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Abstract: Let M be a module over a commutative ring R. A proper submodule N of M is called weakly 2-absorbing,
if for r,s € R and & € M with 0 # rsx € N, either rs € (N : M) or ro € N or sz € N. We study the behavior of

(N:M) and /(N : M), when N is weakly 2-absorbing. The weakly 2-absorbing submodules when R = Ry @ R are

characterized. Moreover we characterize the faithful modules whose proper submodules are all weakly 2-absorbing.

Key words: Prime submodule, 2-absorbing submodule, weakly 2-absorbing submodule, weakly prime submodule, weak

prime submodule

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Furthermore, we
consider R to be a commutative ring with identity and M an R-module, and K[X,Y] denotes the ring of
polynomials, where X and Y are independent indeterminates and K is a field.

The colon ideal of a submodule N of M is considered to be

(N:M)={reRlrM C N}.

Moreover, \/m will be called the radical ideal of N.

Following [5], [resp. [4]] a proper ideal I of R is weakly 2-absorbing, [resp. 2-absorbing] if for a,b,c € R
with 0 # abc € I, [resp. abc€ Il abe I or ace€ I or be e I.

Recall that a proper submodule N of M is called 2-absorbing, if for r,s € R and « € M with rsz € N,
rs€ (N: M) or re € N or sz € N (see [9, 10]).

According to [10], a proper submodule N of M is called weakly 2-absorbing, if for r,s € R and z € M
with 0 £rsz € N, rs€ (N : M) or ro € N or sz € N.

A proper submodule N of M is called prime, when from rx € N for some r € R and = € M, we can

conclude either x € N or rM C N (see for example [2, 7, §]). If N is a prime submodule, then P = (N : M)
is a prime ideal of R.

Another generalization of prime ideals to modules was introduced in [6]. A proper submodule W of M
is said to be weakly prime, if rsx € W for r,s € R and x € M, implying that either rx € W or sz € W.

Recall from [I] that a proper ideal I of a ring R is a weakly prime ideal if whenever a,b € R with
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0 # ab € I, then either a € I or b € I. For unifying with modules and preventing confusion, we name weakly

prime ideals of [1] weak prime ideals in this paper. The following definition is a module version of this notion.

Definition 1 A proper submodule N of M is said to be weak prime, if for r € R and x € M with 0 # rx € N
either r € (N : M) or x € N.

Note 1 It is easy to see that:
1. Prime submodule = Weak prime =—> Weakly 2-absorbing.
2. Prime submodule = Weakly prime —> 2-absorbing =—> Weakly 2-absorbing.
3. A submodule N is weakly prime if and only if N is 2-absorbing and (N : M) is a prime ideal.

See [9, Example 1], for examples of 2-absorbing submodules that are not weakly prime.

Example 1

1. Let R = K[X,Y], M =R®R and N = (X) ®(X,Y). Then N is a 2-absorbing submodule of the

R-module M, but it is not weak prime.
2. For the Z-module M = Zi2, the zero submodule is weakly 2-absorbing, but not 2-absorbing.

PROOF. (1) One can easily see that N is a 2-absorbing submodule of M. However, N is not weak prime,
because 0 # Y (0,1) € N, but Y ¢ (X) = (N : M) and (0,1) ¢ N.

(2) Evidently the zero submodule of any nonzero module is weakly 2-absorbing. Now consider 2.3.2 €
0 = N to see that N is not 2-absorbing.

2. On a question from Badawi and Yousefian

The authors in [5] have asked the following question:
Question. Suppose that L is a weakly 2-absorbing ideal of a ring R and 0 # IJK C L for some ideals I, J, K
of R. Does it imply that IJ C L or IKCL or JK CL?

This section is devoted to studying the above question and its generalization in modules.

Lemma 2.1 Let N be a weakly 2-absorbing submodule of an R-module M and a,b € R. If for some submodule
K of M, abK C N and 0 # 2abK, then abe (N : M) or aK C N or bK C N.
Proof Put (N : M) = L, and suppose ab ¢ L. Then it is enough to prove that K C (N :pr a) U (N :pr b). Let
z be an arbitrary element of K. If 0 # abz, then as N is weakly 2-absorbing and ab ¢ L, either az € N or
bz € N and so z € (N :pr a)U(N :p7 b). Now let 0 = abz. Since 0 # 2abK, for some z € K, we have 0 # 2abx
and so 0 # abx € N. As N is weakly 2-absorbing and ab ¢ L, either axz € N or bx € N. Put y = 2+ z. Then
0 # aby € N and since ab ¢ L, either ay € N or by € N. We consider three cases.

Case 1. ax € N and bx € N. Note that ay € N or by € N, and so either az € N or bz € N.

Case 2. ax € N and bx ¢ N. On the contrary let az ¢ N. Then ay ¢ N and so by € N. Therefore,
aly+x) ¢ N and b(y +x) ¢ N. Now as N is weakly 2-absorbing and ab ¢ L, then 0 = ab(y + =) = 2abz,

which is a contradiction. Thus az € N.
Case 3. ax ¢ N and bz € N. Then proof is similar to that of Case 2. O
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Lemma 2.2 Let J be an ideal of R and K, N two submodules of an R-module M, such that aJK C N, where
a € R. If N is weakly 2-absorbing and 0 # 4aJK, then aJ C (N : M) or aK CN or JK C N.

Proof Let aJ Z (N: M) = L. Then aj ¢ L for some j € J. First we claim that there exists b € J such that
0 # 4abK, and ab ¢ L.

Since 0 # 4aJK, for some j' € J, 0 # 4aj’K. If aj’ ¢ L or 0 # 4ajK, then by putting b = 5
or b = j, we get the result. Therefore, let aj’ € L and 4ajK = 0. Hence 0 # 4a(j + j))K C N and
a(j +4') ¢ L. Consequently we find b € J, such that 0 # 4abK, and ab ¢ L. Thus 0 # 2abK and by 2.1,
K C (N :pra) U(N :pp b). If aK C N, there is nothing to prove. Therefore, assume that X ¢ N and so
bK C N.

Now we show that J C (L:a)U(N : K). Let ¢ € J. If 0 # 2acK, then by 2.1, ac € L or aK C N or
c¢K C N. However, as we assumed aK ¢ N, c€ (L:a)U(N : K).

Next assume 2acK = 0. Then 0 # 2a(b+ ¢)K C N and 2.1 implies that either a(b+c¢) € L or a K C N
or (b+¢)K CN. Thenas aK Z N, (b+c) € (L:a)U(N:K). If b+ce€ (N: K), then c€ (N : K), because
b e (N : K). Therefore, let (b+¢) € (L:a)\ (N : K).

