Turk J Math
(2016) 40: $350-364$
(C) TÜBİTAK
doi:10.3906/mat-1501-55

Weakly 2-absorbing submodules of modules

Sedigheh MORADI, Abdulrasool AZIZI*
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran

Received: 22.01.2015 • Accepted/Published Online: 08.08.2015 \quad Final Version: 10.02.2016

Abstract

Let M be a module over a commutative ring R. A proper submodule N of M is called weakly 2 -absorbing, if for $r, s \in R$ and $x \in M$ with $0 \neq r s x \in N$, either $r s \in(N: M)$ or $r x \in N$ or $s x \in N$. We study the behavior of $(N: M)$ and $\sqrt{(N: M)}$, when N is weakly 2 -absorbing. The weakly 2 -absorbing submodules when $R=R_{1} \oplus R_{2}$ are characterized. Moreover we characterize the faithful modules whose proper submodules are all weakly 2 -absorbing.

Key words: Prime submodule, 2-absorbing submodule, weakly 2 -absorbing submodule, weakly prime submodule, weak prime submodule

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Furthermore, we consider R to be a commutative ring with identity and M an R-module, and $K[X, Y]$ denotes the ring of polynomials, where X and Y are independent indeterminates and K is a field.

The colon ideal of a submodule N of M is considered to be

$$
(N: M)=\{r \in R \mid r M \subseteq N\}
$$

Moreover, $\sqrt{(N: M)}$ will be called the radical ideal of N.
Following [5], [resp. [4]] a proper ideal I of R is weakly 2 -absorbing, [resp. 2-absorbing] if for $a, b, c \in R$ with $0 \neq a b c \in I$, [resp. $a b c \in I] a b \in I$ or $a c \in I$ or $b c \in I$.

Recall that a proper submodule N of M is called 2-absorbing, if for $r, s \in R$ and $x \in M$ with $r s x \in N$, $r s \in(N: M)$ or $r x \in N$ or $s x \in N$ (see [9, 10]).

According to [10], a proper submodule N of M is called weakly 2-absorbing, if for $r, s \in R$ and $x \in M$ with $0 \neq r s x \in N$, $r s \in(N: M)$ or $r x \in N$ or $s x \in N$.

A proper submodule N of M is called prime, when from $r x \in N$ for some $r \in R$ and $x \in M$, we can conclude either $x \in N$ or $r M \subseteq N$ (see for example [2, 7, 8]). If N is a prime submodule, then $P=(N: M)$ is a prime ideal of R.

Another generalization of prime ideals to modules was introduced in [6]. A proper submodule W of M is said to be weakly prime, if $r s x \in W$ for $r, s \in R$ and $x \in M$, implying that either $r x \in W$ or $s x \in W$.

Recall from [1] that a proper ideal I of a ring R is a weakly prime ideal if whenever $a, b \in R$ with

[^0]
MORADI and AZIZI/Turk J Math

$0 \neq a b \in I$, then either $a \in I$ or $b \in I$. For unifying with modules and preventing confusion, we name weakly prime ideals of [1] weak prime ideals in this paper. The following definition is a module version of this notion.

Definition $1 A$ proper submodule N of M is said to be weak prime, if for $r \in R$ and $x \in M$ with $0 \neq r x \in N$ either $r \in(N: M)$ or $x \in N$.

Note 1 It is easy to see that:

1. Prime submodule \Longrightarrow Weak prime \Longrightarrow Weakly 2-absorbing.
2. Prime submodule \Longrightarrow Weakly prime \Longrightarrow 2-absorbing \Longrightarrow Weakly 2-absorbing.
3. A submodule N is weakly prime if and only if N is 2-absorbing and $(N: M)$ is a prime ideal.

See [9, Example 1], for examples of 2 -absorbing submodules that are not weakly prime.

Example 1

1. Let $R=K[X, Y], M=R \oplus R$ and $N=\langle X\rangle \oplus\langle X, Y\rangle$. Then N is a 2 -absorbing submodule of the R-module M, but it is not weak prime.
2. For the \mathbb{Z}-module $M=\mathbb{Z}_{12}$, the zero submodule is weakly 2 -absorbing, but not 2 -absorbing.

Proof. (1) One can easily see that N is a 2 -absorbing submodule of M. However, N is not weak prime, because $0 \neq Y(0,1) \in N$, but $Y \notin\langle X\rangle=(N: M)$ and $(0,1) \notin N$.
(2) Evidently the zero submodule of any nonzero module is weakly 2 -absorbing. Now consider $2.3 . \overline{2} \in$ $0=N$ to see that N is not 2 -absorbing.

2. On a question from Badawi and Yousefian

The authors in [5] have asked the following question:
Question. Suppose that L is a weakly 2 -absorbing ideal of a ring R and $0 \neq I J K \subseteq L$ for some ideals I, J, K of R. Does it imply that $I J \subseteq L$ or $I K \subseteq L$ or $J K \subseteq L$?

This section is devoted to studying the above question and its generalization in modules.
Lemma 2.1 Let N be a weakly 2 -absorbing submodule of an R-module M and $a, b \in R$. If for some submodule K of $M, a b K \subseteq N$ and $0 \neq 2 a b K$, then $a b \in(N: M)$ or $a K \subseteq N$ or $b K \subseteq N$.

Proof Put $(N: M)=L$, and suppose $a b \notin L$. Then it is enough to prove that $K \subseteq\left(N:_{M} a\right) \cup\left(N:_{M} b\right)$. Let z be an arbitrary element of K. If $0 \neq a b z$, then as N is weakly 2 -absorbing and $a b \notin L$, either $a z \in N$ or $b z \in N$ and so $z \in\left(N:_{M} a\right) \cup\left(N:_{M} b\right)$. Now let $0=a b z$. Since $0 \neq 2 a b K$, for some $x \in K$, we have $0 \neq 2 a b x$ and so $0 \neq a b x \in N$. As N is weakly 2 -absorbing and $a b \notin L$, either $a x \in N$ or $b x \in N$. Put $y=x+z$. Then $0 \neq a b y \in N$ and since $a b \notin L$, either $a y \in N$ or $b y \in N$. We consider three cases.

Case 1. $a x \in N$ and $b x \in N$. Note that $a y \in N$ or $b y \in N$, and so either $a z \in N$ or $b z \in N$.
Case 2. $a x \in N$ and $b x \notin N$. On the contrary let $a z \notin N$. Then $a y \notin N$ and so $b y \in N$. Therefore, $a(y+x) \notin N$ and $b(y+x) \notin N$. Now as N is weakly 2 -absorbing and $a b \notin L$, then $0=a b(y+x)=2 a b x$, which is a contradiction. Thus $a z \in N$.

Case 3. $a x \notin N$ and $b x \in N$. Then proof is similar to that of Case 2.

Lemma 2.2 Let J be an ideal of R and K, N two submodules of an R-module M, such that $a J K \subseteq N$, where $a \in R$. If N is weakly 2 -absorbing and $0 \neq 4 a J K$, then $a J \subseteq(N: M)$ or $a K \subseteq N$ or $J K \subseteq N$.
Proof Let $a J \nsubseteq(N: M)=L$. Then $a j \notin L$ for some $j \in J$. First we claim that there exists $b \in J$ such that $0 \neq 4 a b K$, and $a b \notin L$.

Since $0 \neq 4 a J K$, for some $j^{\prime} \in J, 0 \neq 4 a j^{\prime} K$. If $a j^{\prime} \notin L$ or $0 \neq 4 a j K$, then by putting $b=j^{\prime}$ or $b=j$, we get the result. Therefore, let $a j^{\prime} \in L$ and $4 a j K=0$. Hence $0 \neq 4 a\left(j+j^{\prime}\right) K \subseteq N$ and $a\left(j+j^{\prime}\right) \notin L$. Consequently we find $b \in J$, such that $0 \neq 4 a b K$, and $a b \notin L$. Thus $0 \neq 2 a b K$ and by 2.1, $K \subseteq\left(N:_{M} a\right) \cup\left(N:_{M} b\right)$. If $a K \subseteq N$, there is nothing to prove. Therefore, assume that $a K \nsubseteq N$ and so $b K \subseteq N$.

Now we show that $J \subseteq(L: a) \cup(N: K)$. Let $c \in J$. If $0 \neq 2 a c K$, then by 2.1, ac $\in L$ or $a K \subseteq N$ or $c K \subseteq N$. However, as we assumed $a K \nsubseteq N, c \in(L: a) \cup(N: K)$.

Next assume $2 a c K=0$. Then $0 \neq 2 a(b+c) K \subseteq N$ and 2.1 implies that either $a(b+c) \in L$ or $a K \subseteq N$ or $(b+c) K \subseteq N$. Then as $a K \nsubseteq N,(b+c) \in(L: a) \cup(N: K)$. If $b+c \in(N: K)$, then $c \in(N: K)$, because $b \in(N: K)$. Therefore, let $(b+c) \in(L: a) \backslash(N: K)$.

Consider $2 a(b+c+b) K=4 a b K \neq 0$ and $2 a(b+c+b) K \subseteq N$. Since $a b \notin L$ and $a(b+c) \in L$, $a(b+c+b) \notin L$. Thus, according to 2.1, $K \subseteq\left(N:_{M} a\right) \cup\left(N:_{M} b+c+b\right)$. However, since $b+c \notin(N: K)$ and $b \in(N: K), b+c+b \notin(N: K)$, and so $K \subseteq\left(N:_{M} a\right)$, which is impossible. Therefore, $b+c \in(N: K)$ and since $b \in(N: K), c \in(N: K)$. Consequently $J \subseteq(L: a) \cup(N: K)$ and hence as $a J \nsubseteq L, J K \subseteq N$.

Theorem 2.3 Let I, J be ideals of R and N, K be submodules of an R-module M. If N is a weakly 2 absorbing submodule, $0 \neq I J K \subseteq N$, and $0 \neq 8(I J+(I+J)(N: M))(K+N)$, then $I J \subseteq(N: M)$ or $I K \subseteq N$ or $J K \subseteq N$. In particular this holds if the group $(M,+)$ has no elements of order 2.

