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Abstract: Let A be an abelian category, and V ,W two additive full subcategories of A . We introduce and study the

VW -Gorenstein subcategory of A , which unifies many known notions, such as the Gorenstein category and the category

consisting of GC -projective (injective) modules, although they were defined in a different way. We also prove that the

Bass class with respect to a semidualizing module is one kind of VW -Gorenstein category. The connections between

VW -Gorenstein categories and Gorenstein categories are discussed. Some applications are given.

Key words: (V W -)Gorenstein categories, semidualizing modules, Gorenstein projective modules, Gorenstein injective

modules, Bass class

1. Introduction

As generalizations of projective and injective modules, Enochs and Jenda introduced in [6] the notions of

Gorenstein projective and injective modules. On the other hand, relative to a semidualizing module C , Holm

and Jørgensen introduced in [12] the notions of C -Gorenstein (GC - for short) projective and injective modules.

In the special case that C = R , these recover the notions of Gorenstein projective and injective modules,

respectively. They play an important role in relative homological algebra. Gorenstein projective and Gorenstein

injective modules and some related generalized versions have been studied by many authors; see [1,3,5–17] and

the literature listed in them.

Let A be an abelian category and W an additive full subcategory of A . Sather-Wagstaff et al. introduced

in [16] the Gorenstein category G(W), which unifies the following notions: the modules of G -dimension zero

[1]; Gorenstein projective and Gorenstein injective modules [6]; V -Gorenstein projective and V -Gorenstein

injective modules [8]. The authors proved that G(W) possesses many nice properties under the condition that

W is self-orthogonal.

Note that the Gorenstein category G(W) does not recover the GC -projective and GC -injective modules.

The complete resolutions used to define them are constructed by two different classes of modules. The main

purpose of this paper is to define a new Gorenstein category that encompasses all of the aforementioned notions,

and establish its homological properties in part by removing the restricted condition of orthogonality. This paper

is organized as follows.

In Section 2, we give some notation and terminology needed in the later sections.

In Section 3, the notion of the VW -Gorenstein category is introduced, which unifies the Gorenstein
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category, the category consisting of GC -projective (injective) modules, and the Bass class with respect to a

semidualizing module. This enables us to provide a unified approach for these notions. We then investigate the

homological properties of the VW -Gorenstein category, and show that many existing results are obtained as

particular cases of them.

In Section 4, we first establish the stability of the VW -Gorenstein category for any categories V and

W . As an application, more properties of the VW -Gorenstein category are obtained. The rest of this section

is devoted to discussing the connections between VW -Gorenstein categories with other notions, in particular,

with Gorenstein categories.

2. Preliminaries

Throughout this paper, A is an abelian category. We use the term ‘subcategory’ for an ‘additive full subcategory’

that is closed under isomorphisms, finite direct sums, and direct summands.

We fix subcategories V , W and X of A such that V , W ⊆ X . Write V ⊥ W if Ext i⩾1
A (V,W ) = 0 for

each object V in V and each object W in W . If W ⊥ W , W is called self-orthogonal. For an object A in

A , write A ∈ ⊥X (A ∈ X⊥ ) if Ext i⩾1
A (A,X) = 0 (resp. Ext i⩾1

A (X,A) = 0) for each object X in X .

Definition 2.1 ([16]) We say that W is a cogenerator for X if, for each object X in X , there exists an exact
sequence

0 → X → W → X ′ → 0,

with W ∈ W and X ′ ∈ X . The subcategory W is an injective cogenerator for X if W is a cogenerator for

X and X ⊥ W .

Generator and projective generator are defined dually.

Definition 2.2 Let A be an object in A . An exact sequence (of finite or infinite length):

· · · → X1 → X0 → A → 0

in A with each Xi ∈ X is called an X -resolution of A .

X -coresolutions of A are defined dually.

Recall that a sequence X in A is called HomA(X ,−)-exact if HomA(X,X) is exact for each object X

in X . Dually, it is HomA(−,X )-exact if HomA(X, X) is exact for each object X in X .

Definition 2.3 [3] An X -resolution is said to be X -proper (or simply proper) if it is HomA (X ,−)-exact. We

set

resX̃ = the subcategory of objects of A admitting a proper X -resolution.

Proper coresolutions are defined dually, and we set

coresX̃ = the subcategory of objects of A admitting a proper X -coresolution.

