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Abstract: Let M be a module over a commutative ring R. A proper submodule N of M is called weakly 2-absorbing,

if for r, s ∈ R and x ∈ M with 0 ̸= rsx ∈ N, either rs ∈ (N : M) or rx ∈ N or sx ∈ N. We study the behavior of

(N : M) and
√

(N : M), when N is weakly 2-absorbing. The weakly 2-absorbing submodules when R = R1 ⊕R2 are

characterized. Moreover we characterize the faithful modules whose proper submodules are all weakly 2-absorbing.

Key words: Prime submodule, 2-absorbing submodule, weakly 2-absorbing submodule, weakly prime submodule, weak

prime submodule

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Furthermore, we

consider R to be a commutative ring with identity and M an R -module, and K[X,Y ] denotes the ring of

polynomials, where X and Y are independent indeterminates and K is a field.

The colon ideal of a submodule N of M is considered to be

(N : M) = {r ∈ R|rM ⊆ N}.

Moreover,
√

(N : M) will be called the radical ideal of N.

Following [5], [resp. [4]] a proper ideal I of R is weakly 2-absorbing, [resp. 2-absorbing ] if for a, b, c ∈ R

with 0 ̸= abc ∈ I, [resp. abc ∈ I ] ab ∈ I or ac ∈ I or bc ∈ I.

Recall that a proper submodule N of M is called 2-absorbing, if for r, s ∈ R and x ∈ M with rsx ∈ N,

rs ∈ (N : M) or rx ∈ N or sx ∈ N (see [9, 10]).

According to [10], a proper submodule N of M is called weakly 2-absorbing, if for r, s ∈ R and x ∈ M

with 0 ̸= rsx ∈ N, rs ∈ (N : M) or rx ∈ N or sx ∈ N.

A proper submodule N of M is called prime, when from rx ∈ N for some r ∈ R and x ∈ M , we can

conclude either x ∈ N or rM ⊆ N (see for example [2, 7, 8]). If N is a prime submodule, then P = (N : M)

is a prime ideal of R.

Another generalization of prime ideals to modules was introduced in [6]. A proper submodule W of M

is said to be weakly prime, if rsx ∈ W for r, s ∈ R and x ∈ M , implying that either rx ∈ W or sx ∈ W.

Recall from [1] that a proper ideal I of a ring R is a weakly prime ideal if whenever a, b ∈ R with
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0 ̸= ab ∈ I, then either a ∈ I or b ∈ I. For unifying with modules and preventing confusion, we name weakly

prime ideals of [1] weak prime ideals in this paper. The following definition is a module version of this notion.

Definition 1 A proper submodule N of M is said to be weak prime, if for r ∈ R and x ∈ M with 0 ̸= rx ∈ N

either r ∈ (N : M) or x ∈ N.

Note 1 It is easy to see that:

1. Prime submodule =⇒ Weak prime =⇒ Weakly 2-absorbing.

2. Prime submodule =⇒ Weakly prime =⇒ 2-absorbing =⇒ Weakly 2-absorbing.

3. A submodule N is weakly prime if and only if N is 2-absorbing and (N : M) is a prime ideal.

See [9, Example 1], for examples of 2-absorbing submodules that are not weakly prime.

Example 1

1. Let R = K[X,Y ], M = R ⊕ R and N = ⟨X⟩ ⊕ ⟨X,Y ⟩. Then N is a 2-absorbing submodule of the

R -module M, but it is not weak prime.

2. For the Z-module M = Z12, the zero submodule is weakly 2-absorbing, but not 2-absorbing.

Proof. (1) One can easily see that N is a 2-absorbing submodule of M. However, N is not weak prime,

because 0 ̸= Y (0, 1) ∈ N, but Y /∈ ⟨X⟩ = (N : M) and (0, 1) /∈ N.

(2) Evidently the zero submodule of any nonzero module is weakly 2-absorbing. Now consider 2.3.2 ∈
0 = N to see that N is not 2-absorbing.

2. On a question from Badawi and Yousefian

The authors in [5] have asked the following question:

Question. Suppose that L is a weakly 2-absorbing ideal of a ring R and 0 ̸= IJK ⊆ L for some ideals I, J,K

of R. Does it imply that IJ ⊆ L or IK ⊆ L or JK ⊆ L?

This section is devoted to studying the above question and its generalization in modules.

Lemma 2.1 Let N be a weakly 2-absorbing submodule of an R -module M and a, b ∈ R. If for some submodule

K of M, abK ⊆ N and 0 ̸= 2abK, then ab ∈ (N : M) or aK ⊆ N or bK ⊆ N.

Proof Put (N : M) = L, and suppose ab /∈ L. Then it is enough to prove that K ⊆ (N :M a)∪ (N :M b). Let

z be an arbitrary element of K. If 0 ̸= abz, then as N is weakly 2-absorbing and ab /∈ L, either az ∈ N or

bz ∈ N and so z ∈ (N :M a)∪ (N :M b). Now let 0 = abz. Since 0 ̸= 2abK, for some x ∈ K, we have 0 ̸= 2abx

and so 0 ̸= abx ∈ N. As N is weakly 2-absorbing and ab /∈ L, either ax ∈ N or bx ∈ N. Put y = x+ z. Then

0 ̸= aby ∈ N and since ab /∈ L, either ay ∈ N or by ∈ N. We consider three cases.

Case 1. ax ∈ N and bx ∈ N. Note that ay ∈ N or by ∈ N, and so either az ∈ N or bz ∈ N.

Case 2. ax ∈ N and bx /∈ N. On the contrary let az /∈ N. Then ay /∈ N and so by ∈ N. Therefore,

a(y + x) /∈ N and b(y + x) /∈ N. Now as N is weakly 2-absorbing and ab /∈ L, then 0 = ab(y + x) = 2abx,

which is a contradiction. Thus az ∈ N.

Case 3. ax /∈ N and bx ∈ N. Then proof is similar to that of Case 2. 2
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Lemma 2.2 Let J be an ideal of R and K,N two submodules of an R -module M, such that aJK ⊆ N, where

a ∈ R. If N is weakly 2-absorbing and 0 ̸= 4aJK, then aJ ⊆ (N : M) or aK ⊆ N or JK ⊆ N.

Proof Let aJ ̸⊆ (N : M) = L. Then aj /∈ L for some j ∈ J. First we claim that there exists b ∈ J such that

0 ̸= 4abK, and ab /∈ L.

Since 0 ̸= 4aJK, for some j′ ∈ J, 0 ̸= 4aj′K. If aj′ /∈ L or 0 ̸= 4ajK, then by putting b = j′

or b = j, we get the result. Therefore, let aj′ ∈ L and 4ajK = 0. Hence 0 ̸= 4a(j + j′)K ⊆ N and

a(j + j′) /∈ L. Consequently we find b ∈ J, such that 0 ̸= 4abK, and ab /∈ L. Thus 0 ̸= 2abK and by 2.1,

K ⊆ (N :M a) ∪ (N :M b). If aK ⊆ N, there is nothing to prove. Therefore, assume that aK ̸⊆ N and so

bK ⊆ N.

Now we show that J ⊆ (L : a) ∪ (N : K). Let c ∈ J. If 0 ̸= 2acK, then by 2.1, ac ∈ L or aK ⊆ N or

cK ⊆ N. However, as we assumed aK ̸⊆ N, c ∈ (L : a) ∪ (N : K).

Next assume 2acK = 0. Then 0 ̸= 2a(b+ c)K ⊆ N and 2.1 implies that either a(b+ c) ∈ L or aK ⊆ N

or (b+ c)K ⊆ N. Then as aK ̸⊆ N, (b+ c) ∈ (L : a)∪ (N : K). If b+ c ∈ (N : K), then c ∈ (N : K), because

b ∈ (N : K). Therefore, let (b+ c) ∈ (L : a) \ (N : K).