Proof Note that $0 \neq 8(I J+(I+J)(N: M))(K+N)=8 I J K+8 I J N+8 I(N: M) K+8 J(N: M) K+8 I(N:$ $M) N+8 J(N: M) N$. Therefore, one of the following different types is satisfied.
(i) $0 \neq 8 I J K$. Then for some $a \in J$, we have $0 \neq 8 a I K$. Therefore, $0 \neq 4 a I K$ and by 2.2 , either $a I \subseteq(N: M)=L$ or $a K \subseteq N$ or $I K \subseteq N$. If $I K \subseteq N$, then we have the result. Therefore, we suppose that $I K \nsubseteq N$ and so $a \in(L: I) \cup(N: K)$. Now we show that $J \subseteq(L: I) \cup(N: K)$. To see this let $c \in J$. If $0 \neq 4 c I K$, then according to 2.2 , since $I K \nsubseteq N, c \in(L: I) \cup(N: K)$.

Now let $4 c I K=0$. So $0 \neq 4(a+c) I K \subseteq N$. Thus, by 2.2, since $I K \nsubseteq N, a+c \in(L: I) \cup(N: K)$. We consider the following four cases.

Case 1. $a+c \in(L: I)$ and $a \in(L: I)$. Then $c \in(L: I)$.
Case 2. $a+c \in(N: K)$ and $a \in(N: K)$. Hence $c \in(N: K)$.
Case 3. $a \in(L: I) \backslash(N: K)$ and $a+c \in(N: K) \backslash(L: I)$. Therefore, $a+c+a \notin(L: I)$ and $a+c+a \notin(N: K)$ and so $a+c+a \notin(L: I) \cup(N: K)$. We consider $4(a+c+a) I K=8 a I K \neq 0$. Hence, by 2.2 , as $I K \nsubseteq N, a+c+a \in(L: I) \cup(N: K)$, which is impossible. Hence as $a \in(L: I) \cup(N: K)$ and $a+c \in(L: I) \cup(N: K)$, one of the following holds.
(a) $a \in(N: K)$ and $a+c \in(N: K) \backslash(L: I)$. Thus $c \in(N: K)$.
(b) $a \in(L: I) \backslash(N: K)$ and $a+c \in(L: I)$. Hence $c \in(L: I)$.

Case 4. $a+c \in(L: I) \backslash(N: K)$ and $a \in(N: K) \backslash(L: I)$. Similar to Case 3, we get $c \in(L: I) \cup(N: K)$

Consequently $J \subseteq(L: I) \cup(N: K)$.
(ii) If $0 \neq 8 I J N$ and $8 I J K=0$, then $0 \neq 8 I J(K+N) \subseteq N$, and then by part (i), $J I \subseteq(N: M)$ or $J(K+N) \subseteq N$ or $I(K+N) \subseteq N$ and so $J I \subseteq(N: M)$ or $J K \subseteq N$ or $I K \subseteq N$.
(iii) Let $0 \neq 8 J(N: M) K$ and $8 I J K=0$. Then $8 J(I+(N: M)) K=8 J(N: M) K \neq 0$ and so according to part (i), either $J(I+(N: M)) \subseteq(N: M)$ or $J K \subseteq N$ or $(I+(N: M)) K \subseteq N$ and so either $J I \subseteq(N: M)$ or $J K \subseteq N$ or $I K \subseteq N$. Similarly if $0 \neq 8 I(N: M) K$, we get the result.
(iv) Let $0 \neq 8 J(N: M) N$ and $8 I J K=8 I J N=8 J(N: M) K=8 I(N: M) K=0$. Then $8 J(I+(N: M))(K+N)=8 J(N: M) N \neq 0$, and so part (i) implies that $J(I+(N: M)) \subseteq(N: M)$ or $J(K+N) \subseteq N$ or $(I+(N: M))(K+N) \subseteq N$. Hence $J I \subseteq(N: M)$ or $J K \subseteq N$ or $I K \subseteq N$. Clearly if $0 \neq 8 I(N: M) N$, we have the result.

For the particular case suppose the group $(M,+)$ has no subgroups of order 2 . Then we show that $0 \neq 8 I J K$, and so by part (i), the result is given. If $0=8 I J K$, then consider $0 \neq \ell \in I J K$. As $8 \ell=0$, so the group $(M,+)$ has a subgroup of order 2,4 , or 8 , which implies that it has an element of order 2 , a contradiction.

The following result is the ring version of 2.1, 2.2, and 2.3. For the proof just consider $M=R$.
Corollary 2.4 Let $a, b \in R$ and I, J, K be ideals of R and suppose that L is a weakly 2 -absorbing ideal of R.
(a) If $0 \neq 2 a b I$ and $a b I \subseteq L$ then $a b \in L$ or $a I \subseteq L$ or $b I \subseteq L$.
(b) If $0 \neq 4 a I J$ and $a I J \subseteq L$, then either $a I \subseteq L$ or $a J \subseteq L$ or $I J \subseteq L$.
(c) If $0 \neq I J K \subseteq L$, then $I J \subseteq L$ or $I K \subseteq L$ or $J K \subseteq L$, if $8(I J(K+L)+I K(J+L)+J K(I+L)+$ $\left.I L(J+K)+J L(I+K)+K L(I+J)+L^{2}(I+J+K)\right) \neq 0$. In particular, this holds if the group $(R,+)$ has no elements of order 2.

3. Weakly 2-absorbing submodules and their colon ideals

In this section we study when the quotient of a weakly 2 -absorbing submodule is a weakly 2 -absorbing ideal. We will also give a condition under which a weakly 2 -absorbing submodule is 2 -absorbing.

Lemma 3.1 Let N be a weakly 2 -absorbing submodule of an R-module M. If $a, b \in R, x \in M$ with abx $=0$ and $a b \notin(N: M), a x \notin N, b x \notin N$, then
(i) $a b N=a(N: M) x=b(N: M) x=0$.
(ii) $a(N: M) N=b(N: M) N=(N: M)^{2} x=0$.

Proof (i) If $a b N \neq 0$, then for some $y \in N, 0 \neq a b y=a b(x+y) \in N$ and since N is weakly 2-absorbing, $a b \in(N: M)$ or $a(x+y) \in N$ or $b(x+y) \in N$. Hence $a b \in(N: M)$ or $a x \in N$ or $b x \in N$, which are impossible. Thus $a b N=0$ and the similar arguments prove that $a(N: M) x=b(N: M) x=0$.
(ii) If on the contrary for some $t \in(N: M)$ and $y \in N, 0 \neq$ aty then by part (i), $0 \neq$ aty $=$ $a(b+t)(x+y) \in N$. Then since N is weakly 2 -absorbing, we get $a(b+t) \in(N: M)$ or $a(x+y) \in N$ or $(b+t)(x+y) \in N$. This implies that $a b \in(N: M)$ or $a x \in N$ or $b x \in N$, which are against our assumptions; consequently $a(N: M) N=0$. Similarly $b(N: M) N=(N: M)^{2} x=0$.

Theorem 3.2 The colon ideal of a weakly 2-absorbing submodule is a weakly 2-absorbing ideal if Ann (M) is a weakly 2-absorbing ideal, particularly if M is faithful.
Proof Let N be a weakly 2 -absorbing submodule of M. First assume that M is a faithful R-module. Let $a, b, c \in R$ with $0 \neq a b c \in(N: M)$ and $a b \notin(N: M), a c \notin(N: M)$ and $b c \notin(N: M)$. As $A n n(M)=0$, for some $z \in M, 0 \neq a b c z \in N$. Thus since N is weakly 2 -absorbing and $a b \notin(N: M), a c z \in N$ or $b c z \in N$. We claim that there exists $x \in M$ such that $0 \neq a b c x \in N$ and one of the following holds.
(i) $a c x \notin N$ and $b c x \in N, a b x \in N$.
(ii) $b c x \notin N$ and $a c x \in N, a b x \in N$.

We consider the following two cases.
Case 1. $a c z \in N$. Because of $a c \notin(N: M)$, there exists $z^{\prime} \in M \backslash N$ such that $a c z^{\prime} \notin N$. Since $0 \neq a b c z$, it is easy to see that either $0 \neq a b c\left(2 z+z^{\prime}\right)$ or $0 \neq a b c\left(z+z^{\prime}\right)$. First we suppose that $0 \neq a b\left(c\left(2 z+z^{\prime}\right)\right) \in N$. Therefore, as N is weakly 2 -absorbing, $a b \in(N: M)$ or $a c\left(2 z+z^{\prime}\right) \in N$ or $b c\left(2 z+z^{\prime}\right) \in N$. However, by assumption, $a b \notin(N: M)$ and as $a c z^{\prime} \notin N, a c\left(2 z+z^{\prime}\right) \notin N$ and so $b c\left(2 z+z^{\prime}\right) \in N$. Hence as $0 \neq b c\left(a\left(2 z+z^{\prime}\right)\right) \in N$ and $b c \notin(N: M)$, we have $b a\left(2 z+z^{\prime}\right) \in N$. By the same way if $0 \neq a b\left(c\left(z+z^{\prime}\right)\right) \in N$, then $a c\left(z+z^{\prime}\right) \notin N$ and $b c\left(z+z^{\prime}\right) \in N, b a\left(z+z^{\prime}\right) \in N$. Consequently for some $x \in M$, we have $0 \neq a b c x \in N$ and $a c x \notin N$ and $b c x \in N, a b x \in N$.

As N is weakly 2 -absorbing and $a b \notin(N: M)$, it suffices to show that there exists $x^{\prime} \in M$, such that $0 \neq a b\left(c x^{\prime}\right) \in N$ and $a c x^{\prime} \notin N, b c x^{\prime} \notin N$.

