α̂3 (t) α̂0 (t) −α̂1 (t) −α̂6 (t) −α̂7 (t) α̂4 (t) α̂5 (t)
α̂3 (t) −α̂2 (t) α̂1 (t) α̂0 (t) −α̂7 (t) α̂6 (t) −α̂5 (t) α̂4 (t)
α̂4 (t) α̂5 (t) α̂6 (t) α̂7 (t) α̂0 (t) −α̂1 (t) −α̂2 (t) −α̂3 (t)
α̂5 (t) −α̂4 (t) α̂7 (t) −α̂6 (t) α̂1 (t) α̂0 (t) α̂3 (t) −α̂2 (t)
α̂6 (t) −α̂7 (t) −α̂4 (t) α̂5 (t) α̂2 (t) −α̂3 (t) α̂0 (t) α̂1 (t)
α̂7 (t) α̂6 (t) −α̂5 (t) −α̂4 (t) α̂3 (t) α̂2 (t) −α̂1 (t) α̂0 (t)


. (3.1)

Let
∥∥∥ .

α̃ (t)
∥∥∥ = 1, i.e. α̃ (t) be a unit velocity dual curve. If α̃ (t) does not pass through the origin, and

−→α (t) ̸= 0, the matrix in (3.1) can be written as

B̃ = h̃Ã, (3.2)

where Ã = B̃

h̃
and

h̃ : I ⊂ R −→ D

s −→ h̃ (s) = ∥α̃ (s)∥ =

√
α̂0

2
+ α̂1

2
+ α̂2

2
+ α̂3

2
+ α̂4

2
+ α̂5

2
+ α̂6

2
+ α̂7

2
.

Theorem 1 The matrix Ã in the equation (3.2) is a dual ortogonal matrix.

Proof By the definition of the matrix Ã, it is easy to see that ÃÃT = ÃT Ã = I8 and det Ã = 1. 2

4. One parameter dual motion

Let the dual motional space and the dual fixed space be respectively R̃ and R̃0 . Now the one-parameter dual

motion of R̃0 with respect to R̃ will be denoted by R̃0/R̃.

This dual motion can be expressed as follows:

[
X̃
1

]
=

[
h̃Ã C̃
0 1

] [
X̃0

1

]
(4.1)

or equivalently

X̃ = h̃ÃX̃0 + C̃. (4.2)

Here dual position vectors of any point respectively in R̃ and R̃0 are represented by X̃ and X̃0, and C̃

represents any dual translation vector.
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Definition 1 In dual 8-space, the one-parameter dual homothetic motion of a body is generated by the trans-

formation given in (4.2) . Here h̃ is called the homothetic scale, which is a dual scalar matrix, Ã is an 8 × 8

dual orthogonal matrix, X̃0 and C̃ are 8× 1 dual matrices, and Ã, C̃, and h̃ are of class Cm.

In order not to encounter the case of affine transformation we suppose that

h̃ (t) = h (t) + εh∗ (t) ̸= Cons tan t, h (t) ̸= 0,

and to prevent the cases of pure rotation and pure translation we also suppose that

.

h̃Ã+ h̃
.

Ã ̸= 0,
.

C̃ ̸= 0.

Theorem 2 In dual 8-space, the motion determined by the equation (4.1) is a dual homothetic motion.

Proof The matrix Ã is a dual orthogonal matrix by Theorem 1; therefore the motion in (4.1) is a dual

homothetic motion. 2

Now the matrix B̃ = h̃Ã is said to be a dual homothetic matrix.

Theorem 3 The derivation operator
.

B̃ of the dual homothetic matrix B̃ = h̃Ã is a dual ortogonal matrix.

Proof Using (3.1) , we have that
.

B̃
.

B̃
T

=
.

B̃
T .

B̃ = I8 and det
.

B̃ = 1. 2

Theorem 4 In dual 8-space, the dual motion is a regular motion and it is independent of h̃.

Proof From Theorem 3, det
.

B̃ = 1 and hence the value of det
.

B̃ is independent of h̃. 2

5. Dual velocities, dual pole points, and dual pole curves

From (4.2) we have

X̃ = B̃X̃0 + C̃ (5.1)

then

X̃0 = B̃−1(X̃ − C̃). (5.2)

If we let C̃
′
= −B̃−1C̃, then (5.2) leads to

X̃0 = B̃−1X̃ + C̃
′
. (5.3)

The equations (5.1) and (5.3) are coordinate transformations between the fixed and moving dual spaces.

Differentiating the equation (5.1) with respect to t we get

.

X̃ =
.

B̃X̃0 +
.

C̃ + B̃
.

X̃0, (5.4)

where B̃
.

X̃0 is the dual relative velocity,
.

B̃X̃0 +
.

C̃ is the dual sliding velocity, and
.