Consider 2a(b + c + b)K = 4abK ̸= 0 and 2a(b + c + b)K ⊆ N. Since ab /∈ L and a(b + c) ∈ L,

a(b+ c+ b) /∈ L. Thus, according to 2.1, K ⊆ (N :M a)∪ (N :M b+ c+ b). However, since b+ c /∈ (N : K) and

b ∈ (N : K), b+ c+ b /∈ (N : K), and so K ⊆ (N :M a), which is impossible. Therefore, b+ c ∈ (N : K) and

since b ∈ (N : K), c ∈ (N : K). Consequently J ⊆ (L : a) ∪ (N : K) and hence as aJ ̸⊆ L, JK ⊆ N. 2

Theorem 2.3 Let I, J be ideals of R and N,K be submodules of an R -module M. If N is a weakly 2-

absorbing submodule, 0 ̸= IJK ⊆ N, and 0 ̸= 8
(
IJ + (I + J)(N : M)

)(
K + N

)
, then IJ ⊆ (N : M) or

IK ⊆ N or JK ⊆ N. In particular this holds if the group (M,+) has no elements of order 2.

Proof Note that 0 ̸= 8
(
IJ+(I+J)(N : M)

)(
K+N

)
= 8IJK+8IJN+8I(N : M)K+8J(N : M)K+8I(N :

M)N + 8J(N : M)N. Therefore, one of the following different types is satisfied.

(i) 0 ̸= 8IJK. Then for some a ∈ J, we have 0 ̸= 8aIK. Therefore, 0 ̸= 4aIK and by 2.2, either

aI ⊆ (N : M) = L or aK ⊆ N or IK ⊆ N. If IK ⊆ N, then we have the result. Therefore, we suppose that

IK ̸⊆ N and so a ∈ (L : I) ∪ (N : K). Now we show that J ⊆ (L : I) ∪ (N : K). To see this let c ∈ J. If

0 ̸= 4cIK, then according to 2.2, since IK ̸⊆ N, c ∈ (L : I) ∪ (N : K).

Now let 4cIK = 0. So 0 ̸= 4(a+ c)IK ⊆ N. Thus, by 2.2, since IK ̸⊆ N, a+ c ∈ (L : I)∪ (N : K). We

consider the following four cases.

Case 1. a+ c ∈ (L : I) and a ∈ (L : I). Then c ∈ (L : I).

Case 2. a+ c ∈ (N : K) and a ∈ (N : K). Hence c ∈ (N : K).

Case 3. a ∈ (L : I) \ (N : K) and a + c ∈ (N : K) \ (L : I). Therefore, a + c + a /∈ (L : I) and

a + c + a /∈ (N : K) and so a + c + a /∈ (L : I) ∪ (N : K). We consider 4(a + c + a)IK = 8aIK ̸= 0. Hence,

by 2.2, as IK ̸⊆ N, a + c + a ∈ (L : I) ∪ (N : K), which is impossible. Hence as a ∈ (L : I) ∪ (N : K) and

a+ c ∈ (L : I) ∪ (N : K), one of the following holds.

(a) a ∈ (N : K) and a+ c ∈ (N : K) \ (L : I). Thus c ∈ (N : K).

(b) a ∈ (L : I) \ (N : K) and a+ c ∈ (L : I). Hence c ∈ (L : I).

Case 4. a+c ∈ (L : I)\(N : K) and a ∈ (N : K)\(L : I). Similar to Case 3, we get c ∈ (L : I)∪(N : K)
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Consequently J ⊆ (L : I) ∪ (N : K).

(ii) If 0 ̸= 8IJN and 8IJK = 0, then 0 ̸= 8IJ(K + N) ⊆ N, and then by part (i), JI ⊆ (N : M) or

J(K +N) ⊆ N or I(K +N) ⊆ N and so JI ⊆ (N : M) or JK ⊆ N or IK ⊆ N.

(iii) Let 0 ̸= 8J(N : M)K and 8IJK = 0. Then 8J(I + (N : M))K = 8J(N : M)K ̸= 0 and so

according to part (i), either J(I + (N : M)) ⊆ (N : M) or JK ⊆ N or (I + (N : M))K ⊆ N and so either

JI ⊆ (N : M) or JK ⊆ N or IK ⊆ N. Similarly if 0 ̸= 8I(N : M)K, we get the result.

(iv) Let 0 ̸= 8J(N : M)N and 8IJK = 8IJN = 8J(N : M)K = 8I(N : M)K = 0. Then

8J(I + (N : M))(K + N) = 8J(N : M)N ̸= 0, and so part (i) implies that J(I + (N : M)) ⊆ (N : M)

or J(K +N) ⊆ N or (I + (N : M))(K +N) ⊆ N. Hence JI ⊆ (N : M) or JK ⊆ N or IK ⊆ N. Clearly if

0 ̸= 8I(N : M)N, we have the result.

For the particular case suppose the group (M,+) has no subgroups of order 2. Then we show that

0 ̸= 8IJK, and so by part (i), the result is given. If 0 = 8IJK, then consider 0 ̸= ℓ ∈ IJK. As 8ℓ = 0, so the

group (M,+) has a subgroup of order 2, 4, or 8, which implies that it has an element of order 2, a contradiction.
2

The following result is the ring version of 2.1, 2.2, and 2.3. For the proof just consider M = R.

Corollary 2.4 Let a, b ∈ R and I, J,K be ideals of R and suppose that L is a weakly 2-absorbing ideal of R.

(a) If 0 ̸= 2abI and abI ⊆ L then ab ∈ L or aI ⊆ L or bI ⊆ L.

(b) If 0 ̸= 4aIJ and aIJ ⊆ L, then either aI ⊆ L or aJ ⊆ L or IJ ⊆ L.

(c) If 0 ̸= IJK ⊆ L, then IJ ⊆ L or IK ⊆ L or JK ⊆ L, if 8
(
IJ(K + L) + IK(J + L) + JK(I + L) +

IL(J +K) + JL(I +K) +KL(I + J) +L2(I + J +K)
)
̸= 0. In particular, this holds if the group (R,+)

has no elements of order 2.

3. Weakly 2-absorbing submodules and their colon ideals

In this section we study when the quotient of a weakly 2-absorbing submodule is a weakly 2-absorbing ideal.

We will also give a condition under which a weakly 2-absorbing submodule is 2-absorbing.

Lemma 3.1 Let N be a weakly 2-absorbing submodule of an R -module M. If a, b ∈ R, x ∈ M with abx = 0

and ab /∈ (N : M), ax /∈ N, bx /∈ N, then

(i) abN = a(N : M)x = b(N : M)x = 0.

(ii) a(N : M)N = b(N : M)N = (N : M)2x = 0.

Proof (i) If abN ̸= 0, then for some y ∈ N, 0 ̸= aby = ab(x + y) ∈ N and since N is weakly 2-absorbing,

ab ∈ (N : M) or a(x + y) ∈ N or b(x + y) ∈ N. Hence ab ∈ (N : M) or ax ∈ N or bx ∈ N, which are

impossible. Thus abN = 0 and the similar arguments prove that a(N : M)x = b(N : M)x = 0.

(ii) If on the contrary for some t ∈ (N : M) and y ∈ N, 0 ̸= aty then by part (i), 0 ̸= aty =

a(b + t)(x + y) ∈ N. Then since N is weakly 2-absorbing, we get a(b + t) ∈ (N : M) or a(x + y) ∈ N or

(b+ t)(x+ y) ∈ N. This implies that ab ∈ (N : M) or ax ∈ N or bx ∈ N, which are against our assumptions;

consequently a(N : M)N = 0. Similarly b(N : M)N = (N : M)2x = 0. 2
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Theorem 3.2 The colon ideal of a weakly 2-absorbing submodule is a weakly 2-absorbing ideal if Ann(M) is

a weakly 2-absorbing ideal, particularly if M is faithful.