Consider 2a(b + ¢ + b)K = 4abK # 0 and 2a(b+ ¢+ b)K C N. Since ab ¢ L and a(b+c¢) € L,
a(b+c+0b) ¢ L. Thus, according to 2.1, K C (N :py a) U (N :pr b+ c+b). However, since b+c¢ ¢ (N : K) and
be (N:K), b+c+b¢ (N:K), and so K C (N :p; a), which is impossible. Therefore, b + ¢ € (N : K) and
since b€ (N: K), ce (N : K). Consequently J C (L:a)U (N : K) and hence as aJ € L, JK C N. O

Theorem 2.3 Let I,J be ideals of R and N, K be submodules of an R-module M. If N is a weakly 2-
absorbing submodule, 0 # IJK C N, and 0 # 8(IJ + (I + J)(N : M))(K + N), then 1J C (N : M) or
IK C N or JK C N. In particular this holds if the group (M,+) has no elements of order 2.

Proof Note that 0 #8(IJ+(I+J)(N: M))(K+N) =8[JK+8IJN+8I(N : M)K+8J(N : M)K +8I(N :
M)N + 8J(N : M)N. Therefore, one of the following different types is satisfied.

(i) 0 # 8IJK. Then for some a € J, we have 0 # 8alK. Therefore, 0 # 4alK and by 2.2, either
al C(N:M)=LoraK CN or IKCN.If IKCN, then we have the result. Therefore, we suppose that
IK ¢ N andso a € (L:I)U(N : K). Now we show that J C (L : I) U (N : K). To see this let ¢ € J. If
0 # 4cI K, then according to 2.2, since IK N, c€ (L:I)U (N : K).

Now let 4cIK = 0. So 0 # 4(a+¢)IK C N. Thus, by 2.2, since IK Z N, a+ce€ (L:I)U(N : K). We
consider the following four cases.

Case 1. a+ce(L:I)and a€ (L:1I). Then ce (L:1I).

Case 2. a+c€ (N:K) and a € (N : K). Hence c€ (N : K).

Case 3. a€ (L:I)\(N:K) and a+c € (N : K)\ (L : I). Therefore, a+c+a ¢ (L : I) and
a+ct+a¢ (N:K)andsoa+c+a¢ (L:I)U(N:K). We consider 4(a + ¢+ a)IK = 8alK # 0. Hence,
by 2.2, as IK ¢ N, a+c+a € (L:I)U(N : K), which is impossible. Hence as a € (L : I) U (N : K) and
a+ce (L:I)U(N:K), one of the following holds.

(a) ae (N:K) and a+ce (N:K)\(L:I). Thus c€ (N : K).

(b) ae(L:I)\(N:K) and a+ce€ (L:1I). Hence c€ (L:I).

Case 4. a+ce (L:I)\(N:K)and a€ (N: K)\(L:I). Similar to Case 3, we get c € (L: I)U(N : K)
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Consequently J C (L:I)U(N : K).

(ii) If 0 # 8IJN and 8IJK = 0, then 0 # 8IJ(K + N) C N, and then by part (i), JI C (N : M) or
JK+N)CNor I[K+N)CNandso JIC(N:M)or JKECN or IK CN.

(ifi) Let 0 # 8J(N : M)K and 8IJK = 0. Then 8J(I + (N : M))K = 8J(N : M)K # 0 and so
according to part (i), either J(I + (N : M)) C (N : M) or JK C N or (I+ (N :M))K C N and so either
JIC(N:M)or JKCN or IK CN. Similarly if 0 # 8I(N : M)K, we get the result.

(iv) Let 0 # 8J(N : M)N and 8IJK = 8IJN = 8J(N : M)K = 8I(N : M)K = 0. Then
8J(I+ (N : M))(K+ N) =8J(N : M)N # 0, and so part (i) implies that J(I + (N : M)) C (N : M)
or JIK+N)CNor (I+(N:M)(K+N)CN. Hence JI C(N: M) or JKCN or IK C N. Clearly if
0 # 8I(N : M)N, we have the result.

For the particular case suppose the group (M,+) has no subgroups of order 2. Then we show that
0 # 8IJK, and so by part (i), the result is given. If 0 = 8IJK, then consider 0 # ¢ € IJK. As 8¢ =0, so the

group (M, +) has a subgroup of order 2, 4, or 8, which implies that it has an element of order 2, a contradiction.
O

The following result is the ring version of 2.1, 2.2, and 2.3. For the proof just consider M = R.

Corollary 2.4 Let a,b € R and I,J, K be ideals of R and suppose that L is a weakly 2-absorbing ideal of R.
(a) If 0 # 2abl and abl C L then ab€ L or al C L or bl C L.
(b) If 0 # 4alJ and alJ C L, then either al C L or aJ CL or I1J C L.

() If 0 £ IJK C L, then IJ C L or IK C L or JK C L, if S(IJ(K + L) + IK(J + L) + JK(I + L) +
IL(J+K)+ JLI+ K)+KL(I+J)+ L*(I+J+ K)) # 0. In particular, this holds if the group (R,+)

has no elements of order 2.

3. Weakly 2-absorbing submodules and their colon ideals

In this section we study when the quotient of a weakly 2-absorbing submodule is a weakly 2-absorbing ideal.
We will also give a condition under which a weakly 2-absorbing submodule is 2-absorbing.

Lemma 3.1 Let N be a weakly 2-absorbing submodule of an R-module M. If a,b € R, x € M with abx =0
and ab ¢ (N : M), ax ¢ N,bx ¢ N, then

(i) abN =a(N : M)z =b(N : M)z = 0.

(i) a(N:M)N =b(N:M)N = (N:M)?x=0.
Proof (i) If abN # 0, then for some y € N, 0 # aby = ab(z + y) € N and since N is weakly 2-absorbing,
ab € (N : M) or a(x+y) € N or b(x +y) € N. Hence ab € (N : M) or ax € N or bx € N, which are
impossible. Thus abN = 0 and the similar arguments prove that a(N : M)x = b(N : M)z = 0.

(ii) If on the contrary for some t € (N : M) and y € N, 0 # aty then by part (i), 0 # aty =
a(b+t)(x +y) € N. Then since N is weakly 2-absorbing, we get a(b+1¢) € (N : M) or a(x +y) € N or
(b+t)(z +y) € N. This implies that ab € (N : M) or ax € N or bx € N, which are against our assumptions;
consequently a(N : M)N = 0. Similarly b(N : M)N = (N : M)?z = 0. o
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Theorem 3.2 The colon ideal of a weakly 2-absorbing submodule is a weakly 2-absorbing ideal if Ann(M) is
a weakly 2-absorbing ideal, particularly if M is faithful.