X̃ is the dual absolute

velocity of the dual point X̃0. Hence we give the following:
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Theorem 5 In dual 8-space, for a dual homothetic motion with one parameter, the dual absolute velocity vector

of a moving dual system of a dual point X̃0 at time t is the sum of the dual sliding velocity and dual relative

velocity of X̃0.

To obtain the pole points, the equation

.

B̃X̃ +
.

C̃ = 0 (5.5)

has to be solved.

Any solution of this equation is a dual pole point of the dual motion at that instant t in R̃0. From

Theorem 3, det
.

B̃ = 1. Thus the equation in (5.5) has the solution X̃ = −
.

B̃
−1 .

C̃ at every t-instant, which is

the only solution and therefore we have the following:

Theorem 6 In R̃0 , the dual pole point corresponding to each t-instant is the rotation by
.

B̃
T

of the dual speed

vector
.

C̃ at that instant.

Proof Since the matrix
.

B̃ is dual orthogonal, then the matrix
.

B̃
T

is dual orthogonal. Thus, it makes a

rotation. 2

We know that C̃
′
= −B̃−1C̃; then

X̃0 = p̃ = −
.

B̃
−1 .

C̃ = C̃
′
+

.

B̃
−1

B̃C̃
′
, (5.6)

where p̃ is a dual pole point of the fixed space. In the moving system, this dual pole point can be written as

follows:

X̃ = q̃ = B̃X̃0 + C̃ = B̃p̃+ C̃. (5.7)

The equations (5.6) and (5.7) give the equations of fixed and moving dual pole curves.

If we differentiate the equation (5.7) with respect to t , we get
.

q̃ =
.

B̃p̃+
.

C̃ + B̃
.

p̃. Because
.

B̃p̃+
.

C̃ = 0,

then
.

q̃ = B̃
.

p̃ , which gives the dual sliding velocity of q̃ at time t . Now we have the following:

Theorem 7 In dual 8-space, in a dual homothetic motion, after the dual rotation Ã and dual translation h̃ ,

the dual tangent vectors of dual pole curves coincide.

The equation
.

q̃ = B̃
.

p̃ leads to
∥∥∥ .

q̃
∥∥∥ =

∥∥∥B̃ .

p̃
∥∥∥ ; hence ∥∥∥ .

q̃
∥∥∥ dt =

∥∥∥h̃Ã .

p̃
∥∥∥ dt , and thus

∥∥∥ .

q̃
∥∥∥ dt = h̃8

∥∥∥ .

p̃
∥∥∥ dt.

Therefore, s̃ =
∫
h̃8ds, which yields:

Theorem 8 In dual 8-space, during the dual homothetic motion, dual pole curves roll by sliding on top of each

other. The rolling by sliding scale is h̃8.
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6. Dual accelerations and dual acceleration centers

Differentiating (5.4) implies that
..

X̃ =
..

B̃X̃0+
..

C̃+2
.

B̃
.

X̃0+B̃
..

X̃0. Then the dual absolute acceleration is expressed

as β̃a =
..

X̃, the dual sliding acceleration is given by

β̃s =
..

B̃X̃0 +
..

C̃,

the dual Coriolis acceleration by

β̃c = 2
.

B̃
.

X̃0,

and the dual relative acceleration by β̃r = B̃
..

X̃0 . Then we have the following:

Theorem 9 In dual 8-space, the relation between dual absolute, dual sliding, dual relative, and dual Coriolis

accelerations of a point X̃0 of a moving system under the dual homothetic motion is stated as:

β̃a = β̃s + β̃c + β̃r.

Definition 2 The set of zeros of the dual sliding acceleration of order m is said to be the dual acceleration

center of order (m− 1) .

By the above definition we have to find the solutions of the equation

B̃(m)X̃ + C̃(m) = 0, (6.1)

where

B̃(m) =
dmB̃

dtm
and C̃(m) =

dmC̃

dtm
.

We know that the order m dual curve α̃ (t) is a regular dual curve; then

7∑
i=0

[
α̂i

(m)
]2

̸= 0, α̂i
(m) =

dmα̂i

dtm
.

Furthermore,

det B̃(m) =

{
7∑

i=0

[
α̂i

(m)
]2}4

;

hence det B̃(m) ̸= 0, and thus the dual matrix B̃(m) has an inverse. Therefore, from the equation (6.1), at

every t-instant, the dual acceleration center of order (m− 1) is X̃ =
[
B̃(m)

]−1 [
−C̃(m)

]
.

Special cases:

(1) K = Ω+Ψe, Ω,Ψ ∈ HD , if Ψ = 0, then K is a dual quaternion. Hence N+ = H+ and everything

in [1] and [10] could easily be verified.

(2) K = Ω+Ψe, Ω,Ψ ∈ HD , if Ψ = 0 and Ω = x̂+ iŷ, x̂, ŷ ∈ D , then K ∈ DC and

N+ =

[
x̂ −ŷ
ŷ x̂

]
.
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