Proof Let N be a weakly 2-absorbing submodule of M. First assume that M is a faithful R -module. Let

a, b, c ∈ R with 0 ̸= abc ∈ (N : M) and ab /∈ (N : M), ac /∈ (N : M) and bc /∈ (N : M). As Ann(M) = 0, for

some z ∈ M, 0 ̸= abcz ∈ N. Thus since N is weakly 2-absorbing and ab /∈ (N : M), acz ∈ N or bcz ∈ N. We

claim that there exists x ∈ M such that 0 ̸= abcx ∈ N and one of the following holds.

(i) acx /∈ N and bcx ∈ N, abx ∈ N.

(ii) bcx /∈ N and acx ∈ N, abx ∈ N.

We consider the following two cases.

Case 1. acz ∈ N. Because of ac /∈ (N : M), there exists z′ ∈ M \N such that acz′ /∈ N. Since 0 ̸= abcz,

it is easy to see that either 0 ̸= abc(2z + z′) or 0 ̸= abc(z + z′). First we suppose that 0 ̸= ab(c(2z + z′)) ∈ N.

Therefore, as N is weakly 2-absorbing, ab ∈ (N : M) or ac(2z + z′) ∈ N or bc(2z + z′) ∈ N. However,

by assumption, ab /∈ (N : M) and as acz′ /∈ N, ac(2z + z′) /∈ N and so bc(2z + z′) ∈ N. Hence as

0 ̸= bc(a(2z + z′)) ∈ N and bc /∈ (N : M), we have ba(2z + z′) ∈ N. By the same way if 0 ̸= ab(c(z + z′)) ∈ N,

then ac(z+ z′) /∈ N and bc(z+ z′) ∈ N, ba(z+ z′) ∈ N. Consequently for some x ∈ M, we have 0 ̸= abcx ∈ N

and acx /∈ N and bcx ∈ N, abx ∈ N.

As N is weakly 2-absorbing and ab /∈ (N : M), it suffices to show that there exists x′ ∈ M, such that

0 ̸= ab(cx′) ∈ N and acx′ /∈ N, bcx′ /∈ N.

Since ab /∈ (N : M), for some y′ ∈ M, aby′ /∈ N. Hence as 0 ̸= acbx, either 0 ̸= acb(2x + y′) or

0 ̸= acb(x+ y′). First let 0 ̸= ac(b(2x+ y′)) ∈ N. Then since abx ∈ N and aby′ /∈ N we have ab(2x+ y′) /∈ N

and hence as N is weakly 2-absorbing and ac /∈ (N : M), we have cb(2x + y′) ∈ N. Then by considering

0 ̸= bc(a(2x+ y′)) ∈ N, since bc /∈ (N : M) and ba(2x+ y′) /∈ N, we get ca(2x+ y′) ∈ N. Similarly in the case

0 ̸= ac(b(x+ y′)) ∈ N, we get ab(x+ y′) /∈ N and cb(x+ y′) ∈ N, ca(x+ y′) ∈ N.

Therefore, there exists x′′ ∈ M such that 0 ̸= abcx′′ and acx′′ ∈ N, bcx′′ ∈ N and abx′′ /∈ N. Thus as

0 ̸= acx′′ ∈ N and ac /∈ (N : M), either ax′′ ∈ N or cx′′ ∈ N. However, since abx′′ /∈ N, cx′′ ∈ N.

For some y ∈ M, we have bcy /∈ N, because bc /∈ (N : M). Hence if 0 ̸= ab(cy), then since N is weakly

2-absorbing, acy ∈ N and aby ∈ N and we consider abc(x+y). If 0 = abc(x+y), then since acx /∈ N, acy ∈ N

and bcx ∈ N, bcy /∈ N, we have bc(x+ y) /∈ N and ac(x+ y) /∈ N, and so by 3.1, since ac /∈ (N : M), we have

abN = 0. Thus abcx′′ = 0, which is a contradiction. Therefore, 0 ̸= abc(x + y) and since ab /∈ (N : M) and

bc(x+ y) /∈ N, ac(x+ y) /∈ N, we have the result.

Now let ab(cy) = 0. If acy /∈ N, then since ab /∈ (N : M) and bcy /∈ N, by 3.1, we have abN = 0 and so

abcx′′ = 0, which is impossible. Therefore, acy ∈ N. Then bc(x + y) /∈ N, ac(x + y) /∈ N and since abcy = 0,

0 ̸= abc(x+ y). Consequently we find x′ ∈ M, such that 0 ̸= abcx′ ∈ N and acx′ /∈ N and bcx′ /∈ N.

Case 2. bcz ∈ N. The proof is given similar to that of Case 1.

Now if M is not a faithful R -module, then consider M as an R′ = R/Ann(M)-module. It is easy to

see that N is an R′ -weakly 2-absorbing submodule of M and so by the above argument (N : M)/Ann(M)

is a weakly 2-absorbing ideal of R′. Now since Ann(M) is a weakly 2-absorbing ideal, one can easily see that

(N : M) is a weakly 2-absorbing ideal of R. 2

Now we show that the converse of 3.2 is not necessarily true.
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Example 2 It is easy to see that if (R,M) is a quasi-local ring with M3 = 0, then every proper ideal of R

is weakly 2-absorbing. Therefore, for the ring R = K[[X,Y,Z]]
J , where J = ⟨X3, Y 2, Z2, XY,XZ⟩, the ideal

I = ⟨X,Y 2,Z2⟩
J is weakly 2-absorbing.

Now consider the R -module M = R ⊕ R and N = I ⊕ R. Then (N : M) = I is a weakly 2-absorbing

ideal of R, but N is not a weakly 2-absorbing submodule of M. To see the proof note that (Y +J)(Z+J)(Y +

Z + J, 1 + J) ∈ N.

4. Weakly 2-absorbing submodules and their radical ideals

Let N be a 2-absorbing submodule of M. According to [9, Proposition 1(iii)] either
√

(N : M) is a prime ideal

of R, or
√
(N : M) = P1 ∩ P2, where P1, P2 are the only distinct minimal prime ideals over (N : M) and

P1P2 ⊆ (N : M). This is a motivation for studying
√
(N : M) when N is a weakly 2-absorbing submodule in

this section.

Let P be a prime ideal of R. The height of P denoted by ht P is defined to be the supremum of the

length of chains of P0 ⊂ P1 ⊂ · · · ⊂ Pn = P of prime ideals of R if the supermum exists, and ∞ otherwise.

The height of an ideal I denoted by ht I is defined to be

ht I = inf{ht P | P is a minimal prime ideal containg I}.

Proposition 4.1 Let I be a weakly 2-absorbing ideal of R with
√
I = J. Then either J is a prime ideal of R

or J = P1 ∩ P2, where P1, P2 are the only distinct minimal prime ideals over I or IP = 0 for every minimal

prime ideal P over I. In the latter case ht I = 0.

Proof Suppose that there are at least three minimal prime ideals P,Q , and L over I and IL ̸= 0. Consider

x ∈ P \ (L ∪Q) and y ∈ Q \ (L ∪ P ). Since P,Q are minimal prime ideals over I,
√
IP = PP and

√
IQ = QQ

and so for some s ∈ R \P and t ∈ R \Q, and m,n > 0 we have sxm ∈ I and tyn ∈ I. Since x /∈ I and y /∈ I,

without loss of generality we can assume sxm−1 /∈ I and tyn−1 /∈ I.

