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Abstract: In this paper, we introduce a new integral transform ¢&2;1, which is the g-analogue of the &;1-transform
and can be regarded as a ¢-extension of the &£;;1-transform. Some identities involving L2-transfom, ¢Ls-transfom,
and P,-transform are given. By making use of these identities and ,&2;1-transform, a new Parseval-Goldstein type

theorem is obtained. Some examples are also given as an illustration of the main results presented here.
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1. Introduction

The g-derivative Dy f of a function f is given as

f(z) = flaz)

1-qz z#0, (Dgf)(0) = f'(0) (1.1)

(Dgf)(2) =
provided f’(0) exists. If f is differentiable then D,f(2) tends to f/(z) as ¢ — 1~.
Recall that the g-derivative of two product functions states

Dy[f(2)g(2)] = 9(2) Do f(2) + f(2q)Deg(2) = f(2)Dgg(2) + g(2q) Dy f(2). (1.2)

The Jackson g-integral in a generic interval [a, ] is given as

/a " Ft)dyt = /0 " Ft)dyt /0 " F@dyt (1.3)
where

/Oa f(x)dgzx = a(l —q) Z q"f(q"a). (1.4)

The improper integral is defined in the following way:

o0

/OOX f@)dgr=(1-q) Y % (‘i) (1.5)

n=—oo
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As a result of the last formula, one has the following reciprocity relations:

/OOO f(@)dgr = /OOO % <31:) dya. (1.6)

The g¢-integration by parts is given for suitable functions f and g as

b b
/ f(#)Dqg(t)dgt = f(b)g(b) — f(a)g(a) — / 9(tq)Dq f(t)dgt. (1.7)
The g-analogue of the integration theorem by change of variable is given when u(z) = az”, a € C,and 8 >0
as follows:
u(b) b
/ fw)dgu :/ f(u(2))D 1u(z)d 1 z. (1.8)
u(a) a a? qa”
The g-gamma function is defined as
e =
T, (a) = / 1B, (1 — q)gt)dyt = / 1B (1= Qgt)dyt,  R(a) > 0. (1.9)
0 0
Furthermore, it has the representation
Lf0) = Ky(o) [ e, (-1 gt Ria) >0, (1.10)
0
where
[e’s) (_l)nqn(n2—1) ‘T"
E,(z) = — = (@)oo, (1.11)
! nz_:o (@ @)n

<. 1
eq(z) =) T T lz] < 1, (1.12)

0
(~4 @)oo (159
(—0% Qoo (=0 "% @)oo

Ky(a) = (1.13)

El-Shahed and Salem [3] introduced the definition of the complementary incomplete g-gamma function as

1 _oo

rq(a,x)z/l’q t“_lEq((l—q)qt)dqt:/ "B (1= gyt R(a) > 0. (1.14)

Salem [5] generalized the definition of complementary incomplete g-gamma function I'y(a,z) in analytic
continuation as an entire function for all complex a and z: |arg(z)] < m —¢; 0 < € < 7 and exploited

this generalization to introduce the definition of the g-analogue of the exponential integral as

1

Buwiq) = Ly00) = [ OB (1= gadat = [T B - gt (1.15)

x x

In a slightly different form, we consider the definition of the g-analogue of the exponential integral as

Bilwsa) = [ Efana,e (1.16)
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Lemma 1.1 Let x be a positive real. Then we have

Eq(z;9) = Ey(x) /000 cq(~1) dgt, x> 0. (1.17)

Proof. On g-differentiating (1.16) gives
D,Ey(7;9) = —x ' E (2q).

Since I'y(1) = K4(1) =1, then (1.10) enables us to rewrite the last formula as

-1

DyE1(z;q) = . xilEq(Iq)/ eq(—u)dqu
0

— T Eed) [ (o)
l—gq 0
On ¢-integrating from x to co with changing the order of integration we obtain
1 o0 o0
Ey(z;9) = 1—¢q Eq(ug)eq(—yu)dgu | dqgy.
0 x
Using the g-derivative of the two product function rule (1.2) yields

-1

Dy, (w)ey(~yu)] = §— Ey(ug)eq(~yu)(1 +1).

Substituting the previous formula into the above one we obtain

Bwia) = Ey(o) [ 4T,

Replacing zy by t gives the desired result.