Since $a b \notin(N: M)$, for some $y^{\prime} \in M, a b y^{\prime} \notin N$. Hence as $0 \neq a c b x$, either $0 \neq a c b\left(2 x+y^{\prime}\right)$ or $0 \neq a c b\left(x+y^{\prime}\right)$. First let $0 \neq a c\left(b\left(2 x+y^{\prime}\right)\right) \in N$. Then since $a b x \in N$ and $a b y^{\prime} \notin N$ we have $a b\left(2 x+y^{\prime}\right) \notin N$ and hence as N is weakly 2 -absorbing and $a c \notin(N: M)$, we have $c b\left(2 x+y^{\prime}\right) \in N$. Then by considering $0 \neq b c\left(a\left(2 x+y^{\prime}\right)\right) \in N$, since $b c \notin(N: M)$ and $b a\left(2 x+y^{\prime}\right) \notin N$, we get $c a\left(2 x+y^{\prime}\right) \in N$. Similarly in the case $0 \neq a c\left(b\left(x+y^{\prime}\right)\right) \in N$, we get $a b\left(x+y^{\prime}\right) \notin N$ and $c b\left(x+y^{\prime}\right) \in N, c a\left(x+y^{\prime}\right) \in N$.

Therefore, there exists $x^{\prime \prime} \in M$ such that $0 \neq a b c x^{\prime \prime}$ and $a c x^{\prime \prime} \in N, b c x^{\prime \prime} \in N$ and $a b x^{\prime \prime} \notin N$. Thus as $0 \neq a c x^{\prime \prime} \in N$ and $a c \notin(N: M)$, either $a x^{\prime \prime} \in N$ or $c x^{\prime \prime} \in N$. However, since $a b x^{\prime \prime} \notin N, c x^{\prime \prime} \in N$.

For some $y \in M$, we have $b c y \notin N$, because $b c \notin(N: M)$. Hence if $0 \neq a b(c y)$, then since N is weakly 2-absorbing, $a c y \in N$ and $a b y \in N$ and we consider $a b c(x+y)$. If $0=a b c(x+y)$, then since $a c x \notin N, a c y \in N$ and $b c x \in N, b c y \notin N$, we have $b c(x+y) \notin N$ and $a c(x+y) \notin N$, and so by 3.1 , since $a c \notin(N: M)$, we have $a b N=0$. Thus $a b c x^{\prime \prime}=0$, which is a contradiction. Therefore, $0 \neq a b c(x+y)$ and since $a b \notin(N: M)$ and $b c(x+y) \notin N, a c(x+y) \notin N$, we have the result.

Now let $a b(c y)=0$. If $a c y \notin N$, then since $a b \notin(N: M)$ and $b c y \notin N$, by 3.1, we have $a b N=0$ and so $a b c x^{\prime \prime}=0$, which is impossible. Therefore, $a c y \in N$. Then $b c(x+y) \notin N, a c(x+y) \notin N$ and since $a b c y=0$, $0 \neq a b c(x+y)$. Consequently we find $x^{\prime} \in M$, such that $0 \neq a b c x^{\prime} \in N$ and $a c x^{\prime} \notin N$ and $b c x^{\prime} \notin N$.

Case 2. $b c z \in N$. The proof is given similar to that of Case 1.
Now if M is not a faithful R-module, then consider M as an $R^{\prime}=R / A n n(M)$-module. It is easy to see that N is an R^{\prime}-weakly 2 -absorbing submodule of M and so by the above argument $(N: M) / A n n(M)$ is a weakly 2 -absorbing ideal of R^{\prime}. Now since $\operatorname{Ann}(M)$ is a weakly 2 -absorbing ideal, one can easily see that ($N: M$) is a weakly 2 -absorbing ideal of R.

Now we show that the converse of 3.2 is not necessarily true.

Example 2 It is easy to see that if (R, \mathfrak{M}) is a quasi-local ring with $\mathfrak{M}^{3}=0$, then every proper ideal of R is weakly 2 -absorbing. Therefore, for the ring $R=\frac{K[[X, Y, Z]]}{J}$, where $J=\left\langle X^{3}, Y^{2}, Z^{2}, X Y, X Z\right\rangle$, the ideal $I=\frac{\left\langle X, Y^{2}, Z^{2}\right\rangle}{J}$ is weakly 2-absorbing.

Now consider the R-module $M=R \oplus R$ and $N=I \oplus R$. Then $(N: M)=I$ is a weakly 2-absorbing ideal of R, but N is not a weakly 2-absorbing submodule of M. To see the proof note that $(Y+J)(Z+J)(Y+$ $Z+J, 1+J) \in N$.

4. Weakly 2 -absorbing submodules and their radical ideals

Let N be a 2 -absorbing submodule of M. According to [9, Proposition 1(iii)] either $\sqrt{(N: M)}$ is a prime ideal of R, or $\sqrt{(N: M)}=P_{1} \cap P_{2}$, where P_{1}, P_{2} are the only distinct minimal prime ideals over $(N: M)$ and $P_{1} P_{2} \subseteq(N: M)$. This is a motivation for studying $\sqrt{(N: M)}$ when N is a weakly 2 -absorbing submodule in this section.

Let P be a prime ideal of R. The height of P denoted by ht P is defined to be the supremum of the length of chains of $P_{0} \subset P_{1} \subset \cdots \subset P_{n}=P$ of prime ideals of R if the supermum exists, and ∞ otherwise.

The height of an ideal I denoted by $h t I$ is defined to be
$h t I=\inf \{h t P \mid P$ is a minimal prime ideal containg $I\}$.

Proposition 4.1 Let I be a weakly 2 -absorbing ideal of R with $\sqrt{I}=J$. Then either J is a prime ideal of R or $J=P_{1} \cap P_{2}$, where P_{1}, P_{2} are the only distinct minimal prime ideals over I or $I_{P}=0$ for every minimal prime ideal P over I. In the latter case ht $I=0$.

Proof Suppose that there are at least three minimal prime ideals P, Q, and L over I and $I_{L} \neq 0$. Consider $x \in P \backslash(L \cup Q)$ and $y \in Q \backslash(L \cup P)$. Since P, Q are minimal prime ideals over $I, \sqrt{I_{P}}=P_{P}$ and $\sqrt{I_{Q}}=Q_{Q}$ and so for some $s \in R \backslash P$ and $t \in R \backslash Q$, and $m, n>0$ we have $s x^{m} \in I$ and $t y^{n} \in I$. Since $x \notin I$ and $y \notin I$, without loss of generality we can assume $s x^{m-1} \notin I$ and $t y^{n-1} \notin I$.

We claim that $s x \in I$ and $t y \in I$. If $0 \neq s x^{m}=s x^{m-1} x \in I$, then as I is weakly 2 -absorbing and $x^{m} \notin I$, either $s x \in I$ or $s x^{m-1} \in I$. Hence $s x^{m-1} \notin I$ and we have $s x \in I$. Therefore, we can assume that $s x^{m}=0$. Then as $s x^{m-1} \notin I$ and $x^{m} \notin I$, either $s x \in I$ or by $3.1, x^{m} I=0$ and so in this case $I_{L}=0$, which is a contradiction and then $s x \in I$. Similarly $t y \in I$. Now we consider $(s+t) x y \in I$. If $(s+t) x y=0$, then as $(s+t) x \notin I$ and $(s+t) y \notin I$, either $x y \in I$ or by $3.1, x y I=0$. If $x y I=0$, then $I_{L}=0$, which is impossible. Therefore, $x y \in I \subseteq L$, which is a contradiction.

Now let $I_{P}=0$ for every minimal prime ideal P over I. To show that ht $I=0$, let Q be a minimal prime ideal over I, and assume that Q^{\prime} is a prime ideal with $Q^{\prime} \subseteq Q$. If $I \subseteq Q^{\prime}$, then evidently $Q^{\prime}=Q$. Now let $x \in I \backslash Q^{\prime}$. Since $I_{Q}=0$, there exists $s \in R \backslash Q$ with $s x=0$. Then $s x=0 \in Q^{\prime}$, which implies that $s \in Q^{\prime} \subseteq Q$, a contradiction.

To illustrate 4.1, in the following examples we introduce three different types of weakly 2 -absorbing ideals.

Example 3

(i) The zero ideal is a non-2-absorbing and weakly 2-absorbing ideal of \mathbb{Z}_{8}, and $\sqrt{0}=2 \mathbb{Z}_{8}$ is a prime ideal.
(ii) The zero ideal is a non-2-absorbing and weakly 2 -absorbing ideal of \mathbb{Z}_{18}, and $\sqrt{0}=2 \mathbb{Z}_{18} \cap 3 \mathbb{Z}_{18}$, which is the intersection of two distinct prime ideals.
(iii) If P_{1}, P_{2}, and P_{3} are three incomparable prime ideals of a ring R with $P_{1} P_{2} P_{3}=0$, then $I=P_{1} \cap P_{2} \cap P_{3}$ is a weakly 2-absorbing ideal of R and $\sqrt{I}=I$ and $I_{P_{1}}=I_{P_{2}}=I_{P_{3}}=0$.
(iv) If $R=K[X, Y, Z]$ and $P_{1}=\langle X, Y\rangle, P_{2}=\langle X, Z\rangle$, and $P_{3}=\langle Y, Z\rangle$, then $0 \neq I=\frac{P_{1} \cap P_{2} \cap P_{3}}{P_{1} P_{2} P_{3}}$ is a weakly 2 -absorbing ideal of the ring $\frac{R}{P_{1} P_{2} P_{3}}, \sqrt{I}=I$ and $I_{\frac{P_{1}}{P_{1} P_{2} P_{3}}}=I_{\frac{P_{2}}{P_{1} P_{2} P_{3}}}=I_{\frac{P_{3}}{P_{1} P_{2} P_{3}}}=0$.

Proof. The proofs of (i) and (ii) are evident.
(iii) Let $0 \neq a b c \in I$. If $a \in P_{1} \cap P_{2} \cap P_{3}$ or $a \notin P_{1} \cup P_{2} \cup P_{3}$, then there is nothing to prove. Therefore, we consider two cases.

Case 1. If a is in two of the P_{i} 's, say P_{1}, P_{2}, then either $b \in P_{3}$ or $c \in P_{3}$ and so either $a b \in I$ or $a c \in I$.