We claim that sx ∈ I and ty ∈ I. If 0 ̸= sxm = sxm−1x ∈ I, then as I is weakly 2-absorbing and

xm /∈ I, either sx ∈ I or sxm−1 ∈ I. Hence sxm−1 /∈ I and we have sx ∈ I. Therefore, we can assume that

sxm = 0. Then as sxm−1 /∈ I and xm /∈ I, either sx ∈ I or by 3.1, xmI = 0 and so in this case IL = 0, which

is a contradiction and then sx ∈ I. Similarly ty ∈ I. Now we consider (s+ t)xy ∈ I. If (s+ t)xy = 0, then as

(s+ t)x /∈ I and (s+ t)y /∈ I, either xy ∈ I or by 3.1, xyI = 0. If xyI = 0, then IL = 0, which is impossible.

Therefore, xy ∈ I ⊆ L, which is a contradiction.

Now let IP = 0 for every minimal prime ideal P over I. To show that ht I = 0, let Q be a minimal

prime ideal over I, and assume that Q′ is a prime ideal with Q′ ⊆ Q. If I ⊆ Q′, then evidently Q′ = Q. Now

let x ∈ I \ Q′. Since IQ = 0, there exists s ∈ R \ Q with sx = 0. Then sx = 0 ∈ Q′, which implies that

s ∈ Q′ ⊆ Q, a contradiction. 2

To illustrate 4.1, in the following examples we introduce three different types of weakly 2-absorbing

ideals.

Example 3

(i) The zero ideal is a non-2-absorbing and weakly 2-absorbing ideal of Z8, and
√
0 = 2Z8 is a prime ideal.
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(ii) The zero ideal is a non-2-absorbing and weakly 2-absorbing ideal of Z18, and
√
0 = 2Z18 ∩ 3Z18, which is

the intersection of two distinct prime ideals.

(iii) If P1, P2 , and P3 are three incomparable prime ideals of a ring R with P1P2P3 = 0, then I = P1∩P2∩P3

is a weakly 2-absorbing ideal of R and
√
I = I and IP1 = IP2 = IP3 = 0.

(iv) If R = K[X,Y, Z] and P1 = ⟨X,Y ⟩, P2 = ⟨X,Z⟩ , and P3 = ⟨Y, Z⟩, then 0 ̸= I = P1∩P2∩P3

P1P2P3
is a weakly

2-absorbing ideal of the ring R
P1P2P3

,
√
I = I and I P1

P1P2P3

= I P2
P1P2P3

= I P3
P1P2P3

= 0.

Proof. The proofs of (i) and (ii) are evident.

(iii) Let 0 ̸= abc ∈ I. If a ∈ P1 ∩ P2 ∩ P3 or a /∈ P1 ∪ P2 ∪ P3, then there is nothing to prove. Therefore,

we consider two cases.

Case 1. If a is in two of the Pi ’s, say P1, P2, then either b ∈ P3 or c ∈ P3 and so either ab ∈ I or

ac ∈ I.

Case 2. a is only in one of the Pi ’s. We can assume a ∈ P1 \ P2 ∪ P3. Hence bc ∈ P2 ∩ P3 and since

P1P2P3 = 0 and 0 ̸= abc, either b ∈ P2 ∩ P3 or c ∈ P2 ∩ P3. Then similar to Case 1, we have the result.

It is easy to see that
√
I = I and so I has three minimal prime ideals. Since P1P2P3 = 0, for some

t ∈ P2P3 \ P1, we have tI ⊆ tP1 = 0 and so 0 = IP1 . Similarly IP2 = IP3 = 0.

(iv) The proof is given by part (iii). 2

The proof of the following result is given by 3.2 and 4.1.

Corollary 4.2 Let N be a weakly 2-absorbing submodule of a faithful R-module M. Then either
√
(N : M)

is a prime ideal of R or
√
(N : M) = P1 ∩ P2, where P1, P2 are the only distinct minimal prime ideals over

(N : M) or (N : M)P = 0 for every prime ideal P containing (N : M). In the latter case ht(N : M) = 0.

Theorem 4.3 Let I be a weakly 2-absorbing ideal of R and P1, P2 be two incomparable prime ideals, and

suppose J =
√
I = P1 ∩ P2. Then:

If 0 ̸= IP1 , 0 ̸= IP2 , then P1P2 ∪ (P1 + P2)J ⊆ I. Furthermore, if J ̸= I, then {(I : r) | r ∈ J \ I} is a

chain of prime ideals of R.

Proof First we show that if a ∈ P1 \ P2, b ∈ P2 \ P1, then ab ∈ I (∗).

As P1, P2 are minimal prime ideals over I,
√

IP1 = (P1)P1 and
√
IP2 = (P2)P2 and so for some s ∈ R\P1

and t ∈ R \ P2, and m,n > 0, we have sam ∈ I and tbn ∈ I. Then by proof of 4.1, either sa ∈ I or amI = 0

and tb ∈ I or bnI = 0. If amI = 0 or bnI = 0, then IP2 = 0 or IP1 = 0; these two cases are impossible. Then

sa ∈ I and tb ∈ I. Now we consider (s+ t)ab ∈ I. If (s+ t)ab = 0, then as (s+ t)a /∈ I and (s+ t)b /∈ I, either

ab ∈ I or by 3.1, (s+ t)aI = 0. If (s+ t)aI = 0, then IP2
= 0, which is a contradiction. Therefore, ab ∈ I.

Suppose that a′, b′ ∈ J. Consider t ∈ P1\P2 and s ∈ P2\P1. Hence as a′+t ∈ P1\P2 and b′+s ∈ P2\P1,

by (∗), (a′ + t)s, ts ∈ I and so a′s ∈ I. Similarly b′t ∈ I and since (a′ + t)(s+ b′) ∈ I, a′b′ ∈ I. Thus J2 ⊆ I.

For the proof of P1P2 ⊆ I, let m ∈ P1, n ∈ P2. By the last part we may assume m ∈ J and n ∈ P2 \P1.

We consider x ∈ P1 \ P2 and by (∗), we get nx ∈ I, n(m+ x) ∈ I and so mn ∈ I and completes the proof.

Put Ir = (I : r) for each r ∈ J \ I. By the above paragraph, rP1 ⊆ I , rP2 ⊆ I and so P1 ⊆ Ir, P2 ⊆ Ir.

Now let a′′b′′ ∈ Ir. Then a′′b′′r ∈ I and since I is weakly 2-absorbing, a′′b′′r = 0 or a′′b′′ ∈ I or a′′ ∈ Ir
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or b′′ ∈ Ir. Since P1 ⊆ Ir and P2 ⊆ Ir, we can assume a′′ /∈ P1 ∪ P2 and b′′ /∈ P1 ∪ P2 and so a′′b′′ /∈ I. If

a′′b′′r = 0 and a′′ /∈ Ir, b′′ /∈ Ir, then by 3.1, a′′b′′I = 0 and so IP1 = 0, which is a contradiction. Thus Ir is

prime.

Now let r′, s′ ∈ J \ I and t′ ∈ Ir′ \ Is′ . As P1, P2 ⊆ Is′ , t′ /∈ P1 ∪P2. To show that Is′ ⊆ Ir′ , let c ∈ Is′ .

We may assume that c /∈ P1 ∪ P2 and we conclude t′c /∈ P1 ∪ P2. Now consider t′c(r′ + s′) ∈ I. Since I is

weakly 2-absorbing, t′c(r′ + s′) = 0 or t′c ∈ I or t′(r′ + s′) ∈ I or c(r′ + s′) ∈ I. However, since t′c /∈ P1 ∪P2,

t′c /∈ I. Moreover, as t′ ∈ Ir′ \ Is′ , t′(r′ + s′) /∈ I. Therefore, either t′c(r′ + s′) = 0 or c(r′ + s′) ∈ I. In the case

t′c(r′ + s′) = 0, by 3.1, we have t′cI = 0 and so IP1 = 0, which is a contradiction. Therefore, c(r′ + s′) ∈ I

and since c ∈ Is′ , we conclude c ∈ Ir′ . 2

Corollary 4.4 Let I be a weakly 2-absorbing ideal of R and P1, P2 two incomparable prime ideals. If
√
I = P1 ∩ P2 and 0 ̸= IP1 , 0 ̸= IP2 , then I is 2-absorbing.