2. The g-analogue of the P-Widder transform

Recently Ugar and Albayrak [6] introduced g-analogues of the £-transform in terms of the following g-integrals:

-1

LS @)ish= =0 [ e (@?) f @) dgr,  R(s) > 0. (2.1)

LoAf(z);s} = 1 _1q2 /OOO veg (—s20?) f(z)dg, R(s) > 0. (2.2)

A g-analogue of P-Widder potential transform is denoted P, and defined by Albayrak et al. [1] as follows:

1 < zf(x)
;8= . 2.
Pf@s = =0 [ et (23)
They introduced a relation between the ,L;-transfom and P,-transform as
1
abe{alodf (@) iu}ssh = Pl f(@): s} (2.4)
q
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but we see that the last formula is incorrect because they used in their proof the relation

e (—u?s?)ez (—au?) = e (— (s + ¢?x?)u?),

which is incorrect. Based on this remark, we redefine a g-analogue of P-Widder potential transform as follows:

Py f(x); s} : /OOO 1@ (2.5)

1o 2 4 24

and we introduce the relationship between our definition and ;L£5, ;L2-transforms in the following theorem:

Theorem 2.1 The P,-Widder transform (2.5) can be regarded as iterated Lo, 4Lo transforms as

oLa {alo {f (2) 1} 18} =g L2 {oLn {f (2) 1} 18} = [;]qpq{m 5 (2.6)

provided that the g-integrals involved converge absolutely.

Proof. Indeed, to prove (2.6), we start by using definitions (2.1) and (2.2) of the ,Ls-transform and ,Lo-

transform to obtain
-1

1 > ° 2.2 2 —ul? u .
qu{qﬁz{f(l’)aU}aS}—(l_qz)z/o If($)</() UEq2(q3U)6q2( )dq>dq .

Making use of (1.2), it is easy to see that

2 2 2
Dy [Eg (szuz) €42 (—u2x2)} = —Hqul(jq—;x)qu (52u2) €42 (—u2x2) .

Hence,

Lo {oLa {f (2)iu} 18} = ———— | /O T2l @) (qu (%) ey (—u2x2)|210> dye,

2], (1 —¢? $2 + 2
which yields by (2.5) that
2o (@509} = oy | e = g @ssh (27)

Also, from (2.1) and (2.2), we find that

-1

Lol oLalf(2);ul; s} = ﬁ /OOO wegs (— %) (/Ou 2B (q2u2x2)f(x)dqx> dyu.

Replacing xzu by y into the internal g-integral followed by changing the order of g-integration, which is
permissible by absolute convergence of the integrals involved, we get

o el f@)indis) = o | B () ( / N uleqz<—s2u2>f<y/u>dqu) Iy
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Again, replacing u by xy into the internal g-integral followed by changing the order of g-integration, we get

1 o0 _ _ 1
alaLalf ko) = s [Tt 1) ([ v e (<o) ) dgo
As above, the previous double ¢-integral can be reduced as

ol ()

14 5222 1

)

qﬁz{ ng{f(ac);u}; 5} = [2]q(11 @) /0

which can be read by using (1.6) as

Lol ala{f@iutis) = s [ Z e (2.9

In view of (2.7) and (2.8), we get the desired result (2.6).

Now we give an example that will be used in the sequel.

Example 2.2 Let a be a real number. Then we have

o 1 1 qu(0¢/2+1)qu(—0¢/2) o
Po{z ’t}_m(l—qz) Kp(a/2+1) e, -2 <a<0. (2.9)

Proof. We put f(x) =z (-2 < a <0) in (2.1) and (2.2). Utilizing the known results due to Albayrak et al.

[1], namely
oy 1 (1=¢)"?Tp(a/2+1)
Lo{ztul = 2, wr Kp(a/21) R(a/24+1) >0, (2.10)
qLo{z%u} = [21](1;(f_;ﬁm1"[12(04/2—|—1)7 R(a/2+1) >0, (2.11)
we have

Pola®it) = [2]q (gL {g L2 {5 u} ;1))

- (ot L R )

(1-¢?)*2 Tp(a/2+1

_ ) s
=[2], 2L, Ep(a/2el) JLo {u=o"2t}

_ (1— g2)*/2 Fpe(a/2+1) 1 (1 - g2)-o/2-1

~ 2, Kglo/2+1)2,  t° Lz (—a/2)

1 1 Tpe(a/2+ Dle(—a/2)

= — ta.
2] (1 —q?) Kep(a/2+1)
Example 2.3 We have the identity
1
Pyleg(—a*a?); s} = meqz (a®s*)Ey(a®s?; ¢°) (2.12)

that holds true.
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Proof. From (2.5), we get

1 ® ze,2(—ax?)
2.2\, 1 _ q
Polep(—a“z?); s} = & /0 o dqz.