Definition 2.4 [16] The Gorenstein subcategory G(W) of A consists of all objects A isomorphic to Im(W0 →
W 0) for some exact sequence in W :

· · · → W1 → W0 → W 0 → W 1 → · · ·

which is both HomA(W,−)-exact and HomA(−,W)-exact.
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In this work, the rings R and S are associative with identity. We use Mod R (resp. Mod Sop ) to denote

the category of left R -modules (resp. right S -modules). We write P(R) (resp. I(R)) for the subcategory of

Mod R consisting of projective (resp. injective) R -modules. If X (R) is a subcategory of Mod R , then X f (R)

is the subcategory of finitely generated modules in X (R).

Definition 2.5 [13] An (R,S)-bimodule C = RCS is called semidualizing if it satisfies the following:

(a1) RC admits a (possibly unbounded) resolution by finitely generated projective left R -modules.

(a2) CS admits a (possibly unbounded) resolution by finitely generated projective right S -modules.

(b1) The map R → HomSop(C,C) is an isomorphism.

(b2) The map S → HomR(C,C) is an isomorphism.

(c1) Exti⩾1
R (C,C) = 0 .

(c2) Exti⩾1
Sop(C,C) = 0 .

Let RCS be a semidualizing bimodule, and set

PC(R) = the subcategory of left R -modules C ⊗S P , where SP is projective,

IC(S) =the subcategory of left S -modules HomR(C, I), where RI is injective.

Definition 2.6 [15] A module M ∈ Mod R is said to be GC -projective if there exists an exact sequence

· · · → P1 → P0 → C ⊗S P 0 → C ⊗S P 1 → · · ·

in Mod R with each Pi and P i projective such that M ∼= Im(P0 → C ⊗S P 0) and that the sequence is

HomR(−,PC(R))-exact.

GC -injective modules are defined dually.

In the case RCS = RRR , these are just the definitions of Gorenstein projective and Gorenstein injective

modules. Denoted by GPC(R) is the subcategory of GC -projective left R -modules.

Over a noetherian ring, the next category was introduced by Avramov and Foxby [2] when C is dualizing,

and by Christensen [4] for arbitrary C . In the non-noetherian setting, these definitions are from [13].

Definition 2.7 The Bass class BC(R) with respect to C is the subcategory of left R -modules N satisfying

(1) Exti⩾1
R (C,N) = 0 = TorSi⩾1(C,HomR(C,N)) and

(2) The natural evaluation map C ⊗S HomR(C,N) → N is an isomorphism.

3. V W -Gorenstein categories

Definition 3.1 An object A in A is said to be VW -Gorenstein, if there exists an exact sequence

X = · · · → V1 → V0 → W 0 → W 1 → · · ·

in X with each Vi in V and W i in W , such that A ∼= Im(V0 → W 0) and that X is HomA(V,−)-exact and

HomA(−,W)-exact. The exact sequence X is called a complete VW -resolution of A .
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We will denote the category consisting of VW -Gorenstein objects by G(VW).

Example 3.2 (1) If V = Pf (R) and W = Pf
C(R) , where R is a left and right Noetherian ring, then by [17,

Lemma 4.3], G(VW) coincides with the category consisting of left R -modules with GC -dimension zero defined

in [10].

(2) If V = P(R) and W = PC(R) , then G(VW) is the category of GC -projective left R -modules. If

V = IC(S) and W = I(S) , then G(VW) is the category of GC -injective left S -modules [15].

(3) Let V = W be a subcategory of A ; then G(VW) is the Gorenstein category G(W) defined in [16].

In addition, if W is a self-orthogonal subcategory of Mod R , then it coincides with the notion defined in [9].

The following result shows that the Bass class BC(R) is another example of VW -Gorenstein categories.

Proposition 3.3 If V = PC(R) and W = I(R) , then G(VW) coincides with the subcategory BC(R) of Mod

R .

Proof From [13, Theorem 6.1], it suffices to prove that a sequence Y of R -modules is HomR(PC(R),−)-exact

if and only if it is HomR(C,−)-exact. Indeed, if HomR(C ⊗S P,Y) is exact for any projective S -module P , in

particular, for P = S , HomR(C,Y) is exact. Conversely, the assertion follows from the adjoint isomorphism

HomR(C ⊗S P,Y) ∼= HomS(P,HomR(C,Y))

for any projective left S -module P . 2

Lemma 3.4 Let

X = · · · → V1 → V0 → W 0 → W 1 → · · ·

be a complete VW -resolution of A . Set Ai−1 = Im(Vi → Vi−1) and Ai−1 = Im (W i−1 → W i) for any i ≥ 1 .