Proof Let abc ∈ I. As I is weakly 2-absorbing, we can assume that abc = 0. Put J =
√
I.

First assume that at least one of a or b or c is in J, for example a ∈ J. If a ∈ I, then we have the

result. Therefore, let a ∈ J \ I. Thus, by 4.3, Ia is prime and so we have the result. Now let a, b, c /∈ J. Hence

as abc ∈ I ⊆ J = P1 ∩ P2, we can assume a ∈ P1 \ P2 and b ∈ P2 \ P1. Therefore, according to 4.3, ab ∈ I. 2

Proposition 4.5 Let N be a weakly 2-absorbing submodule of an R -module M. Then the following statements

hold:

(i) If there exists a submodule L of M such that N ⫋ L, then N is a weakly 2-absorbing submodule of L.

(ii) If for some submodule L and ideal I there exist positive integer numbers m > n such that ImL ⊆ N ⫋

InL, then N is a 2-absorbing submodule of InL and (
√

(N : M))2InL ⊆ N.

Proof (i) Let a, b ∈ R, x ∈ L with 0 ̸= abx ∈ N. Hence as N is a weakly 2-absorbing submodule of M,

ab ∈ (N : M) ⊆ (N : L) or ax ∈ N or bx ∈ N. Therefore, N is a weakly 2-absorbing submodule of L.

(ii) First suppose that Ann(InL) = 0. By part(i), N is a weakly 2-absorbing submodule of InL. Now

we claim that N is 2-absorbing. Assume that a, b ∈ R, x ∈ InL, abx ∈ N and ab /∈ (N : InL), ax /∈ N

and bx /∈ N. As N is weakly 2-absorbing, we may assume that 0 = abx. Then, according to 3.1, abN = 0

and so abImL = 0 and then abIm−n = 0, since Ann(InL) = 0. If m − n ≤ n, then abInL = 0 and so

ab = 0 ∈ (N : InL). Now let m−n > n. Hence abIm−2nInL = 0 and so abIm−2n = 0. We repeat this until we

get ab = 0 ∈ (N : InL).

Next we let Ann(InL) ̸= 0. We consider InL a R
Ann(InL) -module. Clearly N is a weakly 2-absorbing

R
Ann(InL) -submodule of InL. By the above argument, N is a 2-absorbing R

Ann(InL) -submodule of InL. It is

easy to see N is a 2-absorbing R -submodule of InL. Then, by [9, Proposition 2.2], (
√
(N : InL))2InL ⊆ N

and since (
√

(N : M))2InL ⊆ (
√
(N : InL))2InL, we have the result. 2

Corollary 4.6 Let I be a finitely generated weakly 2-absorbing ideal of R. Then (
√
I)3 ⊆ I. Furthermore,

either 8(
√
I)3 = 0 or (

√
I)2 ⊆ I.
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Proof There exists a positive integer number m such that (
√
I)m ⊆ I ⊆

√
I. If I =

√
I, then evidently we

have the result. Then let I ̸=
√
I. Thus, according to 4.5(ii), (

√
I)3 ⊆ I. Now if 0 ̸= 8(

√
I)3, then by 2.3,

(
√
I)2 ⊆ I. 2

5. Weakly 2-absorbing submodules in direct sum of modules

Throughout this section R1 and R2 are two commutative rings with identity, N1 is a submodule of an R1 -

module M1 , and N2 is a submodule of an R2 -module M2, the ring R = R1 ⊕ R2, M = M1 ⊕ M2 , and

N = N1 ⊕ N2. We will characterize the weakly 2-absorbing submodules of the R -module M, and some

applications of this study are given in the next section.

Lemma 5.1 Let K∗ be a proper submodule of an R∗ -module M∗ and I∗M∗ ̸= 0, where I∗ is an ideal of R∗.

Then there exist r ∈ I∗ and x ∈ (M∗ \K∗) with rx ̸= 0.

Proof If I∗x = 0 for each x ∈ (M∗ \K∗), then (M∗ \K∗) ⊆ (0 :M∗ I∗). Therefore, M∗ = K∗ ∪ (M∗ \K∗) ⊆
K∗ ∪ (0 :M∗ I∗), and since M∗ ̸⊆ K∗, M∗ ⊆ (0 :M∗ I∗), that is I∗M∗ = 0, which is a contradiction. 2

Lemma 5.2 [10, Theorem 2.5] Let N be a weakly 2-absorbing submodule of an R -module M, which is not

2-absorbing. Then (N : M)2N = 0, and particularly (N : M)3 ⊆ Ann(M).

The weakly 2-absorbing submodules of the form N1 ⊕M2 are characterized in part (a) of the following

result.

Lemma 5.3 Let 0 ̸= M1 and 0 ̸= M2.

(a) The following are equivalent:

(i) N1 ⊕M2 is a weakly 2-absorbing submodule of the R -module M ;

(ii) N1 ⊕M2 is a 2-absorbing submodule of the R-module M ;

(iii) N1 is a 2-absorbing submodule of M1.

(b) If N = N1 ⊕N2 is a weakly 2-absorbing submodule of M, N1 ̸= M1 , and N2 ̸= M2 , then N1 is a weak

prime submodule of M1; moreover, if 0 ̸= N2, then N1 is a weakly prime submodule of M1.

(c) If N1 is a prime submodule of M1 and N2 is a prime submodule of M2, then N = N1 ⊕ N2 is a

2-absorbing submodule of M.

(d) If N = N1⊕N2 is a weakly 2-absorbing submodule of M and N1 ̸= M1, N2 ̸= M2 , and (N2 : M2)M2 ̸= 0,

then N1 is a prime submodule of M1.

Proof (a)(i)⇒(ii) If K = N1⊕M2 is not 2-absorbing, then by 5.2, (0, 0) = (K : M)2K =
(
(N1 : M1)⊕ (M2 :

M2)
)2
(N1 ⊕M2) =

(
(N1 : M1)

2N1

)
⊕M2 and so M2 = 0, which is a contradiction.

(ii)⇒(iii) The proof is clear.

(iii)⇒(i) It is straightforward.
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(b) Let 0 ̸= rx ∈ N1, where r ∈ R and x ∈ M1. Consider z ∈ M2\N2 Then (0, 0) ̸= (1, 0)(r, 1)(x, z) ∈ N

and as N is weakly 2-absorbing, (1, 0)(r, 1) ∈ (N : M) or (r, 1)(x, z) ∈ N or (1, 0)(x, z) ∈ N. Note that

z ∈ M2 \ N2, (r, 1)(x, z) /∈ N ; thus (1, 0)(r, 1) ∈ (N : M) = (N1 : M1) ⊕ (N2 : M2) or (1, 0)(x, z) ∈ N.

Therefore, r ∈ (N1 : M) or x ∈ N1. This shows that N1 is a weak prime submodule of M1.

Now let 0 ̸= N2. Consider a1, b1 ∈ R1 and y1 ∈ M1 with a1b1y1 ∈ N1, and let 0 ̸= y2 ∈ N2. Then

(0, 0) ̸= (a1, 1)(b1, 1)(y1, y2) ∈ N, and so (a1, 1)(b1, 1) ∈ (N : M) or (a1, 1)(y1, y2) ∈ N or (b1, 1)(y1, y2) ∈ N. If

(a1, 1)(b1, 1) ∈ (N : M), then 1 ∈ (N2 : M2), which is impossible. If (a1, 1)(y1, y2) ∈ N or (b1, 1)(y1, y2) ∈ N,

then a1y1 ∈ N1 or b1y1 ∈ N1 as required.