Case 2. a is only in one of the P_{i} 's. We can assume $a \in P_{1} \backslash P_{2} \cup P_{3}$. Hence $b c \in P_{2} \cap P_{3}$ and since $P_{1} P_{2} P_{3}=0$ and $0 \neq a b c$, either $b \in P_{2} \cap P_{3}$ or $c \in P_{2} \cap P_{3}$. Then similar to Case 1, we have the result.

It is easy to see that $\sqrt{I}=I$ and so I has three minimal prime ideals. Since $P_{1} P_{2} P_{3}=0$, for some $t \in P_{2} P_{3} \backslash P_{1}$, we have $t I \subseteq t P_{1}=0$ and so $0=I_{P_{1}}$. Similarly $I_{P_{2}}=I_{P_{3}}=0$.
(iv) The proof is given by part (iii).

The proof of the following result is given by 3.2 and 4.1.

Corollary 4.2 Let N be a weakly 2-absorbing submodule of a faithful R-module M. Then either $\sqrt{(N: M)}$ is a prime ideal of R or $\sqrt{(N: M)}=P_{1} \cap P_{2}$, where P_{1}, P_{2} are the only distinct minimal prime ideals over $(N: M)$ or $(N: M)_{P}=0$ for every prime ideal P containing $(N: M)$. In the latter case $h t(N: M)=0$.

Theorem 4.3 Let I be a weakly 2-absorbing ideal of R and P_{1}, P_{2} be two incomparable prime ideals, and suppose $J=\sqrt{I}=P_{1} \cap P_{2}$. Then:

If $0 \neq I_{P_{1}}, 0 \neq I_{P_{2}}$, then $P_{1} P_{2} \cup\left(P_{1}+P_{2}\right) J \subseteq I$. Furthermore, if $J \neq I$, then $\{(I: r) \mid r \in J \backslash I\}$ is a chain of prime ideals of R.
Proof First we show that if $a \in P_{1} \backslash P_{2}, b \in P_{2} \backslash P_{1}$, then $a b \in I$
As P_{1}, P_{2} are minimal prime ideals over $I, \sqrt{I_{P_{1}}}=\left(P_{1}\right)_{P_{1}}$ and $\sqrt{I_{P_{2}}}=\left(P_{2}\right)_{P_{2}}$ and so for some $s \in R \backslash P_{1}$ and $t \in R \backslash P_{2}$, and $m, n>0$, we have $s a^{m} \in I$ and $t b^{n} \in I$. Then by proof of 4.1, either $s a \in I$ or $a^{m} I=0$ and $t b \in I$ or $b^{n} I=0$. If $a^{m} I=0$ or $b^{n} I=0$, then $I_{P_{2}}=0$ or $I_{P_{1}}=0$; these two cases are impossible. Then $s a \in I$ and $t b \in I$. Now we consider $(s+t) a b \in I$. If $(s+t) a b=0$, then as $(s+t) a \notin I$ and $(s+t) b \notin I$, either $a b \in I$ or by $3.1,(s+t) a I=0$. If $(s+t) a I=0$, then $I_{P_{2}}=0$, which is a contradiction. Therefore, $a b \in I$.

Suppose that $a^{\prime}, b^{\prime} \in J$. Consider $t \in P_{1} \backslash P_{2}$ and $s \in P_{2} \backslash P_{1}$. Hence as $a^{\prime}+t \in P_{1} \backslash P_{2}$ and $b^{\prime}+s \in P_{2} \backslash P_{1}$, by $(*),\left(a^{\prime}+t\right) s, t s \in I$ and so $a^{\prime} s \in I$. Similarly $b^{\prime} t \in I$ and since $\left(a^{\prime}+t\right)\left(s+b^{\prime}\right) \in I, a^{\prime} b^{\prime} \in I$. Thus $J^{2} \subseteq I$.

For the proof of $P_{1} P_{2} \subseteq I$, let $m \in P_{1}, n \in P_{2}$. By the last part we may assume $m \in J$ and $n \in P_{2} \backslash P_{1}$. We consider $x \in P_{1} \backslash P_{2}$ and by $(*)$, we get $n x \in I, n(m+x) \in I$ and so $m n \in I$ and completes the proof.

Put $I_{r}=(I: r)$ for each $r \in J \backslash I$. By the above paragraph, $r P_{1} \subseteq I, r P_{2} \subseteq I$ and so $P_{1} \subseteq I_{r}, P_{2} \subseteq I_{r}$. Now let $a^{\prime \prime} b^{\prime \prime} \in I_{r}$. Then $a^{\prime \prime} b^{\prime \prime} r \in I$ and since I is weakly 2 -absorbing, $a^{\prime \prime} b^{\prime \prime} r=0$ or $a^{\prime \prime} b^{\prime \prime} \in I$ or $a^{\prime \prime} \in I_{r}$
or $b^{\prime \prime} \in I_{r}$. Since $P_{1} \subseteq I_{r}$ and $P_{2} \subseteq I_{r}$, we can assume $a^{\prime \prime} \notin P_{1} \cup P_{2}$ and $b^{\prime \prime} \notin P_{1} \cup P_{2}$ and so $a^{\prime \prime} b^{\prime \prime} \notin I$. If $a^{\prime \prime} b^{\prime \prime} r=0$ and $a^{\prime \prime} \notin I_{r}, b^{\prime \prime} \notin I_{r}$, then by 3.1, $a^{\prime \prime} b^{\prime \prime} I=0$ and so $I_{P_{1}}=0$, which is a contradiction. Thus I_{r} is prime.

Now let $r^{\prime}, s^{\prime} \in J \backslash I$ and $t^{\prime} \in I_{r^{\prime}} \backslash I_{s^{\prime}}$. As $P_{1}, P_{2} \subseteq I_{s^{\prime}}, t^{\prime} \notin P_{1} \cup P_{2}$. To show that $I_{s^{\prime}} \subseteq I_{r^{\prime}}$, let $c \in I_{s^{\prime}}$. We may assume that $c \notin P_{1} \cup P_{2}$ and we conclude $t^{\prime} c \notin P_{1} \cup P_{2}$. Now consider $t^{\prime} c\left(r^{\prime}+s^{\prime}\right) \in I$. Since I is weakly 2 -absorbing, $t^{\prime} c\left(r^{\prime}+s^{\prime}\right)=0$ or $t^{\prime} c \in I$ or $t^{\prime}\left(r^{\prime}+s^{\prime}\right) \in I$ or $c\left(r^{\prime}+s^{\prime}\right) \in I$. However, since $t^{\prime} c \notin P_{1} \cup P_{2}$, $t^{\prime} c \notin I$. Moreover, as $t^{\prime} \in I_{r^{\prime}} \backslash I_{s^{\prime}}, t^{\prime}\left(r^{\prime}+s^{\prime}\right) \notin I$. Therefore, either $t^{\prime} c\left(r^{\prime}+s^{\prime}\right)=0$ or $c\left(r^{\prime}+s^{\prime}\right) \in I$. In the case $t^{\prime} c\left(r^{\prime}+s^{\prime}\right)=0$, by 3.1 , we have $t^{\prime} c I=0$ and so $I_{P_{1}}=0$, which is a contradiction. Therefore, $c\left(r^{\prime}+s^{\prime}\right) \in I$ and since $c \in I_{s^{\prime}}$, we conclude $c \in I_{r^{\prime}}$.

Corollary 4.4 Let I be a weakly 2 -absorbing ideal of R and P_{1}, P_{2} two incomparable prime ideals. If $\sqrt{I}=P_{1} \cap P_{2}$ and $0 \neq I_{P_{1}}, 0 \neq I_{P_{2}}$, then I is 2 -absorbing.

Proof Let $a b c \in I$. As I is weakly 2 -absorbing, we can assume that $a b c=0$. Put $J=\sqrt{I}$.
First assume that at least one of a or b or c is in J, for example $a \in J$. If $a \in I$, then we have the result. Therefore, let $a \in J \backslash I$. Thus, by 4.3, I_{a} is prime and so we have the result. Now let $a, b, c \notin J$. Hence as $a b c \in I \subseteq J=P_{1} \cap P_{2}$, we can assume $a \in P_{1} \backslash P_{2}$ and $b \in P_{2} \backslash P_{1}$. Therefore, according to $4.3, a b \in I$.

Proposition 4.5 Let N be a weakly 2 -absorbing submodule of an R-module M. Then the following statements hold:
(i) If there exists a submodule L of M such that $N \varsubsetneqq L$, then N is a weakly 2 -absorbing submodule of L.
(ii) If for some submodule L and ideal I there exist positive integer numbers $m>n$ such that $I^{m} L \subseteq N \varsubsetneqq$ $I^{n} L$, then N is a 2-absorbing submodule of $I^{n} L$ and $(\sqrt{(N: M)})^{2} I^{n} L \subseteq N$.

Proof (i) Let $a, b \in R, x \in L$ with $0 \neq a b x \in N$. Hence as N is a weakly 2 -absorbing submodule of M, $a b \in(N: M) \subseteq(N: L)$ or $a x \in N$ or $b x \in N$. Therefore, N is a weakly 2 -absorbing submodule of L.
(ii) First suppose that $\operatorname{Ann}\left(I^{n} L\right)=0$. By part(i), N is a weakly 2 -absorbing submodule of $I^{n} L$. Now we claim that N is 2 -absorbing. Assume that $a, b \in R, x \in I^{n} L, a b x \in N$ and $a b \notin\left(N: I^{n} L\right)$, $a x \notin N$ and $b x \notin N$. As N is weakly 2 -absorbing, we may assume that $0=a b x$. Then, according to $3.1, a b N=0$ and so $a b I^{m} L=0$ and then $a b I^{m-n}=0$, since $\operatorname{Ann}\left(I^{n} L\right)=0$. If $m-n \leq n$, then $a b I^{n} L=0$ and so $a b=0 \in\left(N: I^{n} L\right)$. Now let $m-n>n$. Hence $a b I^{m-2 n} I^{n} L=0$ and so $a b I^{m-2 n}=0$. We repeat this until we get $a b=0 \in\left(N: I^{n} L\right)$.