(1) If V ⊥ W , then A , Ai ∈ ⊥W and A , Ai ∈ V⊥ for any i ≥ 0 . If further,

(2) V ⊥ V , then Ai ∈ V⊥ for any i ≥ 0 .

(3) W ⊥ W , then Ai ∈ ⊥W for any i ≥ 0 .

Proof Consider the short exact sequences: 0 → A0 → V0 → A → 0, and 0 → Ai+1 → Vi+1 → Ai → 0 for

any i ≥ 0.

(1) Because V⊥W , for any W ∈ W , by applying HomA(−,W ) to the first exact sequence, one has the

following long exact sequence

0 → HomA(A,W ) → HomA(V0,W ) → HomA(A0,W )

→ Ext1A(A,W ) → 0 → Ext1A(A0,W )

→ Ext2A(A,W ) → 0 → · · · .

Thus Ext1A(A,W ) = 0 since HomA(X,W) is exact, and Extj+1
A (A,W ) ∼= ExtjA(A0,W ) for any j ≥ 1. By a

similar argument to the second exact sequence, we have Extj⩾1
A (A,W ) = 0 and Extj⩾1

A (Ai,W ) = 0 for any

i ≥ 0 by dimension shifting. Therefore, A and all Ai ∈ ⊥W for any i ≥ 0. Dually, one has A and each Ai ∈
V⊥ for any i ≥ 0.
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(2) Since HomA(V,X) is exact and A ∈ V⊥ by (1), the assumption V⊥V implies that Ai ∈ V⊥ for

any i ≥ 0.

(3) By a similar argument to (2). 2

From the definition of G(VW), it is clear that G(VW) ⊆ res Ṽ ∩ coresW̃ .

Proposition 3.5 If V ⊥ W , then G(VW) = V⊥ ∩ ⊥W ∩ res Ṽ ∩ coresW̃ .

Proof Assume that A ∈ G(VW). From Lemma 3.4 (1), we get that A ∈ V⊥ ∩ ⊥W , and hence G(VW) ⊆

V⊥ ∩ ⊥W ∩ res Ṽ ∩ coresW̃ . The reverse containment is obvious. 2

The next result investigates when the kernels and cokernels in a complete VW -resolution are also in

G(VW).

Proposition 3.6 (1) If V is a projective generator for X and W ⊥ W , then every cokernel in the right part

of a complete VW -resolution is in G(VW) , and hence W is an injective cogenerator for G(VW) .

(2) If W is an injective cogenerator for X and V ⊥ V , then every kernel in the left part of a complete

VW -resolution is in G(VW) , and hence V is a projective generator for G(VW) .

Proof We prove only part (1); the proof of part (2) is dual. Let X be a complete VW -resolution of A and

write A0 = Coker(V0 → W 0), Ai = Coker(W i−1 → W i) for any i ≥ 1. Observe first that each Ai ∈ coresW̃
∩ V⊥ by Lemma 3.4 (1) for any i ≥ 0. Consider the short exact sequence 0 → A → W 0 → A0 → 0. Because

V is a projective generator for X and W 0 ∈ X , W 0 ∈ res Ṽ . From [14, Theorem 3.6 (5)], A0 ∈ res Ṽ . Since

W ⊥ W , A0 ∈ ⊥W by Lemma 3.4 (3). Thus A0 ∈ G(VW) by Proposition 3.5. Using a similar argument, we

get that each Ai is also in G(VW) for any i ≥ 1. 2

In the rest of this section, we will study two out of the three properties of VW -Gorenstein categories

within a short exact sequence.

Theorem 3.7 Let 0 → A′ → A → A′′ → 0 be an exact sequence in A with A′ and A′′ in G(VW) . If it is

HomA(V,−)-exact and HomA(−,W)-exact, then A is in G(VW) .

Proof Let X′ and X′′ be complete VW -resolutions for A′ and A′′ , respectively. One has a degreewise split

exact sequence of complexes 0 → X′ → X → X′′ → 0 from [16, Lemma 1.9]. Since the complexes X′ and X′′

are both HomA(V,−)-exact and HomA(−,W)-exact, so is X . Therefore, X is a complete VW -resolution of

A , and so A is in G(VW). 2

Corollary 3.8 If V ⊥ W , then G(VW) is closed under extensions.