(c) Suppose that (a, c), (b, d) ∈ R and (m,n) ∈ M with (a, c)(b, d)(m,n) ∈ N = N1 ⊕ N2. Then

abm ∈ N1. Therefore, a ∈ (N1 : M1) or b ∈ (N1 : M1) or m ∈ N1. Moreover, since cdn ∈ N2, c ∈ (N2 : M2)

or d ∈ (N2 : M2) or n ∈ N2. In any of these cases we get (a, c)(b, d) ∈ (N : M) or (a, c)(m,n) ∈ N or

(b, d)(m,n) ∈ N, which completes the proof.

(d) Let rx ∈ N1, where r ∈ R and x ∈ M1. We show that r ∈ (N1 : M) or x ∈ N1.

Apply 5.1 for I∗ = (N2 : M2), K∗ = N2 , and M∗ = M2 to see that there exist s ∈ (N2 : M2) and

z ∈ (M2 \N2) with sz ̸= 0.

Note that (0, 0) ̸= (1, s)(r, 1)(x, z) ∈ N and since N is weakly 2-absorbing, (1, s)(r, 1) ∈ (N : M) or

(r, 1)(x, z) ∈ N or (1, s)(x, z) ∈ N. As z ∈ M2 \ N2, (r, 1)(x, z) /∈ N ; hence (1, s)(r, 1) ∈ (N : M) = (N1 :

M1)⊕ (N2 : M2) or (1, s)(x, z) ∈ N. This implies that r ∈ (N1 : M) or x ∈ N1. 2

The weakly 2-absorbing submodules of the form N1 ⊕ 0 are characterized in the following.

Theorem 5.4 Let N1 ̸= M1 and 0 ̸= M2. The submodule N1 ⊕ 0 is a weakly 2-absorbing submodule of M if

and only if one of the following holds:

(i) N1 is a weak prime submodule of M1 and 0 is a prime submodule of M2 and 0 ̸= (N1 : M1)M1.

(ii) N1 is a weak prime submodule of M1 and 0 is a weakly prime submodule of M2 and 0 = (N1 : M1)M1.

(iii) N1 = 0.

Moreover if (i) holds, then N1 ⊕ 0 is 2-absorbing if and only if N1 is a prime submodule of M1.

Proof (=⇒) Let N1⊕ 0 be a weakly 2-absorbing submodule of M and 0 ̸= N1. Then by 5.3(b), N1 is weak

prime.

If 0 ̸= (N1 : M1)M1, then by 5.3(d), the zero submodule of M2 is prime. Otherwise since 0 ̸= N1, then

by 5.3(b), the zero submodule of M2 is weakly prime.

(⇐=) Assume that (0, 0) ̸= (a, b)(c, d)(x, y) ∈ N1 ⊕ 0, where (a, b), (c, d) ∈ R, (x, y) ∈ M. Then

0 ̸= acx ∈ N1 and bdy = 0. Since N1 is weak prime, a ∈ (N1 : M1) or c ∈ (N1 : M1) or x ∈ N1. First suppose

that (i) is satisfied.

As 0 is a prime submodule of M2, we have b ∈ (0 : M2) or d ∈ (0 : M2) or y = 0.

Now it is easy to see that in any of the above cases (a, b)(c, d) ∈ (N1 ⊕ 0 : M) or (a, b)(x, y) ∈ N1 ⊕ 0 or

(c, d)(x, y) ∈ N1 ⊕ 0. Consequently N1 ⊕ 0 is weakly 2-absorbing.

Now assume that (ii) holds. If a ∈ (N1 : M1) or c ∈ (N1 : M1), then acx ∈ (N1 : M1)M1 = 0, and so

acx = 0, which is impossible. Thus x ∈ N1. Since bdy = 0 and 0 is weakly prime, by = 0 or dy = 0. Therefore,

either (a, b)(x, y) ∈ N1 ⊕ 0 or (c, d)(x, y) ∈ N1 ⊕ 0.
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To prove the second part of this theorem, assume that (i) holds. Then N1 is a weak prime submodule of

M1 and 0 is a prime submodule of M2.

If N1 is not a prime submodule, then for some t ∈ R1 \ (N1 : M1), and z ∈ M1 \N1, we have tz ∈ N1.

Now choose 0 ̸= u ∈ M2. Then (0, 0) = (1, 0)(t, 1)(z, u) ∈ N1 ⊕ 0 and (1, 0)(t, 1) ̸∈ (N1 ⊕ 0 : M) and

(t, 1)(z, u) ̸∈ N1 ⊕ 0; also (1, 0)(z, u) ̸∈ N1 ⊕ 0. Therefore, N1 ⊕ 0 is not 2-absorbing.

Conversely if N1 is a prime submodule of M1, then as 0 is prime, by 5.3(c), N1 ⊕ 0 is 2-absorbing. 2

Example 4 It is easy to see that if (R1,M) is a quasi-local ring with M2 = 0, then every proper ideal of R1

is weak prime. Particularly if R1 = K[X,Y ]
⟨X2,XY,Y 2⟩ , where K is a field, then I1 = ⟨X,Y 2⟩

⟨X2,XY,Y 2⟩ is a weak prime ideal

of R1, but it is not prime. Therefore, by 5.4 the ideal I1 ⊕ 0 is a weakly 2-absorbing ideal of the ring R1 ⊕K,

but it is not a 2-absorbing ideal.

Theorem 5.5 Let 0 ̸= N1 ̸= M1 and 0 ̸= N2 ̸= M2. Then N is a weakly 2-absorbing submodule of M if and

only if for each i = 1, 2 one of the following holds:

(1) 0 ̸= (Ni : Mi)Mi and N3−i is a prime submodule of M3−i.

(2) 0 = (Ni : Mi)Mi and N3−i is a weak prime and a weakly prime submodule of M3−i.

Proof (=⇒) Suppose that N is a weakly 2-absorbing submodule of M. According to 5.3(b), N3−i is a weak

prime and a weakly prime submodule of M3−i for each i = 1, 2.

Now if 0 ̸= (Ni : Mi)Mi, then by 5.3(d), N3−i is a prime submodule of M3−i.

(⇐=) First suppose that (1) holds for i = 1, 2. Then by 5.3(c), N is a weakly 2-absorbing submodule

of M.

Let (0, 0) ̸= (r1, r2)(r
′
1, r

′
2)(m1,m2) ∈ N = N1 ⊕ N2, where (r1, r2), (r

′
1, r

′
2) ∈ R and (m1,m2) ∈ M.

Then rir
′
imi ∈ Ni for i = 1, 2.

Now assume that (2) holds for i = 1, 2. Without loss of generality we can suppose that 0 ̸= r1r
′
1m1.

Since N1 is weak prime, r1 ∈ (N1 : M1) or r′1 ∈ (N1 : M1) or m1 ∈ N1. If r1 ∈ (N1 : M1) or r′1 ∈ (N1 : M1),

then r1r
′
1m1 ∈ (N1 : M1)M1 = 0, which is impossible; hence m1 ∈ N1. Also note that r2r

′
2m2 ∈ N2 and N2 is

weakly prime; then r2m2 ∈ N2 or r′2m2 ∈ N2. Therefore, either (r1, r2)(m1,m2) ∈ N or (r′1, r
′
2)(m1,m2) ∈ N,

as required.