Using the g-analogue of the integration theorem by a change of variable (1.8) with changing x by y% yields

1 e 2(7a2y)
Pq{€q2(—a2$2)§ s} = 2],(1— q2)/0 qsz Ty dg2y.

Again, putting a’y =t leads to

) . 1 > eqz(—t)
Pq{ecﬁ(*azmz)’s} = 2],(1— qz)/o 252 +tdq2t
1 2.2 2.2
_ A 7q2)eq2(a sY)Eq(a®s®; q%)

In view of Lemma 1.1 and noting that E,(x)e,(x) = 1, we get the desired result.

Proposition 2.4 The P, -Widder potential transform and the Sy -Stieltjes transform are related by the identity

Polf(x): s} = pl]quz{f(\/E); 2) (2.13)

where the S, -Stieltjes transform is defined by Kiiren and Vulas [/] as

L[ @),
1—-qJy z+s

Se{f(x); s} =

q-

Proof. The proof comes immediately by changing the variable z in (2.5) by u? and using the rule (1.8).

3. The main results

Brown et al. [2] introduced the &g, -transform as
Ean{f(x);s} = /000 xexp(xsz)El(x282)f(a:)dx (3.1)
where Fq(z) is the exponential integral defined as
Ey(z) = /Ootfleftdt, x> 0.

A function f is g-integrable on [0,00) if the series ) _,¢"f(¢") converges absolutely. We write

L}(Rgq4) for the set of all functions that are absolutely g-integrable on [0,00), where R, 1 is the set
R, = {¢":n ez},
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that is

{f > " |f (g |<OO}

nez

{1t [T @lae <ol

1—g¢q

Now we introduce the following g-integral transform, which may be regarded as a g-extension of the & -

transform (3.1).

Definition 3.1 A g-analogue of Ea.1 -transform will be denoted oEo2,1 and defined by

1 oo
oEaf{f(x); s} = m/ wf(x)eq(s’2?)Ex (s%2%;¢%) dgw (3.2)
- 0
where E1(x;q) is the q-exponential integral defined as in (1.16). In view of (1.5), (3.2) can be expressed as

oS {f (2); s}— T L aepe (°0*) Bn (s°6*";0) £(a")- (3.3)

neZ

Theorem 3.1 If f € Lé(Rq,Jr), then the q-integral defined by (3.2) is convergent.
Proof. We have

2 {f (@)35}] < Z\eq( (1=®) B (s* (1= ia) | la"f (")

nez

_ ((11_‘?22%2 (20-a0?) B (0= 0"5®) Y 1a"f (")
) nez

If feLy(Ryy), then Y- ., q"|f(¢")] < co. This completes the proof.

Theorem 3.2 Let x be real and s be complex. Then we have that

oLo{{aLo oL {f (1) 30} 1} s}—[;]q LoAPf(2): 1)) (3.4)
1
m P2{£q{f($)§t}§3}
and
oLo Lo (oo {f () 1} i} 18} = — oo {F(x); 5} (3.5)

213

hold true, provided that the integrals involved converge absolutely.
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Proof. The proof of (3.4) comes immediately from (2.6). In order to prove (3.5), inserting (2.2) and (2.5) into
(3.4), we get

oLo{{qLo{oLo{f (x);u}st};s} = M /Oooteqz(—thQ) (/OOO tfﬁ?Q dqx> dyt.

Changing the order of integration, which is permissible by absolute convergence of the integrals involved, and

then using definition (2.5) once again, it follows that

2

! N 242 ;L T
Ei=g ), e S

q‘C?{{qL2 {q£2 {f (LL') 5 u} 7t} ; S} = [2]q(

From Theorem 2.1, we find that

oLa{{qLo {oLo{f (x);u};t};s} = m /OOO zf(x)eq(s°2°) By (s*0%;¢%) dg,

which is the desired result according to Definition 3.1.
Example 3.3 Let a be real. Then we have