Proof Let N be a weakly 2-absorbing submodule of M. First assume that M is a faithful R-module. Let
a,b,c € R with 0 #abce (N: M) and ab¢ (N : M), ac¢ (N : M) and bc ¢ (N : M). As Ann(M) = 0, for
some z € M, 0 # abcz € N. Thus since N is weakly 2-absorbing and ab ¢ (N : M), acz € N or bez € N. We
claim that there exists « € M such that 0 # abcx € N and one of the following holds.

(i) acx ¢ N and bcx € N,abx € N.
(ii) bex ¢ N and acx € N,abx € N.

We consider the following two cases.

Case 1. acz € N. Because of ac ¢ (N : M), there exists 2/ € M\ N such that acz’ ¢ N. Since 0 # abcz,
it is easy to see that either 0 # abc(2z + 2’) or 0 # abe(z + 2'). First we suppose that 0 # ab(c(2z + 2')) € N.
Therefore, as N is weakly 2-absorbing, ab € (N : M) or ac(2z + 2') € N or bc(2z + 2') € N. However,
by assumption, ab ¢ (N : M) and as acz’ ¢ N, ac(2z + 2') ¢ N and so be(2z + 2/) € N. Hence as
0 # be(a(2z+2")) € N and be ¢ (N : M), we have ba(2z + z') € N. By the same way if 0 # ab(c(z + 2')) € N,
then ac(z+2') ¢ N and be(z+2") € N, ba(z+ z’) € N. Consequently for some = € M, we have 0 # abcx € N
and acx ¢ N and bex € N, abx € N.

As N is weakly 2-absorbing and ab ¢ (N : M), it suffices to show that there exists ' € M, such that
0 # ab(cz’) € N and acz’ ¢ N, bex’ ¢ N.

Since ab ¢ (N : M), for some ' € M, aby’ ¢ N. Hence as 0 # acbx, either 0 # acb(2z + y') or
0 # acb(x + y'). First let 0 # ac(b(2x +y')) € N. Then since abx € N and aby’ ¢ N we have ab(2z +y') ¢ N
and hence as N is weakly 2-absorbing and ac ¢ (N : M), we have ¢b(2x + y') € N. Then by considering
0 # be(a(2z+y')) € N, since be ¢ (N : M) and ba(2z+y') ¢ N, we get ca(2z+y') € N. Similarly in the case
0 # ac(b(x +y')) € N, we get ab(x +y') ¢ N and cb(z +y') € N, ca(x +y') € N.

Therefore, there exists " € M such that 0 # abcz” and acz’” € N,bca” € N and abx” ¢ N. Thus as
0# acx” € N and ac ¢ (N : M), either az” € N or cx’” € N. However, since abz” ¢ N, cx” € N.

For some y € M, we have bcy ¢ N, because bc ¢ (N : M). Hence if 0 # ab(cy), then since N is weakly
2-absorbing, acy € N and aby € N and we consider abe(x+y). If 0 = abe(x+y), then since acx ¢ N,acy € N
and bex € N,bcy ¢ N, we have be(x +y) ¢ N and ac(z +y) ¢ N, and so by 3.1, since ac ¢ (N : M), we have
abN = 0. Thus abcz” = 0, which is a contradiction. Therefore, 0 # abc(z + y) and since ab ¢ (N : M) and
be(z +y) ¢ N,ac(x +y) ¢ N, we have the result.

Now let ab(cy) = 0. If acy ¢ N, then since ab ¢ (N : M) and bey ¢ N, by 3.1, we have abN = 0 and so
abex’” = 0, which is impossible. Therefore, acy € N. Then bc(z +y) ¢ N,ac(x +y) ¢ N and since abcy = 0,
0 # abc(z + y). Consequently we find a2’ € M, such that 0 # abcz’ € N and acz’ ¢ N and bex’ ¢ N.

Case 2. bcz € N. The proof is given similar to that of Case 1.

Now if M is not a faithful R-module, then consider M as an R’ = R/Ann(M)-module. It is easy to
see that N is an R'-weakly 2-absorbing submodule of M and so by the above argument (N : M)/Ann(M)
is a weakly 2-absorbing ideal of R’. Now since Ann(M) is a weakly 2-absorbing ideal, one can easily see that
(N : M) is a weakly 2-absorbing ideal of R. O

Now we show that the converse of 3.2 is not necessarily true.
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Example 2 [t is easy to see that if (R,?M) is a quasi-local ring with IM> = 0, then every proper ideal of R
is weakly 2-absorbing. Therefore, for the ring R = w, where J = (X3 Y2 72 XY, XZ), the ideal

1= M 1s weakly 2-absorbing.

Now consider the R-module M = R® R and N =1® R. Then (N : M) =1 is a weakly 2-absorbing
ideal of R, but N is not a weakly 2-absorbing submodule of M. To see the proof note that (Y + J)(Z+ J)(Y +
Z+J,1+J)€N.

4. Weakly 2-absorbing submodules and their radical ideals

Let N be a 2-absorbing submodule of M. According to [9, Proposition 1(iii)] either /(N : M) is a prime ideal
of R, or \/(N: M) = P, N P, where P;, P, are the only distinct minimal prime ideals over (N : M) and
PP, C (N : M). This is a motivation for studying /(N : M) when N is a weakly 2-absorbing submodule in

this section.
Let P be a prime ideal of R. The height of P denoted by ht P is defined to be the supremum of the
length of chains of Py C P, C --- C P, = P of prime ideals of R if the supermum exists, and oo otherwise.
The height of an ideal I denoted by ht I is defined to be

ht I =inf{ht P | P is a minimal prime ideal containg I}.

Proposition 4.1 Let I be a weakly 2-absorbing ideal of R with /T = J. Then either J is a prime ideal of R
or J = Py N Py, where Py, Py are the only distinct minimal prime ideals over I or Ip =0 for every minimal
prime ideal P over I. In the latter case ht I = 0.

Proof Suppose that there are at least three minimal prime ideals P, @, and L over I and I # 0. Consider
z€P\(LUQ) and y € Q\ (LUP). Since P,Q are minimal prime ideals over I, \/Ip = Pp and /I = Qq
and so for some s € R\ P and t € R\ @, and m,n > 0 we have sz™ € I and ty" € I. Since x ¢ I and y ¢ I,
without loss of generality we can assume sx™ 1 ¢ I and ty" ! ¢ I.