Now let (1) hold for i = 1 and (2) hold for i = 2. Note that r2r
′
2m2 ∈ N2 and N2 is prime, then

r2 ∈ (N2 : M2) or r′2 ∈ (N2 : M2) or m2 ∈ N2. We have one of the following two cases:

Case 1. 0 ̸= r1r
′
1m1. As N1 is weak prime, r1 ∈ (N1 : M1) or r

′
1 ∈ (N1 : M1) or m1 ∈ N1. Now it is easy

to see that in any of the above cases (r1, r2)(m1,m2) ∈ N or (r′1, r
′
2)(m1,m2) ∈ N or (r1, r2)(r

′
1, r

′
2) ∈ (N : M),

as required.

Case 2. 0 ̸= r2r
′
2m2. If r2 ∈ (N2 : M2) or r′2 ∈ (N2 : M2), then r2r

′
2m2 ∈ (N2 : M2)M2 = 0, which is

impossible; thus m2 ∈ N2. As r1r
′
1m1 ∈ N1 and N1 is weakly prime, either r1m1 ∈ N1 or r′1m1 ∈ N1, and so

either (r1, r2)(m1,m2) ∈ N or (r′1, r
′
2)(m1,m2) ∈ N. 2
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6. Modules whose proper submodules are all weakly 2-absorbing

A well-known result states that if every proper ideal of a commutative ring with identity R is a prime ideal,

then R is a field. As a generalization, in [3, Proposition 2.1] it is proved that if every proper submodule of a

nontorsion R -module module M is a prime submodule of M, then R is a field. In this section we study the

modules whose proper submodules are all weakly 2-absorbing.

Theorem 6.1 Let M be a nonzero R -module such that every proper submodule of M is weakly 2-absorbing.

Then R has at most three maximal ideals containing Ann(M).

Proof Let N be a nonzero finitely generated submodule of M. We prove that R has at most three maximal

ideals containing Ann(N). By 4.5, every proper submodule of N is a weakly 2-absorbing submodule of N.

Let M1,M2,M3 , and M4 be distinct maximal ideals of R containing Ann(N). Put J = M1 ∩M2 ∩M3 and

N ′ = JN.

Evidently for each i, MiN ̸= N ; otherwise by Nakayama’s lemma there exists t ∈ Mi with (t − 1) ∈
Ann(N) ⊆ Mi, which is impossible. Now since Mi ⊆ (MiN : N), we get Mi = (MiN : N). Therefore,

J ⊆ (N ′ : N) ⊆ ∩3
i=1(MiN : N) = J, and so

√
(N ′ : N) =

√
J = J = M1 ∩ M2 ∩ M3. By [9, Section 2,

Proposition 1(iii)], the radical ideal of a 2-absorbing submodule is the intersection of at most 2 prime ideals;

therefore, N ′ is not a 2-absorbing submodule of N. Hence by 5.2, J3 = (N ′ : N)3 ⊆ Ann(N) ⊆ M4, which

implies that Mj = M4 for some 1 ≤ j ≤ 3, a contradiction. Thus R has at most three maximal ideals

M1, M2, M3 containing Ann(N).

Now if N∗ is another nonzero finitely generated submodule of M, then by the same argument Ann(N∗)

is contained in at most three maximal ideals, say M∗
1, M∗

2, M∗
3. Thus Ann(N + N∗) is contained in

M1, M2, M3, M
∗
1, M

∗
2, M

∗
3, and since N +N∗ is finitely generated, {M1, M2, M3} = {M∗

1, M
∗
2, M

∗
3}.

Hence R has at most three fixed maximal ideals M1, M2, M3 such that for each nonzero finitely

generated submodule L of M, we have Ann(L) ⊆ U = M1 ∪M2 ∪M3.

Now we prove that J3M = 0, where J = M1 ∩M2 ∩M3. (∗)
On the contrary let a, b, c ∈ J and x ∈ M such that abcx ̸= 0. If Rabcx = M, then M = Rabcx ⊆ Rcx

and so Rabcx = Rcx. Then there exists s ∈ R with (1−sab)cx = 0, and since 0 ̸= cx, (1−sab) ∈ Ann(cx) ⊆ U,

which is impossible. Thus Rabcx ̸= M.

Note that 0 ̸= abcx ∈ Rabcx and since Rabcx is weakly 2-absorbing, acx ∈ Rabcx or bcx ∈ Rabcx or

ab ∈ (Rabcx : M).

If acx ∈ Rabcx, then for some r ∈ R, acx = rabcx and so (1− rb)acx = 0 and note that 0 ̸= acx; thus

(1 − rb) ∈ Ann(acx) ⊆ U, which is a contradiction. Consequently acx /∈ Rabcx and similarly bcx /∈ Rabcx.

Furthermore, if ab ∈ (Rabcx : M), then for some t ∈ R, abx = tabcx and so (1 − tc)abx = 0 and we get

(1− tc) ∈ Ann(abx) ⊆ U, which is impossible. Whence J3 ⊆ Ann(M).

Now if Ann(M) is contained in a maximal ideal M∗, then (M1 ∩M2 ∩M3)
3 = J3 ⊆ Ann(M) ⊆ M∗.

This implies that Mj = M∗ for some 1 ≤ j ≤ 3, which completes the proof. 2

Recall that J(R) is the intersection of all maximal ideals of R.

Corollary 6.2 Let M be a nonzero R -module such that every proper submodule of M is weakly 2-absorbing.

Then (J(R))3M = 0.

Proof According to (∗) in the proof of 6.1, J3M = 0, and evidently J(R) ⊆ J. 2
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Theorem 6.3 Let (R1,M1), (R2,M2) be quasi-local rings and R = R1⊕R2. Then the following are equivalent:

(i) There exists a faithful R -module M such that every proper submodule of M is weakly 2-absorbing;

(ii) M2
1 = 0, M2

2 = 0; furthermore, R1 or R2 is a field.

Moreover:

(a) If R2 is not a field and (i) holds, then (1, 0)M ∼= R1.

(b) If R1 is not a field and (i) holds, then (0, 1)M ∼= R2.

(c) If R1 and R2 are fields, then every proper submodule of any arbitrary R -module is weakly 2-absorbing.

Proof (i) =⇒ (ii) Put M1 = (1, 0)M and M2 = (0, 1)M. Since M is faithful, M1,M2 ̸= 0. One can easily see

that M1 is a faithful R1 -module with the multiplication r1
(
(1, 0)m

)
= (r1, 0)m for each r1 ∈ R1 and m ∈ M.

Similarly M2 is a faithful R2 -module and M ∼= M1 ⊕M2 as R -modules.

To show that M2
1 = 0, let a, b ∈ M1 with 0 ̸= ab. As M1 is faithful, 0 ̸= abM1 and so for some x ∈ M1,

0 ̸= abx.

Note that 0 ̸= M2 and so R1abx ⊕ 0 is a proper submodule of M ; thus it is weakly 2-absorbing. Now

by 5.3(b), R1abx is a weak prime submodule of M1, and as 0 ̸= abx ∈ R1abx, we have a ∈ (R1abx : M1) or

bx ∈ R1abx. Hence ax ∈ R1abx or bx ∈ R1abx.

Therefore, either ax = rabx for some r ∈ R1, or bx = sabx for some s ∈ R1. As (1− rb) and (1− sa)

are unit, either ax = 0 or bx = 0, which is a contradiction. Then we conclude that M2
1 = 0. With the same

argument we get M2
2 = 0.

If R1 is not a field, then M1 ̸= 0 and as M1 is faithful, M1M1 ̸= 0. Then 0 ̸= m1x1 for some

m1 ∈ M1, x1 ∈ M1. Now we show that M2M2 = 0. Let x2 ∈ M2 and m2 ∈ M2. Since M2
2 = 0, we have

m2
2 = 0.

