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c⃝ TÜBİTAK

doi:10.3906/mat-1504-61

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On the extended zero divisor graph of commutative rings

Driss BENNIS1,∗, Jilali MIKRAM2, Fouad TARAZA2

1Laboratory of Analysis, Algebra, and Decision Support, Department of Mathematics, Faculty of Sciences
of Rabat, Mohammed V University, Rabat, Morocco

2Laboratory of Mathematics, Computing, and Applications, Department of Mathematics, Faculty of Sciences
of Rabat, Mohammed V University, Rabat, Morocco

Received: 21.04.2015 • Accepted/Published Online: 19.08.2015 • Final Version: 10.02.2016

Abstract: In this paper we present a new graph that is closely related to the classical zero-divisor graph. In our case

two nonzero distinct zero divisors x and y of a commutative ring R are adjacent whenever there exist two nonnegative

integers n and m such that xnym = 0 with xn ̸= 0 and ym ̸= 0. This yields an extension of the classical zero

divisor graph Γ(R) of R , which will be denoted by Γ(R) . First we distinguish when Γ(R) and Γ(R) coincide. Various

examples in this context are given. We show that if Γ(R) ̸= Γ(R) , then Γ(R) must contain a cycle. We also show that

if Γ(R) ̸= Γ(R) and Γ(R) is complemented, then the total quotient ring of R is zero-dimensional. Among other things,

the diameter and girth of Γ(R) are also studied.
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1. Introduction

Throughout this paper all rings are commutative with identity element with 1 ̸= 0.

Setup and notation. Let R be a ring. We use Z(R) to denote the set of all zero divisors of R and

Z(R)∗ := Z(R)\{0} . We denote by Ann(x) the annihilator of an element x of R . For an ideal I of R ,
√
I

means the radical of I ; in particular, Nil(R) :=
√
0 is the nilradical of R . For a nonzero nilpotent element x

of R , nx denotes the index of nilpotency of x . The ring Z/nZ of the residues modulo a nonnegative integer

n ∈ N∗ will be noted by Zn . We use ⊂ to mean “is a not necessarily proper subset of” and ⊊ to mean “is a

proper subset of”. Finally, T (R) = S−1R , where S is the set of regular elements, the total quotient ring of R .

For general background information and terminology on commutative rings with zero divisors we refer

the reader to [19].

The zero-divisor graph of a ring R , denoted by Γ(R), is the simple graph associated to R such that its

vertex set consists of all its nonzero zero divisors and that two distinct vertices are joined by an edge if and

only if the product of these two vertices is zero. The idea of associating graphs with algebraic structures goes

back to Beck in [17], where he was mainly interested in colorings. In his work all elements of the ring were

vertices of the graph (see also [2]). It was Anderson and Livingston, in [11], who introduced the zero divisor

graph of a commutative ring and initiated the study of the relation between ring-theoretic properties and graph

theoretic ones. Since then, the zero divisor graphs of commutative rings have attracted the attention of several
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researchers (see, for instance, [4, 6, 7, 10, 11, 12, 14, 15, 20, 21]). It was proved, among other things, that Γ(R)

is connected with diam(Γ(R)) ≤ 3 and gr(Γ(R)) ∈ {3, 4,∞} . For a survey and recent results concerning zero

divisor graphs, we refer the reader to [5].

Motivated then by the success of this new area of research several authors have recently introduced other

graphs associated to some ring theoretic properties (see, for instance, [8, 9, 13, 16, 22, 23]). The main aim of

studying these graphs is that one may find some results about the algebraic structures and vice versa.

In this paper, we introduce an extension of the classical zero divisor graph of a commutative ring R ,

denoted by Γ(R), which we call the extended zero divisor graph of R , such that its vertex set consists of all its

nonzero zero divisors and that two distinct vertices x and y are joined by an edge if and only if there exist two

nonnegative integers n and m such that xnym = 0 with xn ̸= 0 and ym ̸= 0. Thus, obviously the classical

graph Γ(R) is a subgraph of Γ(R). Note also that Γ(R) is the empty graph if and only if R is an integral

domain.

In Section 2, we are interested in studying when Γ(R) and Γ(R) coincide. The main result in this section

is Theorem 2.1. It gives some conditions on R that characterize when Γ(R) and Γ(R) coincide. In this context

several examples are given (see Example 2.3, Proposition 2.4, and Example 2.5). Then we study this property

for finite direct products of rings (Proposition 2.8). Section 3 is devoted to the study of the diameter of extended

graphs of commutative rings. Obviously, as an extension of the classical graph of Γ(R), Γ(R) is also connected

and has diameter of at most 3. In Theorem 3.5 we give the analog result of [7, Theorem 2.2] where the diameter

of Γ(R) is studied in the case where Z(R) = Nil(R) ̸= {0} (see Theorem 3.5). In Theorem 3.2 we give the analog

of [11, Theorem 2.5] where we characterize the case where Γ(R) has a vertex adjacent to every other vertex.

This allows us to characterize when the graph Γ(R) is complete (see Theorem 3.3). We also study the diameter

of the graph of finite direct products of rings (see Proposition 3.6). Finally, in Section 4, we study the girth of

Γ(R). Also, since Γ(R) is a subgraph of Γ(R) and by [10, Theorem 2.4], we deduce that gr(Γ(R)) ∈ {3, 4,∞} .
In Theorem 4.1, we show that Γ(R) contains a cycle when Γ(R) ̸= Γ(R). In Theorem 4.4, we give the analog

of [7, Theorem 2.11] in which the girth of Γ(R) is studied when Z(R) = Nil(R) ̸= {0} . In Theorems 4.5 and

4.6, situations where gr(Γ(R)) = 4 are given. In Proposition 4.8, we show that if Γ(R) ̸= Γ(R) and Γ(R) is

complemented, then the total quotient ring of R is zero-dimensional. At the end of the paper, the girth of the

graph of finite direct products of rings and Zn is studied (see Propositions 4.9 and 4.10).