Proof Let 0 → A′ → A → A′′ → 0 be an exact sequence in A with A′ and A′′ in G(VW). Since V ⊥ W ,

Proposition 3.5 implies that the exact sequence above is HomA(V,−)-exact and HomA(−,W)-exact. The con-

clusion follows from Theorem 3.7. 2

By Proposition 3.6 and Corollary 3.8, we get the following result, which may be of independent interest.

Proposition 3.9 (1) Suppose that V is a projective generator for X and W ⊥ W . If A ∈ A has a G(VW)-

coresolution that is HomA(−,W)-exact, then A has a proper W -coresolution.
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(2) Suppose that W is an injective cogenerator for X and V ⊥ V . If an object B in A has a G(VW)-

resolution that is HomA(V,−)-exact, then B has a proper V -resolution.

Proof (1) Let

0 → A → G0 → G1 → · · ·

be a G(VW)-coresolution of A , and Ai = Im(Gi → Gi+1) for any i ≥ 0. Consider the exact sequence

0 → A → G0 → A0 → 0. Because W is an injective cogenerator for G(VW) by Proposition 3.6 (1), and

G(VW) is closed under extensions by Corollary 3.8, there exist exact sequences 0 → A → W 0 → B0 → 0 and

0 → A0 → B0 → G → 0 with W 0 in W and G in G(VW) by [14, Theorem 5.3 (1)] for the case n = 1. Since

both A0 and G are in ⊥W , the exactness of the second sequence above yields B0 ∈ ⊥W , and hence the first

one is HomA(−,W)-exact. Consider the following pushout diagram:

0

��

0

��
0 // A0 //

��

B0

��

// G // 0

0 // G1

��

// G′

��

// G // 0

A1

��

A1

��
0 0

Because both G1 and G are in G(VW), so is G′ by Corollary 3.8 again. Since Ai ∈ ⊥W for any i ≥ 1 by

Lemma 3.4 (3), one gets a G(VW)-coresolution of B0

0 → B0 → G′ → G2 → G3 → · · · ,

which is also HomA(−,W)-exact. Repeating the proceeding process, we obtain the exact sequence

0 → A → W 0 → W 1 → · · ·

in A , with each W i in W and HomA(−,W) leaves it exact, as desired.

(2) The proof is dual to that of (1). 2

Theorem 3.10 Suppose

0 → A′ → A → A′′ → 0 (∗)

is an exact sequence in A , and it is HomA(V,−)-exact and HomA(−,W)-exact.

(1) If A′ , A are objects in G(VW) , then so is A′′ .

(2) If A , A′′ are objects in G(VW) , then so is A′ .

Proof (1) Let

· · · → V ′
1 → V ′

0 → (W 0)′ → (W 1)′ → · · ·

and

· · · → V1 → V0 → W 0 → W 1 → · · ·
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be complete VW -resolutions for A′ and A , respectively. Since the exact sequence (∗) is HomA(V,−)-exact and

HomA(−,W)-exact, [14, Theorem 3.6 (5)] gives rise to a proper V -resolution of A′′ , which is also HomA(−,W)-

exact by [14, Theorem 3.6 (2)]. On the other hand, from [14, Theorem 3.4 (1)], there exist two exact sequences:

0 → A′′ → W → W 1 ⊕ (W 2)′ → · · · → W i ⊕ (W i+1)′ → · · ·

and

0 → (W 0)′ → W 0 ⊕ (W 1)′ → W → 0 (∗∗)

with the first exact sequence both HomA(V,−)-exact by [14, Theorem 3.4 (2)] and HomA(−,W)-exact by [14,

Theorem 3.4 (3)]. We claim that W is an object in W . In fact, since the exact sequence (∗) is HomA(−,W)-

exact, so is the exact sequence (∗∗) by [14, Theorem 3.4 (4)]. Thus the sequence 0 → HomA(W, (W 0)′) →
HomA(W

0⊕ (W 1)′, (W 0)′) → HomA((W
0)′, (W 0)′) → 0 is exact, which implies that the sequence (∗∗) is split.

Hence, W ∈ W since W is closed under direct summands. Therefore, A′′ is in G(VW).

(2) The proof is similar to that of (1). 2

The following result is an immediate consequence of Theorem 3.10.

Corollary 3.11 Let 0 → A′ → A → A′′ → 0 be an exact sequence in A with A in G(VW) and V ⊥ W .

(1) If Ext1A(A
′′,W) = 0 and A′ ∈ G(VW) , then so is A′′ .