We claim that sz € I and ty € I. If 0 # sa™ = sz™ 'x € I, then as I is weakly 2-absorbing and
x™ ¢ I, either sz € I or sz™ ! € I. Hence sx™ ! ¢ I and we have sz € I. Therefore, we can assume that
sx™ = 0. Then as sz™ ! ¢ I and 2™ ¢ I, either sz € I or by 3.1, ™I = 0 and so in this case I, = 0, which
is a contradiction and then sz € I. Similarly ty € I. Now we consider (s + t)xy € I. If (s +t)xzy = 0, then as
(s+t)x ¢ I and (s+t)y ¢ I, either zy € I or by 3.1, zyl = 0. If xyl =0, then I, = 0, which is impossible.
Therefore, zy € I C L, which is a contradiction.

Now let Ip = 0 for every minimal prime ideal P over I. To show that ht I = 0, let Q be a minimal
prime ideal over I, and assume that @’ is a prime ideal with Q' C Q. If I C @', then evidently Q' = Q. Now
let € I\ Q. Since Ig = 0, there exists s € R\ @ with sz = 0. Then sz = 0 € @', which implies that

s € Q' CQ, a contradiction. O
To illustrate 4.1, in the following examples we introduce three different types of weakly 2-absorbing

ideals.

Example 3

(i) The zero ideal is a non-2-absorbing and weakly 2-absorbing ideal of Zg, and /O = 2Zg is a prime ideal.
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(ii) The zero ideal is a non-2-absorbing and weakly 2-absorbing ideal of Zys, and /0 = 27,5 N 3Z1g, which is
the intersection of two distinct prime ideals.

(i) If Py, P2, and P3 are three incomparable prime ideals of a ring R with Py PaPy =0, then I = PN PyNPs
is a weakly 2-absorbing ideal of R and T =1 and Ip, = Ip, = Ip, =0.

(iv) If R=K[X,Y,Z] and P, = (X,Y), P, = (X,Z), and Py = (Y,Z), then 0 # I = D020 s o weakly
2-absorbing ideal of the ring 555 P P Vi=ITandl p, =1 »r, =1 »p, =0.

PPy P3 Py Py P3 Py Py P3

PROOF. The proofs of (i) and (ii) are evident.
(iii) Let 0 £ abce I. If a € PN PaNP; or a ¢ Py UP,U Ps, then there is nothing to prove. Therefore,

we consider two cases.
Case 1. If a is in two of the P;’s, say Py, P», then either b € P3 or ¢ € P3 and so either ab € I or

ac € 1.
Case 2. a is only in one of the P;’s. We can assume a € P; \ P, U P;. Hence be € P, N P3 and since
Py P,P; =0 and 0 # abc, either b € P, NP3 or ¢ € P, N P3. Then similar to Case 1, we have the result.

It is easy to see that v/I = I and so I has three minimal prime ideals. Since PyP,Ps; = 0, for some
t € P,P3\ Pi, we have tI CtP; =0 and so 0 = Ip,. Similarly Ip, = Ip, = 0.

(iv) The proof is given by part (iii). O

The proof of the following result is given by 3.2 and 4.1.

Corollary 4.2 Let N be a weakly 2-absorbing submodule of a faithful R-module M. Then either /(N : M)

is a prime ideal of R or \/(N : M) = Py N Py, where Py, Py are the only distinct minimal prime ideals over
(N:M) or (N:M)p =0 for every prime ideal P containing (N : M). In the latter case ht(N : M) = 0.

Theorem 4.3 Let I be a weakly 2-absorbing ideal of R and Py, P> be two incomparable prime ideals, and
suppose J =~/I =P, N P,. Then:

If 0 # Ip,, 0 # Ip,, then PyPy U (P, + P2)J C I. Furthermore, if J # I, then {(I:7)|r e J\I} isa
chain of prime ideals of R.
Proof First we show that if a € Py \ P2, b€ Py \ Py, then abe I ().

As Py, P, are minimal prime ideals over I, \/7 (P1)p, and \/7 (P2)p, and so for some s € R\ P,
and t € R\ P, and m,n > 0, we have sa™ € I and tb"™ € I. Then by proof of 4.1, either sa € I or a™I =0
and tbe [l or V"I =0. If ™I =0 or b"I =0, then Ip, =0 or Ip, = 0; these two cases are impossible. Then
sa € I and tb € I. Now we consider (s+t)ab € I. If (s+t)ab =0, then as (s+t)a ¢ I and (s+1)b ¢ I, either
abe I or by 3.1, (s+t)al =0. If (s+t)al =0, then Ip, =0, which is a contradiction. Therefore, ab € I.

Suppose that a’,b" € J. Consider t € P;\ P, and s € P,\ P;. Hence as o'+t € P;\ Py and ' +s € P\ P,
by (%), (o’ +1t)s, ts € I and so a's € I. Similarly 't € I and since (¢’ +t)(s+¥') €I, a’b' € I. Thus J? C I.

For the proof of PyP, C I, let m € P;,n € P». By the last part we may assume m € J and n € P, \ P;.
We consider z € P, \ P> and by (%), we get nx € I, n(m+ x) € I and so mn € I and completes the proof.

Put I, = (I : r) for each r € J\ I. By the above paragraph, rP, C I, rP, CT andso P, C I, P, C I,.
Now let a’b"” € I.. Then a”b"r € I and since I is weakly 2-absorbing, a”b"r = 0 or a”b” € I or o” € I,
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or b’ € I,. Since P, C I, and P, C I,., we can assume a” ¢ Py UP; and V" ¢ P, UP, and so o'V ¢ 1. If
a'b'r =0 and o” ¢ I, V"’ ¢ I,., then by 3.1, a”’b"I =0 and so Ip, = 0, which is a contradiction. Thus I, is
prime.