Next we let $\operatorname{Ann}\left(I^{n} L\right) \neq 0$. We consider $I^{n} L$ a $\frac{R}{\operatorname{Ann}\left(I^{n} L\right)}$-module. Clearly N is a weakly 2 -absorbing
 easy to see N is a 2 -absorbing R-submodule of $I^{n} L$. Then, by $[9, \operatorname{Proposition~} 2.2],\left(\sqrt{\left(N: I^{n} L\right)}\right)^{2} I^{n} L \subseteq N$ and since $(\sqrt{(N: M)})^{2} I^{n} L \subseteq\left(\sqrt{\left(N: I^{n} L\right)}\right)^{2} I^{n} L$, we have the result.

Corollary 4.6 Let I be a finitely generated weakly 2 -absorbing ideal of R. Then $(\sqrt{I})^{3} \subseteq I$. Furthermore, either $8(\sqrt{I})^{3}=0$ or $(\sqrt{I})^{2} \subseteq I$.

Proof There exists a positive integer number m such that $(\sqrt{I})^{m} \subseteq I \subseteq \sqrt{I}$. If $I=\sqrt{I}$, then evidently we have the result. Then let $I \neq \sqrt{I}$. Thus, according to $4.5(\mathbf{i i}),(\sqrt{I})^{3} \subseteq I$. Now if $0 \neq 8(\sqrt{I})^{3}$, then by 2.3, $(\sqrt{I})^{2} \subseteq I$.

5. Weakly 2-absorbing submodules in direct sum of modules

Throughout this section R_{1} and R_{2} are two commutative rings with identity, N_{1} is a submodule of an R_{1} module M_{1}, and N_{2} is a submodule of an R_{2}-module M_{2}, the ring $R=R_{1} \oplus R_{2}, M=M_{1} \oplus M_{2}$, and $N=N_{1} \oplus N_{2}$. We will characterize the weakly 2 -absorbing submodules of the R-module M, and some applications of this study are given in the next section.

Lemma 5.1 Let K^{*} be a proper submodule of an R^{*}-module M^{*} and $I^{*} M^{*} \neq 0$, where I^{*} is an ideal of R^{*}. Then there exist $r \in I^{*}$ and $x \in\left(M^{*} \backslash K^{*}\right)$ with $r x \neq 0$.
Proof If $I^{*} x=0$ for each $x \in\left(M^{*} \backslash K^{*}\right)$, then $\left(M^{*} \backslash K^{*}\right) \subseteq\left(0:_{M^{*}} I^{*}\right)$. Therefore, $M^{*}=K^{*} \cup\left(M^{*} \backslash K^{*}\right) \subseteq$ $K^{*} \cup\left(0:_{M^{*}} I^{*}\right)$, and since $M^{*} \nsubseteq K^{*}, M^{*} \subseteq\left(0:_{M^{*}} I^{*}\right)$, that is $I^{*} M^{*}=0$, which is a contradiction.

Lemma 5.2 [10, Theorem 2.5] Let N be a weakly 2-absorbing submodule of an R-module M, which is not 2 -absorbing. Then $(N: M)^{2} N=0$, and particularly $(N: M)^{3} \subseteq \operatorname{Ann}(M)$.

The weakly 2-absorbing submodules of the form $N_{1} \oplus M_{2}$ are characterized in part (a) of the following result.

Lemma 5.3 Let $0 \neq M_{1}$ and $0 \neq M_{2}$.
(a) The following are equivalent:
(i) $N_{1} \oplus M_{2}$ is a weakly 2 -absorbing submodule of the R-module M;
(ii) $N_{1} \oplus M_{2}$ is a 2-absorbing submodule of the R-module M;
(iii) N_{1} is a 2-absorbing submodule of M_{1}.
(b) If $N=N_{1} \oplus N_{2}$ is a weakly 2-absorbing submodule of $M, N_{1} \neq M_{1}$, and $N_{2} \neq M_{2}$, then N_{1} is a weak prime submodule of M_{1}; moreover, if $0 \neq N_{2}$, then N_{1} is a weakly prime submodule of M_{1}.
(c) If N_{1} is a prime submodule of M_{1} and N_{2} is a prime submodule of M_{2}, then $N=N_{1} \oplus N_{2}$ is a 2 -absorbing submodule of M.
(d) If $N=N_{1} \oplus N_{2}$ is a weakly 2 -absorbing submodule of M and $N_{1} \neq M_{1}, N_{2} \neq M_{2}$, and $\left(N_{2}: M_{2}\right) M_{2} \neq 0$, then N_{1} is a prime submodule of M_{1}.

Proof (a)(i) \Rightarrow (ii) If $K=N_{1} \oplus M_{2}$ is not 2-absorbing, then by $5.2,(0,0)=(K: M)^{2} K=\left(\left(N_{1}: M_{1}\right) \oplus\left(M_{2}\right.\right.$:
$\left.\left.M_{2}\right)\right)^{2}\left(N_{1} \oplus M_{2}\right)=\left(\left(N_{1}: M_{1}\right)^{2} N_{1}\right) \oplus M_{2}$ and so $M_{2}=0$, which is a contradiction.
(ii) \Rightarrow (iii) The proof is clear.
(iii) \Rightarrow (i) It is straightforward.
(b) Let $0 \neq r x \in N_{1}$, where $r \in R$ and $x \in M_{1}$. Consider $z \in M_{2} \backslash N_{2}$ Then $(0,0) \neq(1,0)(r, 1)(x, z) \in N$ and as N is weakly 2 -absorbing, $(1,0)(r, 1) \in(N: M)$ or $(r, 1)(x, z) \in N$ or $(1,0)(x, z) \in N$. Note that $z \in M_{2} \backslash N_{2},(r, 1)(x, z) \notin N ;$ thus $(1,0)(r, 1) \in(N: M)=\left(N_{1}: M_{1}\right) \oplus\left(N_{2}: M_{2}\right)$ or $(1,0)(x, z) \in N$. Therefore, $r \in\left(N_{1}: M\right)$ or $x \in N_{1}$. This shows that N_{1} is a weak prime submodule of M_{1}.

Now let $0 \neq N_{2}$. Consider $a_{1}, b_{1} \in R_{1}$ and $y_{1} \in M_{1}$ with $a_{1} b_{1} y_{1} \in N_{1}$, and let $0 \neq y_{2} \in N_{2}$. Then $(0,0) \neq\left(a_{1}, 1\right)\left(b_{1}, 1\right)\left(y_{1}, y_{2}\right) \in N$, and so $\left(a_{1}, 1\right)\left(b_{1}, 1\right) \in(N: M)$ or $\left(a_{1}, 1\right)\left(y_{1}, y_{2}\right) \in N$ or $\left(b_{1}, 1\right)\left(y_{1}, y_{2}\right) \in N$. If $\left(a_{1}, 1\right)\left(b_{1}, 1\right) \in(N: M)$, then $1 \in\left(N_{2}: M_{2}\right)$, which is impossible. If $\left(a_{1}, 1\right)\left(y_{1}, y_{2}\right) \in N$ or $\left(b_{1}, 1\right)\left(y_{1}, y_{2}\right) \in N$, then $a_{1} y_{1} \in N_{1}$ or $b_{1} y_{1} \in N_{1}$ as required.
(c) Suppose that $(a, c),(b, d) \in R$ and $(m, n) \in M$ with $(a, c)(b, d)(m, n) \in N=N_{1} \oplus N_{2}$. Then $a b m \in N_{1}$. Therefore, $a \in\left(N_{1}: M_{1}\right)$ or $b \in\left(N_{1}: M_{1}\right)$ or $m \in N_{1}$. Moreover, since $c d n \in N_{2}, c \in\left(N_{2}: M_{2}\right)$ or $d \in\left(N_{2}: M_{2}\right)$ or $n \in N_{2}$. In any of these cases we get $(a, c)(b, d) \in(N: M)$ or $(a, c)(m, n) \in N$ or $(b, d)(m, n) \in N$, which completes the proof.
(d) Let $r x \in N_{1}$, where $r \in R$ and $x \in M_{1}$. We show that $r \in\left(N_{1}: M\right)$ or $x \in N_{1}$.

Apply 5.1 for $I^{*}=\left(N_{2}: M_{2}\right), K^{*}=N_{2}$, and $M^{*}=M_{2}$ to see that there exist $s \in\left(N_{2}: M_{2}\right)$ and $z \in\left(M_{2} \backslash N_{2}\right)$ with $s z \neq 0$.

Note that $(0,0) \neq(1, s)(r, 1)(x, z) \in N$ and since N is weakly 2 -absorbing, $(1, s)(r, 1) \in(N: M)$ or $(r, 1)(x, z) \in N$ or $(1, s)(x, z) \in N$. As $z \in M_{2} \backslash N_{2},(r, 1)(x, z) \notin N$; hence $(1, s)(r, 1) \in(N: M)=\left(N_{1}\right.$: $\left.M_{1}\right) \oplus\left(N_{2}: M_{2}\right)$ or $(1, s)(x, z) \in N$. This implies that $r \in\left(N_{1}: M\right)$ or $x \in N_{1}$.

The weakly 2 -absorbing submodules of the form $N_{1} \oplus 0$ are characterized in the following.
Theorem 5.4 Let $N_{1} \neq M_{1}$ and $0 \neq M_{2}$. The submodule $N_{1} \oplus 0$ is a weakly 2 -absorbing submodule of M if and only if one of the following holds:
(i) N_{1} is a weak prime submodule of M_{1} and 0 is a prime submodule of M_{2} and $0 \neq\left(N_{1}: M_{1}\right) M_{1}$.
(ii) N_{1} is a weak prime submodule of M_{1} and 0 is a weakly prime submodule of M_{2} and $0=\left(N_{1}: M_{1}\right) M_{1}$.
(iii) $N_{1}=0$.

Moreover if (i) holds, then $N_{1} \oplus 0$ is 2-absorbing if and only if N_{1} is a prime submodule of M_{1}.
Proof (\Longrightarrow) Let $N_{1} \oplus 0$ be a weakly 2 -absorbing submodule of M and $0 \neq N_{1}$. Then by $5.3(\mathbf{b}), N_{1}$ is weak prime.