(2) If Ext1A(V, A′) = 0 and A′′ ∈ G(VW) , then so is A′ .

Recall that a class of modules is called resolving (coresolving) if it is closed under extensions and kernels

of surjections (cokernels of injections), and it contains all projective (injective) modules. From Corollary 3.8

and 3.11, it is not hard to get the following result.

Corollary 3.12 (1) ([17, Theorem 2.8]) The class of GC -projective (resp. injective) modules is resolving (resp.

coresolving).

(2) ([13, Theorem 6.2]) The Bass class BC(R) is coresolving.

4. The connections with Gorenstein categories

In this section, we mainly discuss the relations between VW -Gorenstein categories and Gorenstein categories.

First of all, we investigate the stability of the VW -Gorenstein category under the procedure used to define these

entities, which recovers the one defined in [16].

We denote G2(VW) = {A ∈ A | there exists an exact sequence · · · → G1 → G0 → G0 → G1 → · · · in

A with each Gi and Gi in G(VW), such that A ∼= Im(G0 → G0) and HomA(V,−), HomA(−,W) leave it

exact.} .

Lemma 4.1 Let

0 → Y → Y 0 → Y 1 → · · · → Y n (4.1)

and

0 → Y j → W j
0 → W j

1 → · · · → W j
n−j (4.2(j))

be exact sequences in A for any 0 ≤ j ≤ n .
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If the exact sequence (4.1) is HomA(−,W)-exact and (4.2(j)) is a proper W -coresolution of Y j for any

0 ≤ j ≤ n . Then

0 → Y → W 0
0 → W 0

1

⊕
W 1

0 → · · · →
n−1⊕
i=0

W i
(n−1)−i →

n⊕
i=0

W i
n−i (4.3)

is a proper W -coresolution of Y ; furthermore, if (4.1) and all (4.2(j)) are HomA(V,−)-exact, then so is (4.3) .

Proof From [14, Theorem 3.8 (2) and (5)], using induction on n , it is not difficult to get the assertion. 2

Theorem 4.2 G2(VW) = G(VW) .

Proof It is easy to see that G(VW) ⊆ G2(VW) from the definition of G2(VW).

Conversely, let A be an object in G2(VW) and

· · · → G1 → G0 → G0 → G1 → · · ·

a complete resolution of A with A ∼= Im(G0 → G0). Then for any j ≥ 0, by definition, there exist exact
sequences:

· · · → V i
j → · · · → V 1

j → V 0
j → Gj → 0

and

0 → Gj → W j
0 → W j

1 → · · · → W j
i → · · ·

in A with each V i
j in V and W j

i in W , which are both HomA(V,−)-exact and HomA(−,W)-exact. By

Lemma 4.1 and its dual version, we get exact sequences:

· · · →
n⊕

i=0

V n−i
i → · · · → V 1

0

⊕
V 0
1 → V 0

0 → A → 0

and

0 → A → W 0
0 → W 0

1

⊕
W 1

0 → · · · →
n⊕

i=0

W i
n−i → · · · ,

which are both HomA(V,−)-exact and HomA(−,W)-exact. Gluing these two exact sequences, one has a com-

plete VW -resolution of A with A ∼= Im(V 0
0 → W 0

0 ), and hence A is in G(VW). Thus G2(VW) = G(VW) as

desired. 2

As an immediate consequence of Theorem 4.2, we get the following two corollaries. The first one is [15,

Theorem 2.9]. However, the methods of proof differ.

Corollary 4.3 G2PC(R) = GPC(R) .

Proof Set V = P(R) and W = PC(R) in Theorem 4.2; then G(VW) is the category GPC(R). The assertion

follows from Theorem 4.2. 2

The second corollary generalizes [14, Theorem 4.1].

Corollary 4.4 G2(W) = G(W) .
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Proof By setting V = W in Theorem 4.2, we obtain the assertion. 2

As another application of Theorem 4.2, we have the following result showing that the VW -Gorenstein

category possesses a kind of symmetry similar to the Gorenstein category.

Proposition 4.5 If V,W ⊆ G(VW) , then an object A ∈ A is in G(VW) if and only if there is an exact
sequence

· · · → U1 → U0 → U0 → U1 → · · ·

in A with each Ui and U i ∈ U = V ∪W , such that A ∼= Im(U0 → U0) and HomA(V,−) , HomA(−,W) leave

it exact. In this case, V ∪W is a generator–cogenerator for G(VW) .

Proof The necessity is obvious by the definition of G(VW).