Now let /,s' € J\I and t' € [,/ \Iy. As P, P, C Iy, t' ¢ Py UP,. To show that Iy C I+, let ¢ € Iy .
We may assume that ¢ ¢ Py U P, and we conclude t'c ¢ Py U P,. Now consider t'¢(r’ + §') € I. Since T is
weakly 2-absorbing, t'c(r’ +s) =0 or t'ce I or ¢/ (r' +') € I or ¢(r' + ') € I. However, since t'c ¢ Py U Ps,
t'c ¢ 1. Moreover, as t' € Iv \ Iy, t'(r' + ') ¢ I. Therefore, either t'c(r’ +s') =0 or ¢(r’ 4+ ') € I. In the case
t'c(r’ + ') =0, by 3.1, we have t¢I = 0 and so Ip, = 0, which is a contradiction. Therefore, c¢(r’' + ') € T

and since c € Iy, we conclude ¢ € I,.. O

Corollary 4.4 Let I be a weakly 2-absorbing ideal of R and Py, P> two incomparable prime ideals. If
VI=P, NP, and 0 # Ip,, 0# Ip,, then I is 2-absorbing.
Proof Let abc € I. As I is weakly 2-absorbing, we can assume that abc = 0. Put J = /1.

First assume that at least one of a or b or ¢ is in J, for example a € J. If a € I, then we have the
result. Therefore, let a € J\ I. Thus, by 4.3, I, is prime and so we have the result. Now let a,b,c ¢ J. Hence
as abc € I CJ = Py N Py, we can assume a € P; \ P» and b € P>\ P;. Therefore, according to 4.3, abe I. O

Proposition 4.5 Let N be a weakly 2-absorbing submodule of an R-module M. Then the following statements
hold:

(i) If there exists a submodule L of M such that N ; L, then N is a weakly 2-absorbing submodule of L.

(ii) If for some submodule L and ideal I there exist positive integer numbers m > n such that I™L C N ;
I"L, then N is a 2-absorbing submodule of I"L and (\/(N : M))?I"L C N.

Proof (i) Let a,b € R,x € L with 0 # abx € N. Hence as N is a weakly 2-absorbing submodule of M,
abe (N:M)C (N:L)or ar € N or bx € N. Therefore, N is a weakly 2-absorbing submodule of L.

(ii) First suppose that Ann(I"L) = 0. By part(i), N is a weakly 2-absorbing submodule of I"L. Now
we claim that N is 2-absorbing. Assume that a,b € R,z € I"L, abxr € N and ab ¢ (N : I"L), ax ¢ N
and bx ¢ N. As N is weakly 2-absorbing, we may assume that 0 = abx. Then, according to 3.1, abN = 0
and so abI™L = 0 and then abI™™" = 0, since Ann(I"L) = 0. If m —n < n, then abI"L = 0 and so
ab=0¢ (N :I"L). Now let m —n > n. Hence abI™2"I"L = 0 and so abI™~2" = 0. We repeat this until we
get ab=0¢€ (N :I"L).

Next we let Ann(I™L) # 0. We consider I"L a W—module. Clearly N is a weakly 2-absorbing

W—submodule of I"L. By the above argument, N is a 2-absorbing W—submodule of I"L. It is

easy to see N is a 2-absorbing R-submodule of I™L. Then, by [9, Proposition 2.2], (1/(N : I"L))?I"L C N
and since (y/(N : M))2I"L C (y/(N : I"L))*I"L, we have the result. O

Corollary 4.6 Let I be a finitely generated weakly 2-absorbing ideal of R. Then (vI)® C I. Furthermore,
either 8(vVI)> =0 or (VI)? C 1.

357



MORADI and AZIZI/Turk J Math

Proof There exists a positive integer number m such that (\/T)m C I CVI. If I =+/I, then evidently we
have the result. Then let I # +/I. Thus, according to 4.5(ii), (v/I)?> C I. Now if 0 # 8(v/1)?, then by 2.3,
(VI CI. m

5. Weakly 2-absorbing submodules in direct sum of modules

Throughout this section R; and Ry are two commutative rings with identity, N; is a submodule of an R;-
module M;, and N, is a submodule of an Ry-module Ms, the ring R = Ry & Ry, M = M; & My, and
N = N; @ No. We will characterize the weakly 2-absorbing submodules of the R-module M, and some
applications of this study are given in the next section.

Lemma 5.1 Let K* be a proper submodule of an R*-module M* and I*M* # 0, where I* is an ideal of R*.
Then there exist r € I* and x € (M*\ K*) with rx # 0.

Proof If I*z =0 for each z € (M*\ K*), then (M*\ K*) C (0 :ps+ I*). Therefore, M* = K*U(M*\ K*) C
K*U (0 :p+ I™), and since M* € K*, M* C (0 :py« I*), that is I*M* = 0, which is a contradiction. O

Lemma 5.2 [10, Theorem 2.5] Let N be a weakly 2-absorbing submodule of an R-module M, which is not
2-absorbing. Then (N : M)2N =0, and particularly (N : M)3 C Ann(M).

The weakly 2-absorbing submodules of the form N; @& My are characterized in part (a) of the following
result.

Lemma 5.3 Let 0# My and 0 # Ms.
(a) The following are equivalent:

(i) N1 ® My is a weakly 2-absorbing submodule of the R-module M;
(ii) N1 @ My is a 2-absorbing submodule of the R-module M;
(iii) Ny is a 2-absorbing submodule of Mj.

(b) If N = N1 ® Ny is a weakly 2-absorbing submodule of M, Ny # My, and No # My, then Ny is a weak

prime submodule of My; moreover, if 0 # Ny, then N1 is a weakly prime submodule of Mj.

(¢) If Ny is a prime submodule of My and Na is a prime submodule of My, then N = Ny ® Ny is a
2 -absorbing submodule of M.

(d) If N = N1® Ny is a weakly 2-absorbing submodule of M and Ny # My, Ny # My, and (No : May)My # 0,
then Np is a prime submodule of M;.
Proof (a)(i)=(ii) If K = Ny @® M, is not 2-absorbing, then by 5.2, (0,0) = (K : M)*K = ((Ny : M1) & (Mx :
Mg))2(N1 & M) = ((Nl : M1)2N1) @® My and so M, = 0, which is a contradiction.
(ii) = (iii) The proof is clear.
(iii) = (i) It is straightforward.
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(b) Let 0 # rx € Ny, where r € R and « € M;. Consider z € M\ N2 Then (0,0) # (1,0)(r,1)(z,2) € N
and as N is weakly 2-absorbing, (1,0)(r,1) € (N : M) or (r,1)(x,z) € N or (1,0)(z,z) € N. Note that
z € My \ N, (r,1)(z,2) ¢ N; thus (1,0)(r,1) € (N : M) = (Ny : My) @ (N2 : M) or (1,0)(z,2) € N.
Therefore, r € (N7 : M) or x € Ny. This shows that Ny is a weak prime submodule of Mj.