If $0 \neq\left(N_{1}: M_{1}\right) M_{1}$, then by $5.3(\mathbf{d})$, the zero submodule of M_{2} is prime. Otherwise since $0 \neq N_{1}$, then by $5.3(\mathbf{b})$, the zero submodule of M_{2} is weakly prime.
(\Longleftarrow) Assume that $(0,0) \neq(a, b)(c, d)(x, y) \in N_{1} \oplus 0$, where $(a, b),(c, d) \in R,(x, y) \in M$. Then $0 \neq a c x \in N_{1}$ and $b d y=0$. Since N_{1} is weak prime, $a \in\left(N_{1}: M_{1}\right)$ or $c \in\left(N_{1}: M_{1}\right)$ or $x \in N_{1}$. First suppose that (i) is satisfied.

As 0 is a prime submodule of M_{2}, we have $b \in\left(0: M_{2}\right)$ or $d \in\left(0: M_{2}\right)$ or $y=0$.
Now it is easy to see that in any of the above cases $(a, b)(c, d) \in\left(N_{1} \oplus 0: M\right)$ or $(a, b)(x, y) \in N_{1} \oplus 0$ or $(c, d)(x, y) \in N_{1} \oplus 0$. Consequently $N_{1} \oplus 0$ is weakly 2 -absorbing.

Now assume that (ii) holds. If $a \in\left(N_{1}: M_{1}\right)$ or $c \in\left(N_{1}: M_{1}\right)$, then $a c x \in\left(N_{1}: M_{1}\right) M_{1}=0$, and so $a c x=0$, which is impossible. Thus $x \in N_{1}$. Since $b d y=0$ and 0 is weakly prime, $b y=0$ or $d y=0$. Therefore, either $(a, b)(x, y) \in N_{1} \oplus 0$ or $(c, d)(x, y) \in N_{1} \oplus 0$.

To prove the second part of this theorem, assume that (i) holds. Then N_{1} is a weak prime submodule of M_{1} and 0 is a prime submodule of M_{2}.

If N_{1} is not a prime submodule, then for some $t \in R_{1} \backslash\left(N_{1}: M_{1}\right)$, and $z \in M_{1} \backslash N_{1}$, we have $t z \in N_{1}$. Now choose $0 \neq u \in M_{2}$. Then $(0,0)=(1,0)(t, 1)(z, u) \in N_{1} \oplus 0$ and $(1,0)(t, 1) \notin\left(N_{1} \oplus 0: M\right)$ and $(t, 1)(z, u) \notin N_{1} \oplus 0$; also $(1,0)(z, u) \notin N_{1} \oplus 0$. Therefore, $N_{1} \oplus 0$ is not 2 -absorbing.

Conversely if N_{1} is a prime submodule of M_{1}, then as 0 is prime, by $5.3(\mathbf{c}), N_{1} \oplus 0$ is 2 -absorbing.

Example 4 It is easy to see that if $\left(R_{1}, \mathfrak{M}\right)$ is a quasi-local ring with $\mathfrak{M}^{2}=0$, then every proper ideal of R_{1} is weak prime. Particularly if $R_{1}=\frac{K[X, Y]}{\left\langle X^{2}, X Y, Y^{2}\right\rangle}$, where K is a field, then $I_{1}=\frac{\left\langle X, Y^{2}\right\rangle}{\left\langle X^{2}, X Y, Y^{2}\right\rangle}$ is a weak prime ideal of R_{1}, but it is not prime. Therefore, by 5.4 the ideal $I_{1} \oplus 0$ is a weakly 2 -absorbing ideal of the ring $R_{1} \oplus K$, but it is not a 2-absorbing ideal.

Theorem 5.5 Let $0 \neq N_{1} \neq M_{1}$ and $0 \neq N_{2} \neq M_{2}$. Then N is a weakly 2-absorbing submodule of M if and only if for each $i=1,2$ one of the following holds:
(1) $0 \neq\left(N_{i}: M_{i}\right) M_{i}$ and N_{3-i} is a prime submodule of M_{3-i}.
(2) $0=\left(N_{i}: M_{i}\right) M_{i}$ and N_{3-i} is a weak prime and a weakly prime submodule of M_{3-i}.

Proof (\Longrightarrow) Suppose that N is a weakly 2 -absorbing submodule of M. According to $5.3(\mathbf{b}), N_{3-i}$ is a weak prime and a weakly prime submodule of M_{3-i} for each $i=1,2$.

Now if $0 \neq\left(N_{i}: M_{i}\right) M_{i}$, then by $5.3(\mathbf{d}), N_{3-i}$ is a prime submodule of M_{3-i}.
(\Longleftarrow) First suppose that (1) holds for $i=1,2$. Then by $5.3(\mathbf{c}), N$ is a weakly 2 -absorbing submodule of M.

Let $(0,0) \neq\left(r_{1}, r_{2}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}\right)\left(m_{1}, m_{2}\right) \in N=N_{1} \oplus N_{2}$, where $\left(r_{1}, r_{2}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \in R$ and $\left(m_{1}, m_{2}\right) \in M$. Then $r_{i} r_{i}^{\prime} m_{i} \in N_{i}$ for $i=1,2$.

Now assume that (2) holds for $i=1,2$. Without loss of generality we can suppose that $0 \neq r_{1} r_{1}^{\prime} m_{1}$. Since N_{1} is weak prime, $r_{1} \in\left(N_{1}: M_{1}\right)$ or $r_{1}^{\prime} \in\left(N_{1}: M_{1}\right)$ or $m_{1} \in N_{1}$. If $r_{1} \in\left(N_{1}: M_{1}\right)$ or $r_{1}^{\prime} \in\left(N_{1}: M_{1}\right)$, then $r_{1} r_{1}^{\prime} m_{1} \in\left(N_{1}: M_{1}\right) M_{1}=0$, which is impossible; hence $m_{1} \in N_{1}$. Also note that $r_{2} r_{2}^{\prime} m_{2} \in N_{2}$ and N_{2} is weakly prime; then $r_{2} m_{2} \in N_{2}$ or $r_{2}^{\prime} m_{2} \in N_{2}$. Therefore, either $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in N$ or $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)\left(m_{1}, m_{2}\right) \in N$, as required.

Now let (1) hold for $i=1$ and (2) hold for $i=2$. Note that $r_{2} r_{2}^{\prime} m_{2} \in N_{2}$ and N_{2} is prime, then $r_{2} \in\left(N_{2}: M_{2}\right)$ or $r_{2}^{\prime} \in\left(N_{2}: M_{2}\right)$ or $m_{2} \in N_{2}$. We have one of the following two cases:

Case 1. $0 \neq r_{1} r_{1}^{\prime} m_{1}$. As N_{1} is weak prime, $r_{1} \in\left(N_{1}: M_{1}\right)$ or $r_{1}^{\prime} \in\left(N_{1}: M_{1}\right)$ or $m_{1} \in N_{1}$. Now it is easy to see that in any of the above cases $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in N$ or $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)\left(m_{1}, m_{2}\right) \in N$ or $\left(r_{1}, r_{2}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \in(N: M)$, as required.

Case 2. $0 \neq r_{2} r_{2}^{\prime} m_{2}$. If $r_{2} \in\left(N_{2}: M_{2}\right)$ or $r_{2}^{\prime} \in\left(N_{2}: M_{2}\right)$, then $r_{2} r_{2}^{\prime} m_{2} \in\left(N_{2}: M_{2}\right) M_{2}=0$, which is impossible; thus $m_{2} \in N_{2}$. As $r_{1} r_{1}^{\prime} m_{1} \in N_{1}$ and N_{1} is weakly prime, either $r_{1} m_{1} \in N_{1}$ or $r_{1}^{\prime} m_{1} \in N_{1}$, and so either $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in N$ or $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)\left(m_{1}, m_{2}\right) \in N$.

6. Modules whose proper submodules are all weakly 2-absorbing

A well-known result states that if every proper ideal of a commutative ring with identity R is a prime ideal, then R is a field. As a generalization, in [3, Proposition 2.1] it is proved that if every proper submodule of a nontorsion R-module module M is a prime submodule of M, then R is a field. In this section we study the modules whose proper submodules are all weakly 2 -absorbing.

Theorem 6.1 Let M be a nonzero R-module such that every proper submodule of M is weakly 2-absorbing. Then R has at most three maximal ideals containing Ann(M).
Proof Let N be a nonzero finitely generated submodule of M. We prove that R has at most three maximal ideals containing $\operatorname{Ann}(N)$. By 4.5, every proper submodule of N is a weakly 2 -absorbing submodule of N. Let $\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}$, and \mathfrak{M}_{4} be distinct maximal ideals of R containing $\operatorname{Ann}(N)$. Put $J=\mathfrak{M}_{1} \cap \mathfrak{M}_{2} \cap \mathfrak{M}_{3}$ and $N^{\prime}=J N$.

Evidently for each $i, \mathfrak{M}_{i} N \neq N$; otherwise by Nakayama's lemma there exists $t \in \mathfrak{M}_{i}$ with $(t-1) \in$ $\operatorname{Ann}(N) \subseteq \mathfrak{M}_{i}$, which is impossible. Now since $\mathfrak{M}_{i} \subseteq\left(\mathfrak{M}_{i} N: N\right)$, we get $\mathfrak{M}_{i}=\left(\mathfrak{M}_{i} N: N\right)$. Therefore, $J \subseteq\left(N^{\prime}: N\right) \subseteq \cap_{i=1}^{3}\left(\mathfrak{M}_{i} N: N\right)=J$, and so $\sqrt{\left(N^{\prime}: N\right)}=\sqrt{J}=J=\mathfrak{M}_{1} \cap \mathfrak{M}_{2} \cap \mathfrak{M}_{3}$. By [9, Section 2, Proposition 1(iii)], the radical ideal of a 2 -absorbing submodule is the intersection of at most 2 prime ideals; therefore, N^{\prime} is not a 2 -absorbing submodule of N. Hence by $5.2, J^{3}=\left(N^{\prime}: N\right)^{3} \subseteq \operatorname{Ann}(N) \subseteq \mathfrak{M}_{4}$, which implies that $\mathfrak{M}_{j}=\mathfrak{M}_{4}$ for some $1 \leq j \leq 3$, a contradiction. Thus R has at most three maximal ideals $\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}$ containing $\operatorname{Ann}(N)$.