If M1M1 = M1, then as 0 = M2
1, we get 0 = M2

1M = M1M1 = M1, which is impossible; thus

M1M1 ̸= M1.

Put N = M1M1 ⊕ 0. Note that (0, 0) ̸= (1,m2)(1,m2)(m1x1, x2) ∈ N. As N is weakly 2-absorbing,

either (1,m2)(1,m2) ∈ (N : M) or (1,m2)(m1x1, x2) ∈ N, and as M1M1 ̸= M1, (1,m2)(1,m2) /∈ (N : M)

and then (1,m2)(m1x1, x2) ∈ N, and so 0 = m2x2. Thus M2M2 = 0, that is M2 ⊆ Ann(M2) = 0. Hence R2

is a field.

(ii) =⇒ (i) Put M = R. Then the proof is given by [5, Theorem 3.4].

(a) Now if R2 is not a field and (i) holds, then we show that M1
∼= R1.

If for some y1 ∈ R1, M1 = Ry1, then as 0 = Ann(M1) = Ann(y1), we get M1 = Ry1 ∼= R
Ann(y1)

∼= R1.

Now assume that M1 ̸= R1y1 for each 0 ̸= y1 ∈ M1. Since R2 is not a field and M2 is faithful, 0 ̸= M2M2 and

so for some t2 ∈ M2 and y2 ∈ M2, 0 ̸= t2y2. As M2
2 = 0, t22 = 0 and so (0, 0) ̸= (1, t2)(1, t2)(y1, y2) ∈ R1y1⊕0.

Note that R1y1 ̸= M1 and so (1, t2)(1, t2) /∈ (R1y1 ⊕ 0 : M) and since R1y1 ⊕ 0 is weakly 2-absorbing,

(1, t2)(y1, y2) ∈ R1y1 ⊕ 0, which is impossible because t2y2 ̸= 0. Consequently M1
∼= R1.

(b) The proof is similar to that of (a).
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(c) Let R1 and R2 be two fields and M be an arbitrary R -module. Then M ∼= M1 ⊕M2, where Mi

is an Ri -module for each i = 1, 2. Furthermore, every proper submodule of M is of the form N = N1 ⊕ N2,

where Ni is a submodule of Mi for each i = 1, 2 and at least one of N1 or N2 is a proper submodule.

Note that every proper subspace of a vector space is prime and so for each i = 1, 2 either Ni = Mi

or Ni is a prime submodule of Mi. Hence, by 5.3(a) and 5.3(c), the submodule N is a weakly 2-absorbing

submodule of M. 2

Proposition 6.4 Let R = R1 ⊕R2 ⊕R3, where R1, R2 , and R3 are three rings. If M is a faithful R -module

such that every proper submodule of M is weakly 2-absorbing, then R1, R2, R3 are fields and M ∼= R.

Proof Put M1 = (1, 0, 0)M, M2 = (0, 1, 0)M , and M3 = (0, 0, 1)M. Then it is easy to see that Mi is an

Ri -module for each i = 1, 2, 3, and also M ∼= M1⊕M2⊕M3 as R -modules. Since M is faithful, the Ri -module

Mi is faithful, for each i = 1, 2, 3.

Let Mi be a maximal ideal of Ri for each i = 1, 2, 3. Evidently M1 ⊕R2 ⊕R3 and R1 ⊕M2 ⊕R3 and

R1 ⊕ R2 ⊕ M3 are the the maximal ideals of R and by 6.1, R has at most three maximal ideals; therefore,

(R1,M1) and (R2,M2) and (R3,M3) are quasi-local rings, and J(R) = M1 ⊕M2 ⊕M3.

According to 6.2, (J(R))3M = 0 and since M is faithful, (J(R))3 = 0; hence M3
i = 0 for each i = 1, 2, 3.

If MiMi = Mi, then 0 = M3
iMi = Mi, which is a contradiction. Hence MiMi ̸= Mi for each i = 1, 2, 3.

If on the contrary 0 ̸= M1, then 0 ̸= M1M1, because M1 is faithful. Now apply 5.1, for I∗ = M1, K
∗ =

M1M1 , and M∗ = M1 to see that there exist x1 ∈ (M1 \M1M1) and a1 ∈ M1 with a1x1 ̸= 0.

For N = M1M1 ⊕ 0⊕ 0 and 0 ̸= x2 ∈ M2, (0, 0, 0) ̸= (a1, 1, 1)(1, 0, 1)(x1, x2, 0) ∈ N, and N is a weakly

2-absorbing submodule of M and (a1, 1, 1)(x1, x2, 0) = (a1x1, x2, 0) /∈ N, (1, 0, 1)(x1, x2, 0) = (x1, 0, 0) /∈ N,

and so (a1, 0, 1) = (a1, 1, 1)(1, 0, 1) ∈ (N : M). Hence M3 = (0, 0, 1)M = (a1, 0, 1)(0, 0, 1)M ⊆ N, and this

implies that M3 = 0, which is impossible. Therefore, 0 = M1, that is R1 is a field. Similarly R2 and R3 are

fields.

Now we prove that M ∼= R. If M1 ̸∼= R1, then since M1 is a nonzero vector space over the field R1,

there exists a nontrivial submodule (subspace) K1 of M1. Consider (0, 0, 0) ̸= (1, 0, 1)(1, 1, 0)(x1, x2, x3) ∈
K1 ⊕ 0⊕ 0 = K, where 0 ̸= x1 ∈ K1 and 0 ̸= x2 ∈ M2 and 0 ̸= x3 ∈ M3.

Note that (1, 0, 1)(x1, x2, x3) = (x1, 0, x3) /∈ K and (1, 1, 0)(x1, x2, x3) = (x1, x2, 0) /∈ K, and (1, 0, 1)(1, 1, 0) =

(1, 0, 0) /∈ (K : M). Thus the proper submodule K is not a weakly 2-absorbing submodule of M, which is a

contradiction. Therefore, M1
∼= R1 and similarly M2

∼= R2 and M3
∼= R3. Thus M ∼= R. 2

Theorem 6.5 There exists a nonzero faithful R -module M such that every proper submodule of M is weakly

2-absorbing if and only if one of the following statements holds:

(i) (R,M) is a quasi-local ring with M3 = 0.

(ii) R ∼= R1 ⊕R2, where (R1,M) is a quasi-local ring with M2 = 0 and R2 is a field.

(iii) R ∼= R1 ⊕R2 ⊕R3, where R1, R2, R3 are fields.

Proof First suppose that there exists a nonzero faithful R -module M such that every proper submodule of

M is weakly 2-absorbing. By 6.2, (J(R))3 = 0.
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By 6.1, R has at most three maximal ideals. We consider the following three cases.

Case 1. The ring R has only one maximal ideal, say M. Then in this case M3 = ((J(R))3) = 0.

Case 2. The ring R has two maximal ideals M1,M2. Note that M3
1 ∩M3

2 = (J(R))3 = 0. Therefore,

R ∼= R
M3

1
⊕ R

M3
2
and clearly (R1,M1) and (R2,M2) are quasi-local rings, where R1 = R

M3
1
, R2 = R

M3
2
, M1 =

M1

M3
1
, M2 = M2

M3
2
. By 6.3((i) =⇒ (ii)), M1

2
= 0 and M2

2
= 0 and R1 or R2 is a field.

Case 3. The ring R has three maximal ideals M1,M2,M3. Again since (J(R))3 = M3
1 ∩M3

2 ∩M3
2 = 0,

clearly R ∼= R
M3

1
⊕ R

M3
2
⊕ R

M3
3
. Therefore, by 6.4, R

M3
1
, R
M3

2
, R
M3

3
are fields.

For proving the converse of this theorem, put M = R, and apply [5, Theorem 3.7]. 2
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