Now let 0 #% N,. Consider a1,b; € Ry and y; € My with a1b1y1 € Ny, and let 0 # yo € Ny. Then
(0,0) # (a1,1)(b1,1)(y1,y2) € N, and so (a1,1)(b1,1) € (N : M) or (a1,1)(y1,y2) € N or (b1,1)(y1,y2) € N. If
(a1,1)(b1,1) € (N : M), then 1 € (N2 : Ms), which is impossible. If (a1,1)(y1,y2) € N or (b1, 1)(y1,y2) € N,
then a1y, € N1 or b1y, € Ny as required.

(c) Suppose that (a,c),(b,d) € R and (m,n) € M with (a,c)(b,d)(m,n) € N = Ny @& Ny. Then
abm € Nj. Therefore, a € (N7 : My) or b € (Ny : My) or m € Ny. Moreover, since cdn € No, ¢ € (No : Ma)
or d € (Ny : M) or n € Ny. In any of these cases we get (a,c)(b,d) € (N : M) or (a,c)(m,n) € N or
(b,d)(m,n) € N, which completes the proof.

(d) Let rz € Ny, where r € R and x € M;. We show that r € (N7 : M) or z € N;.

Apply 5.1 for I* = (Ny : M), K* = Ny, and M* = M, to see that there exist s € (Ny : Ms) and
z € (M3 \ Na) with sz # 0.

Note that (0,0) # (1,s)(r,1)(z,2z) € N and since N is weakly 2-absorbing, (1,s)(r,1) € (N : M) or
(r,1)(w,z) € N or (1,s)(z,2) € N. As z € My \ Na, (r,1)(z,2) ¢ N; hence (1,s)(r,1) € (N : M) = (Ny :
My) ® (Ny : M) or (1,s)(x,z) € N. This implies that r € (N1 : M) or = € Nj. O

The weakly 2-absorbing submodules of the form N; @ 0 are characterized in the following.

Theorem 5.4 Let Ny # M; and 0 # Ms. The submodule N1 ® 0 is a weakly 2-absorbing submodule of M if
and only if one of the following holds:

(i) Ny is a weak prime submodule of My and 0 is a prime submodule of My and 0 # (N1 : Mq)M;.
(ii) Ny is a weak prime submodule of My and 0 is a weakly prime submodule of My and 0 = (N7 : My)M;.
(ili) N; = 0.

Moreover if (i) holds, then Ny @ 0 is 2-absorbing if and only if Ny is a prime submodule of M.
Proof (=) Let N1 @0 be a weakly 2-absorbing submodule of M and 0 # N;j. Then by 5.3(b), N7 is weak
prime.

If 0 # (Ny : My1)My, then by 5.3(d), the zero submodule of M is prime. Otherwise since 0 # Ny, then
by 5.3(b), the zero submodule of M is weakly prime.

(<) Assume that (0,0) # (a,b)(c,d)(z,y) € Ny ® 0, where (a,b),(c,d) € R, (z,y) € M. Then
0 # acx € N1 and bdy = 0. Since N; is weak prime, a € (N7 : My) or ¢ € (Ny : My) or « € N;. First suppose
that (i) is satisfied.

As 0 is a prime submodule of Mz, we have b€ (0: M3) or d € (0: M3) or y =0.

Now it is easy to see that in any of the above cases (a,b)(c,d) € (N1 ®0: M) or (a,b)(z,y) € N1 @& 0 or
(¢,d)(z,y) € N1 @ 0. Consequently Ny @ 0 is weakly 2-absorbing.

Now assume that (ii) holds. If @ € (Ny : My) or ¢ € (N1 : My), then acx € (Ny : My)M; =0, and so
acr = 0, which is impossible. Thus z € N;. Since bdy = 0 and 0 is weakly prime, by = 0 or dy = 0. Therefore,
either (a,b)(z,y) € N1 @0 or (¢,d)(z,y) € N1 @0.
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To prove the second part of this theorem, assume that (i) holds. Then N; is a weak prime submodule of
M, and 0 is a prime submodule of Ms.

If Ny is not a prime submodule, then for some ¢ € Ry \ (N7 : My), and z € M; \ Ny, we have tz € Nj.
Now choose 0 # u € Ms. Then (0,0) = (1,0)(¢,1)(z,u) € Ny &0 and (1,0)(¢,1) ¢ (N1 @0 : M) and
(t,1)(z,u) € N1 ®0; also (1,0)(z,u) ¢ N1 & 0. Therefore, Ny @ 0 is not 2-absorbing.

Conversely if N; is a prime submodule of M, then as 0 is prime, by 5.3(c), N1 ® 0 is 2-absorbing. O

Example 4 It is easy to see that if (R1,9M) is a quasi-local ring with IMM? = 0, then every proper ideal of Ry

is weak prime. Particularly if Ry = %, where K is a field, then I; = % is a weak prime ideal
of Ry, but it is not prime. Therefore, by 5./ the ideal I &0 is a weakly 2-absorbing ideal of the ring Ry & K,

but it is not a 2-absorbing ideal.

Theorem 5.5 Let 0 # Ny # My and 0 % Ny #= Ms. Then N is a weakly 2-absorbing submodule of M if and
only if for each i = 1,2 one of the following holds:

(1) 0% (N;: M;)M; and Ns_; is a prime submodule of Ms_;.

(2) 0= (N;: M;)M; and Ns_; is a weak prime and a weakly prime submodule of Ms_;.

Proof (=) Suppose that N is a weakly 2-absorbing submodule of M. According to 5.3(b), N5_; is a weak
prime and a weakly prime submodule of M3_; for each i =1,2.

Now if 0 # (N; : M;)M;, then by 5.3(d), N3_; is a prime submodule of Mj_;.

(<) First suppose that (1) holds for ¢ = 1,2. Then by 5.3(c), N is a weakly 2-absorbing submodule
of M.

Let (0,0) # (r1,72)(r],r5)(m1,ma) € N = Ny @ Na, where (r1,72),(r],r5) € R and (mi,ms) € M.
Then r;rim; € N; for i =1,2.

Now assume that (2) holds for ¢ = 1,2. Without loss of generality we can suppose that 0 # ririm;.
Since N; is weak prime, r; € (N7 : M) or v} € (N7 : My) or my € Ny. If ry € (N7 : My) or v} € (N7 : My),
then ririm; € (N1 : M1)M; = 0, which is impossible; hence m; € N;j. Also note that rorims € Ny and N is
weakly prime; then romo € Ny or 14ma € Ny. Therefore, either (r1,72)(m1, ma) € N or (r],r5)(mi, ma) € N,
as required.