Now if N^{*} is another nonzero finitely generated submodule of M, then by the same argument $\operatorname{Ann}\left(N^{*}\right)$ is contained in at most three maximal ideals, say $\mathfrak{M}_{1}^{*}, \mathfrak{M}_{2}^{*}, \mathfrak{M}_{3}^{*}$. Thus $\operatorname{Ann}\left(N+N^{*}\right)$ is contained in $\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}, \mathfrak{M}_{1}^{*}, \mathfrak{M}_{2}^{*}, \mathfrak{M}_{3}^{*}$, and since $N+N^{*}$ is finitely generated, $\left\{\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}\right\}=\left\{\mathfrak{M}_{1}^{*}, \mathfrak{M}_{2}^{*}, \mathfrak{M}_{3}^{*}\right\}$.

Hence R has at most three fixed maximal ideals $\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}$ such that for each nonzero finitely generated submodule L of M, we have $\operatorname{Ann}(L) \subseteq U=\mathfrak{M}_{1} \cup \mathfrak{M}_{2} \cup \mathfrak{M}_{3}$.

Now we prove that $J^{3} M=0$, where $J=\mathfrak{M}_{1} \cap \mathfrak{M}_{2} \cap \mathfrak{M}_{3}$.
On the contrary let $a, b, c \in J$ and $x \in M$ such that $a b c x \neq 0$. If $R a b c x=M$, then $M=R a b c x \subseteq R c x$ and so $R a b c x=R c x$. Then there exists $s \in R$ with $(1-s a b) c x=0$, and since $0 \neq c x,(1-s a b) \in A n n(c x) \subseteq U$, which is impossible. Thus $R a b c x \neq M$.

Note that $0 \neq a b c x \in R a b c x$ and since $R a b c x$ is weakly 2 -absorbing, $a c x \in R a b c x$ or $b c x \in R a b c x$ or $a b \in(R a b c x: M)$.

If $a c x \in R a b c x$, then for some $r \in R, a c x=r a b c x$ and so $(1-r b) a c x=0$ and note that $0 \neq a c x$; thus $(1-r b) \in \operatorname{Ann}(a c x) \subseteq U$, which is a contradiction. Consequently $a c x \notin R a b c x$ and similarly $b c x \notin R a b c x$. Furthermore, if $a b \in(R a b c x: M)$, then for some $t \in R, a b x=t a b c x$ and so $(1-t c) a b x=0$ and we get $(1-t c) \in \operatorname{Ann}(a b x) \subseteq U$, which is impossible. Whence $J^{3} \subseteq \operatorname{Ann}(M)$.

Now if $\operatorname{Ann}(M)$ is contained in a maximal ideal \mathfrak{M}^{*}, then $\left(\mathfrak{M}_{1} \cap \mathfrak{M}_{2} \cap \mathfrak{M}_{3}\right)^{3}=J^{3} \subseteq \operatorname{Ann}(M) \subseteq \mathfrak{M}^{*}$. This implies that $\mathfrak{M}_{j}=\mathfrak{M}^{*}$ for some $1 \leq j \leq 3$, which completes the proof.

Recall that $J(R)$ is the intersection of all maximal ideals of R.
Corollary 6.2 Let M be a nonzero R-module such that every proper submodule of M is weakly 2-absorbing. Then $(J(R))^{3} M=0$.

Proof According to $(*)$ in the proof of $6.1, J^{3} M=0$, and evidently $J(R) \subseteq J$.

Theorem 6.3 Let $\left(R_{1}, \mathfrak{M}_{1}\right),\left(R_{2}, \mathfrak{M}_{2}\right)$ be quasi-local rings and $R=R_{1} \oplus R_{2}$. Then the following are equivalent:
(i) There exists a faithful R-module M such that every proper submodule of M is weakly 2-absorbing;
(ii) $\mathfrak{M}_{1}^{2}=0, \mathfrak{M}_{2}^{2}=0$; furthermore, R_{1} or R_{2} is a field.

Moreover:

(a) If R_{2} is not a field and (i) holds, then $(1,0) M \cong R_{1}$.
(b) If R_{1} is not a field and (i) holds, then $(0,1) M \cong R_{2}$.
(c) If R_{1} and R_{2} are fields, then every proper submodule of any arbitrary R-module is weakly 2-absorbing.

Proof (i) \Longrightarrow (ii) Put $M_{1}=(1,0) M$ and $M_{2}=(0,1) M$. Since M is faithful, $M_{1}, M_{2} \neq 0$. One can easily see that M_{1} is a faithful R_{1}-module with the multiplication $r_{1}((1,0) m)=\left(r_{1}, 0\right) m$ for each $r_{1} \in R_{1}$ and $m \in M$. Similarly M_{2} is a faithful R_{2}-module and $M \cong M_{1} \oplus M_{2}$ as R-modules.

To show that $\mathfrak{M}_{1}^{2}=0$, let $a, b \in \mathfrak{M}_{1}$ with $0 \neq a b$. As M_{1} is faithful, $0 \neq a b M_{1}$ and so for some $x \in M_{1}$, $0 \neq a b x$.

Note that $0 \neq M_{2}$ and so $R_{1} a b x \oplus 0$ is a proper submodule of M; thus it is weakly 2 -absorbing. Now by $5.3 \mathbf{(b)}, R_{1} a b x$ is a weak prime submodule of M_{1}, and as $0 \neq a b x \in R_{1} a b x$, we have $a \in\left(R_{1} a b x: M_{1}\right)$ or $b x \in R_{1} a b x$. Hence $a x \in R_{1} a b x$ or $b x \in R_{1} a b x$.

Therefore, either $a x=r a b x$ for some $r \in R_{1}$, or $b x=s a b x$ for some $s \in R_{1}$. As $(1-r b)$ and $(1-s a)$ are unit, either $a x=0$ or $b x=0$, which is a contradiction. Then we conclude that $\mathfrak{M}_{1}^{2}=0$. With the same argument we get $\mathfrak{M}_{2}^{2}=0$.

If R_{1} is not a field, then $\mathfrak{M}_{1} \neq 0$ and as M_{1} is faithful, $\mathfrak{M}_{1} M_{1} \neq 0$. Then $0 \neq m_{1} x_{1}$ for some $m_{1} \in \mathfrak{M}_{1}, x_{1} \in M_{1}$. Now we show that $\mathfrak{M}_{2} M_{2}=0$. Let $x_{2} \in M_{2}$ and $m_{2} \in \mathfrak{M}_{2}$. Since $\mathfrak{M}_{2}^{2}=0$, we have $m_{2}^{2}=0$.

If $\mathfrak{M}_{1} M_{1}=M_{1}$, then as $0=\mathfrak{M}_{1}^{2}$, we get $0=\mathfrak{M}_{1}^{2} M=\mathfrak{M}_{1} M_{1}=M_{1}$, which is impossible; thus $\mathfrak{M}_{1} M_{1} \neq M_{1}$.

Put $N=\mathfrak{M}_{1} M_{1} \oplus 0$. Note that $(0,0) \neq\left(1, m_{2}\right)\left(1, m_{2}\right)\left(m_{1} x_{1}, x_{2}\right) \in N$. As N is weakly 2-absorbing, either $\left(1, m_{2}\right)\left(1, m_{2}\right) \in(N: M)$ or $\left(1, m_{2}\right)\left(m_{1} x_{1}, x_{2}\right) \in N$, and as $\mathfrak{M}_{1} M_{1} \neq M_{1},\left(1, m_{2}\right)\left(1, m_{2}\right) \notin(N: M)$ and then $\left(1, m_{2}\right)\left(m_{1} x_{1}, x_{2}\right) \in N$, and so $0=m_{2} x_{2}$. Thus $\mathfrak{M}_{2} M_{2}=0$, that is $\mathfrak{M}_{2} \subseteq \operatorname{Ann}\left(M_{2}\right)=0$. Hence R_{2} is a field.
(ii) \Longrightarrow (i) Put $M=R$. Then the proof is given by [5, Theorem 3.4].
(a) Now if R_{2} is not a field and (i) holds, then we show that $M_{1} \cong R_{1}$.

If for some $y_{1} \in R_{1}, M_{1}=R y_{1}$, then as $0=\operatorname{Ann}\left(M_{1}\right)=\operatorname{Ann}\left(y_{1}\right)$, we get $M_{1}=R y_{1} \cong \frac{R}{\operatorname{Ann}\left(y_{1}\right)} \cong R_{1}$. Now assume that $M_{1} \neq R_{1} y_{1}$ for each $0 \neq y_{1} \in M_{1}$. Since R_{2} is not a field and M_{2} is faithful, $0 \neq \mathfrak{M}_{2} M_{2}$ and so for some $t_{2} \in \mathfrak{M}_{2}$ and $y_{2} \in M_{2}, 0 \neq t_{2} y_{2}$. As $\mathfrak{M}_{2}^{2}=0, t_{2}^{2}=0$ and so $(0,0) \neq\left(1, t_{2}\right)\left(1, t_{2}\right)\left(y_{1}, y_{2}\right) \in R_{1} y_{1} \oplus 0$. Note that $R_{1} y_{1} \neq M_{1}$ and so $\left(1, t_{2}\right)\left(1, t_{2}\right) \notin\left(R_{1} y_{1} \oplus 0: M\right)$ and since $R_{1} y_{1} \oplus 0$ is weakly 2-absorbing, $\left(1, t_{2}\right)\left(y_{1}, y_{2}\right) \in R_{1} y_{1} \oplus 0$, which is impossible because $t_{2} y_{2} \neq 0$. Consequently $M_{1} \cong R_{1}$.
(b) The proof is similar to that of (a).
(c) Let R_{1} and R_{2} be two fields and M be an arbitrary R-module. Then $M \cong M_{1} \oplus M_{2}$, where M_{i} is an R_{i}-module for each $i=1,2$. Furthermore, every proper submodule of M is of the form $N=N_{1} \oplus N_{2}$, where N_{i} is a submodule of M_{i} for each $i=1,2$ and at least one of N_{1} or N_{2} is a proper submodule.