1 Tg(a/2+ Dl (—a/2)Tg(a/2+1) (1 = ¢*)*/>!

82-1 {$a' 8} = (36)
q~2; ’ 2 o
2], K2 (a/2+1) ut?
where —2 < a < 0.
Proof. We put f (z) =2* (-2 < a < 0) in Theorem 3.2, and hence we get
1
gLoA{qLa {qL2 {2 u};t}; s} = W gE251 {2 s} (3.7)
q
At first, we calculate the left-hand side of equation (3.7). From (2.6), we get
1
gLo{{qL2 {qL2 {2 u};t}; s} = W ¢L2 {Pe{z%;u}; s}t (3-8)
q
From (2.9) and (2.10), identity (3.8) gives rise to
1 1 Fpe(a/2+ 12 (—a/2)
L Lo{,Lo{x*;u};t};s} = — 4 4 t* (Loft%;s
q 2{{q 2{(1 2{ } } } [2]3 (1_q2) KqQ(Oé/2+1) q 2{ }
(=) (/2 4 D0 (~0/2) Typla/2 + 1) 59
E Ki(e/2+1)  we? |

Therefore, in view of (3.7) and (3.9), we obtain the complete proof of the example.

Remark. Letting ¢ — 1~ and making use of the limits formulas

lim T,(t) =T(t), lim K,(A;jt) =1,

qg—1— q—1—
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we observe identity (3.6), the g-extension of the known result

1
Eon {275} = gsec (%T) r (a;_ ) Pt

due to Brown et al. [2, Example 2, 2.8].

Theorem 3.4 The Parseval-Goldstein type relations: The identities

/Oot Lo f(x);t}Pe{g(u);t}dt = —1 /OO zf(x)€2.1{g(u); x}dgx (3.10)
0 2l4 Jo
and
/ b Lol (@) P {g(u); thdyt = — / g (w)Ean {f (x): u}dyu (3.11)
0 12]4 Jo

hold true, provided that the q-integrals involved converge absolutely.
Proof. Inserting (2.2) into the left-hand side of (3.10) followed by changing the order of ¢-integrations, we get
/0 Tt Lol F@): )Py gu); tydgt = 1_71612 /0 " ef(a) ( /0 h teqz(—x2t2)77q{g(u);t}dqt> dy.
Once again, from (2.2), we get
/OOO toLa{ f(x): 1}Py{g(u); t}dyt = /OOO () oLa{Pyg(u); t}: ) dyge.

In view of (3.4), (3.5), and the last formula, we obtain the identity (3.10). The proof of (3.11) is similar.

Theorem 3.5 Let v be a complex number. Then we have

* , _ 1 L2 (*31) [* f(2)
f v et = o gy [ (3.12)
holding true for R(v) > —1,
*Phf ()i}, 1 Te(HHTe (5% (% f(2)
/0 yY dqy - [2]q(1 _ q2) Kq2(1;1/) A TV dql‘, (313)
holding true for —1 < R(v) < 1, and
e’} . T 1—v o)
I e e B (319

holding true for R(v) < 1, provided that the q-integrals involved converge absolutely.
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Proof. Insert the definition of ;Lo -transform (2.2) into the left-hand side of identity (3.12) followed by changing

the order of integration to obtain

o0 1 oo oo
/O Yy Lo f(x);y}dey = 1_7q2/0 xf(x) (/0 y”eq2(x2y2)dqy) dgz.

Replace xy by u%\/ﬁ in the internal g-integral with using the rule (1.8) and the definition of the ¢-
gamma function (1.10) to obtain the first identity (3.12). The proof of identity (3.13) is similar by inserting the
definition of the ¢-Widder transform (2.5) instead of the definition of ,Lo-transform. To prove identity (3.14),
inserting relation (2.6) into the left-hand side of identity (3.14) gives

/oo Pq{f(;”v);y}dqy _ [Q]q/m oLa{ qﬁz{{(x);u};y}dqy_
0 Y 0 Y

From the definition of Lo-transform (2.1), we get

/Ooo Pq{fy(f);y} dy = 1iq /O“ v ( /0

Replace uy by ¢ in the internal g-integral followed by changing the order of integration to obtain

X PAf();yy, 1 [} < L
/O 4 " dqy—l_q/ tEgp(¢°t?) (/0 Y2 G Lo{f ()i ty 1}dqy> dqt.

0

-1

ube (q2u2y2) q£2{f(z)§ u}dqu> dqy.

Again, replacing y by tu in the internal g-integral gives

>~ P ; L T -
/0 q{fy(f) Wiy = 1—q/0 t qu(qztz)dqt/() w72 gLo{f(x);u”" Hgu.

To compute the first g-integral, put ¢ = uz\/1— q? with using rule (1.8) and the definition of the g-gamma
function (1.9). Using rule (1.6) ends the proof of the theorem.
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