Now let (1) hold for ¢ = 1 and (2) hold for ¢ = 2. Note that rorimg € Ny and N is prime, then
ro € (N : M) or rh € (N3 : Ms) or ma € Ny. We have one of the following two cases:

Case 1. 0 # ririmq. As Ny is weak prime, r; € (N7 : My) or r{ € (Ny : My) or m; € Ni. Now it is easy
to see that in any of the above cases (r1,72)(m1, m2) € N or (r,r5)(my,ma) € N or (ri,ra)(ry,rh) € (N : M),
as required.

Case 2. 0 # rorbma. If ro € (No : M) or rh € (Ng : M), then rorims € (Ng : My)Ms = 0, which is
impossible; thus my € No. As r7im; € N7 and N; is weakly prime, either r;my € Ny or rimy € Ny, and so

either (ry,r2)(my,me) € N or (r},74)(m1, ma) € N. O
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6. Modules whose proper submodules are all weakly 2-absorbing
A well-known result states that if every proper ideal of a commutative ring with identity R is a prime ideal,
then R is a field. As a generalization, in [3, Proposition 2.1] it is proved that if every proper submodule of a

nontorsion R-module module M is a prime submodule of M, then R is a field. In this section we study the

modules whose proper submodules are all weakly 2-absorbing.

Theorem 6.1 Let M be a nonzero R-module such that every proper submodule of M is weakly 2-absorbing.
Then R has at most three mazimal ideals containing Ann(M).

Proof Let N be a nonzero finitely generated submodule of M. We prove that R has at most three maximal
ideals containing Ann(N). By 4.5, every proper submodule of N is a weakly 2-absorbing submodule of N.
Let 9y, Mo, M3, and My be distinct maximal ideals of R containing Ann(N). Put J = D NNy N N3 and
N’ =JN.

Evidently for each i, 9, N # N; otherwise by Nakayama’s lemma there exists ¢t € I; with (t — 1) €
Ann(N) C 9;, which is impossible. Now since 9; C (DN : N), we get M; = (MLN : N). Therefore,
JC(N':N)Cn (OGN : N) =J, and so /(N : N) = VJ = J = M NMy N M. By [9, Section 2,
Proposition 1(iii)], the radical ideal of a 2-absorbing submodule is the intersection of at most 2 prime ideals;
therefore, N’ is not a 2-absorbing submodule of N. Hence by 5.2, J3 = (N’ : N)? C Ann(N) C 9y, which
implies that M; = My for some 1 < j < 3, a contradiction. Thus R has at most three maximal ideals
My, My, M3 containing Ann(N).

Now if N* is another nonzero finitely generated submodule of M, then by the same argument Ann(N*)
is contained in at most three maximal ideals, say 95, 95, 9M5. Thus Ann(N 4+ N*) is contained in
My, My, Mg, PG, M5, ML, and since N + N* is finitely generated, {My, Mo, M3} = {7, D5, ML},

Hence R has at most three fixed maximal ideals 9t;, My, M3 such that for each nonzero finitely
generated submodule L of M, we have Ann(L) CU = My U My U M.

Now we prove that J2M = 0, where J = 9t N My N MN3. (%)

On the contrary let a,b,c € J and x € M such that abcx # 0. If Rabcx = M, then M = Rabcx C Rex
and so Rabcz = Rcx. Then there exists s € R with (1—sab)cz = 0, and since 0 # cz, (1—sab) € Ann(cz) C U,
which is impossible. Thus Rabcx # M.

Note that 0 # abcx € Rabcr and since Rabex is weakly 2-absorbing, acx € Rabcx or bex € Rabex or
ab € (Rabex : M).

If acx € Rabex, then for some r € R, acx = rabcx and so (1 — rb)acx = 0 and note that 0 # acx; thus
(1 —rb) € Ann(acz) C U, which is a contradiction. Consequently acx ¢ Rabcx and similarly bex ¢ Rabex.
Furthermore, if ab € (Rabcz : M), then for some t € R, abr = tabcx and so (1 — tc)abr = 0 and we get
(1 —te) € Ann(abx) C U, which is impossible. Whence J? C Ann(M).

Now if Ann(M) is contained in a maximal ideal 9*, then (9t N My NIM3)2 = J> C Ann(M) C IM*.
This implies that 91; = 9* for some 1 < j < 3, which completes the proof. O

Recall that J(R) is the intersection of all maximal ideals of R.

Corollary 6.2 Let M be a nonzero R-module such that every proper submodule of M is weakly 2-absorbing.
Then (J(R))*M = 0.

Proof According to () in the proof of 6.1, J>M = 0, and evidently J(R) C J. O
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Theorem 6.3 Let (R, M), (R2,Ma) be quasi-local rings and R = Ry ® Ry. Then the following are equivalent:
(i) There exists a faithful R-module M such that every proper submodule of M is weakly 2-absorbing;
(i) M2 =0, M2 = 0; furthermore, Ry or Ry is a field.
Moreover:
(a) If Ry is not a field and (i) holds, then (1,0)M = R;.
(b) If Ry is not a field and (i) holds, then (0,1)M = Rs.

(¢) If Ry and Rs are fields, then every proper submodule of any arbitrary R-module is weakly 2-absorbing.
Proof (i) = (ii) Put M; = (1,0)M and M = (0,1)M. Since M is faithful, M;, M # 0. One can easily see
that M; is a faithful R;-module with the multiplication r1((1,0)m) = (r1,0)m for each r1 € Ry and m € M.
Similarly Ms is a faithful Ro-module and M = M; & M, as R-modules.

To show that M2 = 0, let a,b € My with 0 # ab. As M; is faithful, 0 # abM; and so for some x € My,
0 # abz.

Note that 0 # M> and so Ryabr ® 0 is a proper submodule of M; thus it is weakly 2-absorbing. Now
by 5.3(b), Rjabx is a weak prime submodule of M, and as 0 # abx € Ryabx, we have a € (Ryabx : M;) or
bxr € Riabx. Hence ax € Riabx or bxr € Riabx.

Therefore, either ax = rabx for some r € Ry, or bx = sabx for some s € Ry. As (1 —rb) and (1 — sa)
are unit, either ax = 0 or bx = 0, which is a contradiction. Then we conclude that 9% = 0. With the same
argument we get 93 = 0.

If Ry is not a field, then My # 0 and as M; is faithful, 9y M; # 0. Then 0 # myx; for some
my € My, z1 € My. Now we show that MaMy = 0. Let x5 € My and my € My. Since M3 = 0, we have
m3 = 0.