Assume that there is an exact sequence · · · → U1 → U0 → U0 → U1 → · · · in A with each Ui and

U i ∈ U = V ∪W ; thus each Ui and U i are in G(VW) by the hypothesis. This implies that A ∈ G(VW) from

Theorem 4.2. 2

The next result is an immediate consequence of Proposition 4.5, which generalizes both [9, Remark 2.3

(1)] and [17, Proposition 2.9]. The reader is invited to compare the following result to Proposition 3.6.

Corollary 4.6 If V,W ⊆ G(VW) , then every kernel and cokernel in a complete VW -resolution are in G(VW) .

Based on the results above, we obtain the first relation between VW -Gorenstein categories and Gorenstein

categories.

Theorem 4.7 If V,W ⊆ G(VW) , then G(V ∪W) ⊆ G(VW) .

Proof Suppose that A ∈ G(V ∪W); there exists a complete resolution of A

· · · → U1 → U0 → U0 → U1 → · · ·

in A , with each Ui and U i ∈ V∪W . Since the sequence above is HomA(V∪W,−)-exact and HomA(−,V∪W)-

exact, in particular, it is HomA(V,−)-exact and HomA(−,W)-exact, Proposition 4.5 yields that A ∈ G(VW).
2

As another application of Lemma 4.1, we get the following homological property of VW -Gorenstein

categories for any V and W , which generalizes [14, Theorem 4.6].

Proposition 4.8 G(VW) is closed under direct summands.

Proof Assume that A = B ⊕ C , and A is an object in G(VW). Splicing together the split short exact

sequences 0 → C
( 0
id)−→ A

(id,0)−→ B → 0 and 0 → B
( 0
id)−→ A

(id,0)−→ C → 0, one obtains the following exact sequence

0 → B → A → A → · · · .

Since A ∈ G(VW), B has a proper W -coresolution that is also HomA(V,−)-exact by Lemma 4.1. Dually, from

the exact sequence · · · → A → A → B → 0, one has a proper V -resolution of B that is also HomA(−,W)-

exact. Combining these two exact sequences, we conclude that B is in G(VW). 2

The next relation extends [16, Theorem 4.9] to any category X , and gives a sufficient condition when

V,W ⊆ G(VW).
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Theorem 4.9 If V is a projective generator and W an injective cogenerator for X , respectively, then G(X )

⊆ G(VW) . In this case, we have that V,W ⊆ G(VW) .

Proof Let A be an object in G(X ) and

· · · → X1 → X0 → X0 → X1 → · · · (4.4)

a complete X -resolution of A with A ∼= Im(X0 → X0). Since W is an injective cogenerator for X , it is clear

that X ⊆ coresW̃ , and hence each Xi has a proper W -coresolution

0 → Xi → W i
0 → W i

1 → · · ·

with all images in X . Therefore, it is also HomA(V,−)-exact since V ⊥ X . Because (4.4) is HomA(X ,−)-

exact and HomA(−,X )-exact, in particular, it is HomA(V,−)-exact and HomA (− , W )-exact; it follows from

Lemma 4.1 that A has a proper W -coresolution, which is HomA(V,−)-exact. By a dual argument, one has a

proper V -resolution of A , which is HomA(−,W)-exact. Therefore, A ∈ G(VW).

Since X ⊆ G(X ) from [16, Remark 4.2], we obtain that V,W ⊆ X ⊆ G(VW). 2

The VW -Gorenstein category has nice properties under the condition V ⊥ W . In this case, we have the

following result.

Proposition 4.10 Assume that V ′ is another subcategory of X with V ⊥ V ′ and W ⊥ V ′ . If V ⊥ W and

W ⊥ W , then G(W) ∩ G(VV ′) = G(VW) ∩ G(WV ′) .

Proof The assumption of orthogonality of subcategories implies that the conclusion holds true by Proposition

3.5. 2

By Proposition 4.10, it is easy to have the following relation.

Corollary 4.11 Suppose that V is a projective generator and V ′ is an injective cogenerator for A , respectively.

If W ⊥ W , then G(W) = G(VW) ∩ G(WV ′) .

Corollary 4.12 ([16, Proposition 5.2]) G(PC(R)) = GPC(R) ∩ BC(R) .

Proof In Corollary 4.11, set V = P(R), V ′ = I(R), and W = PC(R). Since PC(R) ⊥ PC(R), the assertion

follows from Proposition 3.3 and Corollary 4.11. 2
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