Note that every proper subspace of a vector space is prime and so for each $i=1,2$ either $N_{i}=M_{i}$ or N_{i} is a prime submodule of M_{i}. Hence, by $5.3(\mathbf{a})$ and $5.3(\mathbf{c})$, the submodule N is a weakly 2 -absorbing submodule of M.

Proposition 6.4 Let $R=R_{1} \oplus R_{2} \oplus R_{3}$, where R_{1}, R_{2}, and R_{3} are three rings. If M is a faithful R-module such that every proper submodule of M is weakly 2 -absorbing, then R_{1}, R_{2}, R_{3} are fields and $M \cong R$.

Proof Put $M_{1}=(1,0,0) M, M_{2}=(0,1,0) M$, and $M_{3}=(0,0,1) M$. Then it is easy to see that M_{i} is an R_{i}-module for each $i=1,2,3$, and also $M \cong M_{1} \oplus M_{2} \oplus M_{3}$ as R-modules. Since M is faithful, the R_{i}-module M_{i} is faithful, for each $i=1,2,3$.

Let \mathfrak{M}_{i} be a maximal ideal of R_{i} for each $i=1,2,3$. Evidently $\mathfrak{M}_{1} \oplus R_{2} \oplus R_{3}$ and $R_{1} \oplus \mathfrak{M}_{2} \oplus R_{3}$ and $R_{1} \oplus R_{2} \oplus \mathfrak{M}_{3}$ are the the maximal ideals of R and by $6.1, R$ has at most three maximal ideals; therefore, $\left(R_{1}, \mathfrak{M}_{1}\right)$ and $\left(R_{2}, \mathfrak{M}_{2}\right)$ and $\left(R_{3}, \mathfrak{M}_{3}\right)$ are quasi-local rings, and $J(R)=\mathfrak{M}_{1} \oplus \mathfrak{M}_{2} \oplus \mathfrak{M}_{3}$.

According to $6.2,(J(R))^{3} M=0$ and since M is faithful, $(J(R))^{3}=0$; hence $\mathfrak{M}_{i}^{3}=0$ for each $i=1,2,3$. If $\mathfrak{M}_{i} M_{i}=M_{i}$, then $0=\mathfrak{M}_{i}^{3} M_{i}=M_{i}$, which is a contradiction. Hence $\mathfrak{M}_{i} M_{i} \neq M_{i}$ for each $i=1,2,3$.

If on the contrary $0 \neq \mathfrak{M}_{1}$, then $0 \neq \mathfrak{M}_{1} M_{1}$, because M_{1} is faithful. Now apply 5.1 , for $I^{*}=\mathfrak{M}_{1}, K^{*}=$ $\mathfrak{M}_{1} M_{1}$, and $M^{*}=M_{1}$ to see that there exist $x_{1} \in\left(M_{1} \backslash \mathfrak{M}_{1} M_{1}\right)$ and $a_{1} \in \mathfrak{M}_{1}$ with $a_{1} x_{1} \neq 0$.

For $N=\mathfrak{M}_{1} M_{1} \oplus 0 \oplus 0$ and $0 \neq x_{2} \in M_{2},(0,0,0) \neq\left(a_{1}, 1,1\right)(1,0,1)\left(x_{1}, x_{2}, 0\right) \in N$, and N is a weakly 2-absorbing submodule of M and $\left(a_{1}, 1,1\right)\left(x_{1}, x_{2}, 0\right)=\left(a_{1} x_{1}, x_{2}, 0\right) \notin N,(1,0,1)\left(x_{1}, x_{2}, 0\right)=\left(x_{1}, 0,0\right) \notin N$, and so $\left(a_{1}, 0,1\right)=\left(a_{1}, 1,1\right)(1,0,1) \in(N: M)$. Hence $M_{3}=(0,0,1) M=\left(a_{1}, 0,1\right)(0,0,1) M \subseteq N$, and this implies that $M_{3}=0$, which is impossible. Therefore, $0=\mathfrak{M}_{1}$, that is R_{1} is a field. Similarly R_{2} and R_{3} are fields.

Now we prove that $M \cong R$. If $M_{1} \neq R_{1}$, then since M_{1} is a nonzero vector space over the field R_{1}, there exists a nontrivial submodule (subspace) K_{1} of M_{1}. Consider $(0,0,0) \neq(1,0,1)(1,1,0)\left(x_{1}, x_{2}, x_{3}\right) \in$ $K_{1} \oplus 0 \oplus 0=K$, where $0 \neq x_{1} \in K_{1}$ and $0 \neq x_{2} \in M_{2}$ and $0 \neq x_{3} \in M_{3}$.

Note that $(1,0,1)\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0, x_{3}\right) \notin K$ and $(1,1,0)\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, 0\right) \notin K$, and $(1,0,1)(1,1,0)=$ $(1,0,0) \notin(K: M)$. Thus the proper submodule K is not a weakly 2 -absorbing submodule of M, which is a contradiction. Therefore, $M_{1} \cong R_{1}$ and similarly $M_{2} \cong R_{2}$ and $M_{3} \cong R_{3}$. Thus $M \cong R$.

Theorem 6.5 There exists a nonzero faithful R-module M such that every proper submodule of M is weakly 2 -absorbing if and only if one of the following statements holds:
(i) (R, \mathfrak{M}) is a quasi-local ring with $\mathfrak{M}^{3}=0$.
(ii) $R \cong R_{1} \oplus R_{2}$, where $\left(R_{1}, \mathfrak{M}\right)$ is a quasi-local ring with $\mathfrak{M}^{2}=0$ and R_{2} is a field.
(iii) $R \cong R_{1} \oplus R_{2} \oplus R_{3}$, where R_{1}, R_{2}, R_{3} are fields.

Proof First suppose that there exists a nonzero faithful R-module M such that every proper submodule of M is weakly 2 -absorbing. By $6.2,(J(R))^{3}=0$.

By $6.1, R$ has at most three maximal ideals. We consider the following three cases.
Case 1. The ring R has only one maximal ideal, say \mathfrak{M}. Then in this case $\mathfrak{M}^{3}=\left((J(R))^{3}\right)=0$.
Case 2. The ring R has two maximal ideals $\mathfrak{M}_{1}, \mathfrak{M}_{2}$. Note that $\mathfrak{M}_{1}^{3} \cap \mathfrak{M}_{2}^{3}=(J(R))^{3}=0$. Therefore, $R \cong \frac{R}{\mathfrak{M}_{1}^{3}} \oplus \frac{R}{\mathfrak{M}_{2}^{3}}$ and clearly $\left(R_{1}, \overline{\mathfrak{M}_{1}}\right)$ and $\left(R_{2}, \overline{\mathfrak{M}_{2}}\right)$ are quasi-local rings, where $R_{1}=\frac{R}{\mathfrak{M}_{1}^{3}}, R_{2}=\frac{R}{\mathfrak{M}_{2}^{3}}, \overline{\mathfrak{M}_{1}}=$ $\frac{\mathfrak{M}_{1}}{\mathfrak{M}_{1}^{3}}, \overline{\mathfrak{M}_{2}}=\frac{\mathfrak{M}_{2}}{\mathfrak{M}_{2}^{3}}$. By $6.3((\mathrm{i}) \Longrightarrow(\mathrm{ii})),{\overline{\mathfrak{M}_{1}}}^{2}=0$ and ${\overline{\mathfrak{M}_{2}}}^{2}=0$ and R_{1} or R_{2} is a field.

Case 3. The ring R has three maximal ideals $\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}$. Again since $(J(R))^{3}=\mathfrak{M}_{1}^{3} \cap \mathfrak{M}_{2}^{3} \cap \mathfrak{M}_{2}^{3}=0$, clearly $R \cong \frac{R}{\mathfrak{M}_{1}^{3}} \oplus \frac{R}{\mathfrak{M}_{2}^{3}} \oplus \frac{R}{\mathfrak{M}_{3}^{3}}$. Therefore, by $6.4, \frac{R}{\mathfrak{M}_{1}^{3}}, \frac{R}{\mathfrak{M}_{2}^{3}}, \frac{R}{\mathfrak{M}_{3}^{3}}$ are fields.

For proving the converse of this theorem, put $M=R$, and apply [5, Theorem 3.7].

Acknowledgment

The authors thank the referee for the comments and suggestions on this paper.

References

[1] Anderson DD, Smith E. Weakly prime ideals. Houston J Math 2003; 29: 831-840.
[2] Azizi A. Prime submodules and flat modules. Acta Math Sinica 2007; 23: 147-152.
[3] Azizi A. Weak multiplication modules. Czech Math J 2003; 53: 529-534.
[4] Badawi A. On 2-absorbing ideals of commutative rings. Bull Austral Math Soc 2007; 75: 417-429.
[5] Badawi A, Yousefian Darani A. On weakly 2-absorbing ideals of commutative rings. Houston J Math 2013; 39: 441-452.
[6] Behboodi M, Koohy H. Weakly prime submodules. Vietnam J Math 2004; 32: 185-195.
[7] Lu CP. Spectra of modules. Comm Algebra 1995; 23: 3741-3752.
[8] McCasland RL, Moore ME. Prime submodules. Comm Algebra 1992; 20: 1803-1817.
[9] Moradi S, Azizi A. 2-absorbing and n-weakly prime submodules. Miskolc Math Notes 2012; 13: 75--86.
[10] Yousefian Darani A, Soheilnia F. 2-absorbing and weakly 2-absorbing submodules. Thai J Math 2011; 9: 577-584.

[^0]: *Correspondence: aazizi@shirazu.ac.ir
 2010 AMS Mathematics Subject Classification: 13A05, 13F05, 13C99, 13C13, 13E05, 13F15.