If MMy = My, then as 0 = IM?, we get 0 = MIM = M M; = M;, which is impossible; thus
My My # M.

Put N = 9 M; & 0. Note that (0,0) # (1,m2)(1,mz2)(mix1,22) € N. As N is weakly 2-absorbing,
either (1,m2)(1,ma) € (N : M) or (1,msg)(miz1,z2) € N, and as My My # My, (1,mz)(1,me) ¢ (N : M)
and then (1,msq)(myz1,22) € N, and so 0 = moxs. Thus MMy = 0, that is My C Ann(Mz) = 0. Hence Ry

is a field.

(i) = (i) Put M = R. Then the proof is given by [5, Theorem 3.4].

(a) Now if Ry is not a field and (i) holds, then we show that M; = R;.

If for some y; € Ry, M; = Ry, then as 0 = Ann(M;) = Ann(y;), we get My} = Ry; = ﬁ}yl) >~ R.
Now assume that M; # Ryy; for each 0 # y; € M;. Since Rs is not a field and M, is faithful, 0 # 9, My and
so for some ty € My and yo € Mo, 0 # tays. As M3 =0, t3 =0 and so (0,0) # (1,£2)(1,%2)(y1,y2) € Riy1 ©0.
Note that Riy1 # M; and so (1,t2)(1,t2) ¢ (Riy1 ® 0 : M) and since Ryy; @ 0 is weakly 2-absorbing,
(1,£2)(y1,y2) € R1y1 © 0, which is impossible because toys # 0. Consequently M; = R;.

(b) The proof is similar to that of (a).
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(c) Let Ry and Ry be two fields and M be an arbitrary R-module. Then M = M; @& Ms, where M;
is an R;-module for each ¢ = 1,2. Furthermore, every proper submodule of M is of the form N = N; & N,
where N; is a submodule of M; for each i = 1,2 and at least one of N7 or N is a proper submodule.

Note that every proper subspace of a vector space is prime and so for each i = 1,2 either N; = M;
or N; is a prime submodule of M;. Hence, by 5.3(a) and 5.3(c), the submodule N is a weakly 2-absorbing
submodule of M. O

Proposition 6.4 Let R = Ry @ Ry ® Rs, where Ry, Ry, and Rs are three rings. If M s a faithful R-module
such that every proper submodule of M is weakly 2-absorbing, then Ry, Ra, R3 are fields and M = R.

Proof Put M; = (1,0,0)M, My = (0,1,0)M, and M3 = (0,0,1)M. Then it is easy to see that M; is an
R;-module for each ¢ = 1,2, 3, and also M = My ® M>® M3 as R-modules. Since M is faithful, the R;-module
M, is faithful, for each i = 1,2, 3.

Let 991; be a maximal ideal of R; for each i = 1,2,3. Evidently 9t & Ry ® R3 and R; ® My & R3 and
R1 ® Ro @ M3 are the the maximal ideals of R and by 6.1, R has at most three maximal ideals; therefore,
(R1,9) and (Rg,Ms) and (R3,M3) are quasi-local rings, and J(R) = My & My & M.

According to 6.2, (J(R))*M = 0 and since M is faithful, (J(R))? = 0; hence 93 = 0 for each i = 1,2, 3.
If M; M; = M;, then 0 = 93“(3MZ = M;, which is a contradiction. Hence 9; M; # M; for each i =1,2,3.

If on the contrary 0 # 911, then 0 # 9% M7, because M; is faithful. Now apply 5.1, for I* = My, K* =
My My, and M* = M; to see that there exist 1 € (M7 \ M1 M1) and a; € My with a2 # 0.

For N =9 M; 060 and 0 # z9 € Ms, (0,0,0) # (a1,1,1)(1,0,1)(z1,22,0) € N, and N is a weakly
2-absorbing submodule of M and (a1,1,1)(z1,22,0) = (a121,22,0) ¢ N, (1,0,1)(x1,22,0) = (21,0,0) ¢ N,
and so (a1,0,1) = (a1,1,1)(1,0,1) € (N : M). Hence M3 = (0,0,1)M = (a1,0,1)(0,0,1)M C N, and this
implies that M3 = 0, which is impossible. Therefore, 0 = 9, that is Ry is a field. Similarly R, and R3 are

fields.
Now we prove that M = R. If M; % Ry, then since M; is a nonzero vector space over the field Ry,

there exists a nontrivial submodule (subspace) K; of M;. Consider (0,0,0) # (1,0,1)(1,1,0)(z1,z2,23) €
Ki®080=K, where 0 £ z1 € Ky and 0 # z2 € M and 0 # x3 € M3.

Note that (1,0,1)(z1, 22, 23) = (21,0,23) ¢ K and (1,1,0)(z1, 22, z3) = (21,22,0) ¢ K, and (1,0,1)(1,1,0) =
(1,0,0) ¢ (K : M). Thus the proper submodule K is not a weakly 2-absorbing submodule of M, which is a
contradiction. Therefore, My & Ry and similarly My = Ry and M3 = R3. Thus M = R. O

Theorem 6.5 There exists a nonzero faithful R-module M such that every proper submodule of M is weakly

2-absorbing if and only if one of the following statements holds:
(i) (R,9M) is a quasi-local ring with M3 = 0.
(i) R= Ry @ Ry, where (Ry,9M) is a quasi-local ring with M? =0 and Ry is a field.

(iii) R Ry ® Re ® R3, where Ry, Ro, Rs are fields.

Proof First suppose that there exists a nonzero faithful R-module M such that every proper submodule of
M is weakly 2-absorbing. By 6.2, (J(R))3 = 0.
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By 6.1, R has at most three maximal ideals. We consider the following three cases.
Case 1. The ring R has only one maximal ideal, say 99t. Then in this case I3 = ((J(R))?) = 0.
Case 2. The ring R has two maximal ideals 91, M. Note that O3 N 93 = (J(R))? = 0. Therefore,
R S
My =

R 93% D 93% and clearly (R1,9;) and (Ry,Ms) are quasi-local rings, where R; = o Ry = &

g%, My = g—g By 6.3((1) = (ii)), %2 =0 and %Z =0 and R; or Ry is a field.
Case 3. The ring R has three maximal ideals 9y, Mo, M3. Again since (J(R))> = M NIMINM3 = 0,
clearly R = % &) % <3 %. Therefore, by 6.4, %, %, % are fields.
1 2 3 1 2 3

For proving the converse of this theorem, put M = R, and apply [5, Theorem 3.7]. O
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