For completeness, it is convenient to recall some notions on graph theory used in this paper. Here we use

the terminology given in [5]. For a general background on graph theory, we refer the reader to [18].

Let G be a (undirected) graph. We say that G is connected if there is a path between any two distinct

vertices. For distinct vertices x and y in G , the distance between x and y , denoted by d(x, y), is the length of

a shortest path connecting x and y , and if no such path exists, we set d(x, y) = ∞ (by convention d(x, x) = 0).

The diameter of the graph G is the quantity diam(Γ) := sup{d(x, y)|x and y are vertices of G} . A cycle of

length n ∈ N∗ in G is a path of the form x1 − x2 − · · · − xn − x1 , where xi ̸= xj when i ̸= j . We define

the girth of G , denoted by gr(G), as the length of a shortest cycle in G , provided that G contains a cycle;

otherwise, gr(G) = ∞ . A graph G is said to be complete if any two distinct vertices are adjacent. A complete

bipartite graph is a graph G , which may be partitioned into two disjoint nonempty vertex sets A and B such

that two distinct vertices are adjacent if and only if they are in distinct vertex sets. We denote the complete

bipartite graph by Km,n , where |A| = m and |B| = n . When G = K1,n , G is called a star graph. Finally,
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K
m,3

is the graph formed by joining a graph G1 = Km,3 (= A ∪ B with |A| = m and |B| = 3) to the star

graph G2 = K1,3 by identifying the center of G2 and a point of B .

2. When do Γ(R) and Γ(R) coincide?

We begin with the main result in this section, which studies when Γ(R) and Γ(R) coincide.

Theorem 2.1 Let R be a ring. The following statements are equivalent:

1. Γ(R) = Γ(R) .

2. R satisfies the two following conditions:

(i) If Nil(R) ̸= {0} , then every nonzero nilpotent element has index 2 , and

(ii) For every x ∈ Z(R)\Nil(R) , Ann(x2) = Ann(x) .

3. R satisfies the two following conditions:

(i) If Nil(R) ̸= {0} , then every nonzero nilpotent element has index 2 , and

(ii) For every x ∈ Z(R) ,
√
Ann(x)\Nil(R) ⊂ Ann(x) .

To prove this theorem, we need the following lemma.

Recall that, for a nonzero nilpotent element x of R , we use nx to denote the index of nilpotency of x .

Lemma 2.2 Let R be a ring and let x ∈ R\{0} . Then:

1. If x is nilpotent, then Ann(x) ⊊ Ann(xn) for every integer n ≥ 2 .

2. If x is not nilpotent, then we have the equivalence:

Ann(x2) = Ann(x) if and only if Ann(xn) = Ann(x) for every integer n ≥ 2 .

Proof 1. Let x be a nonzero nilpotent element of R . If nx = 2, then for every integer n ≥ 2,

Ann(xn) = Ann(0) = R ⊋ Ann(x). Now consider nx ≥ 3 and suppose by contradiction that there is n ≥ 2

such that Ann(xn) = Ann(x). Since for n ≥ nx we have Ann(xn) = Ann(0) = R , n must be between 2 and

nx − 1. Then we have xnx−n ∈ Ann(xn) = Ann(x). Thus, xnx−nx = xnx−n+1 = 0, which is absurd since

2 ≤ nx − n+ 1 ≤ nx − 1.

2. Let x be a nonnilpotent element such that Ann(x2) = Ann(x). Let y ∈ Ann(xn) for some integer

n ≥ 2; then yxn = 0, which implies that yx ∈ Ann(xn−1). By induction Ann(xn−1) = Ann(x), and hence

y ∈ Ann(x2) = Ann(x), as desired. 2

Proof of Theorem 2.1. (1) ⇒ (2). Suppose that there exists a nilpotent element x such that nx ≥ 3.

By Lemma 2.2, Ann(x) ⊊ Ann(xn) for every integer n ≥ 2. We may assume that 2 ≤ n < nx . Consider

an element y ∈ Ann(xn)\Ann(x); then xny = 0 and xy ̸= 0, which contradicts the fact that Γ(R) = Γ(R).

Now let x ∈ Z(R)\Nil(R). Since Ann(x) ⊂ Ann(x2) it remains to show the other inclusion. Let y ̸= x be an

element of Ann(x2). Then x and y are adjacent in Γ(R), which equal to Γ(R). Hence xy = 0, and therefore

y ∈ Ann(x).
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(2) ⇒ (3). Let y ∈
√
Ann(x)\Nil(R). Then there exists n ∈ N∗ such that ynx = 0. Then x ∈

Ann(yn) = Ann(y) by Lemma 2.2 and therefore xy = 0.

(3) ⇒ (1). Let x and y be two adjacent vertices in Γ(R). Then there exist two positive integers n and

m such that xnym = 0 with xn ̸= 0 and ym ̸= 0. Three cases occur:

Case 1: If x, y ∈ Nil(R) such that nx = ny = 2, then n = m = 1 (by 2(i)). This means that x and y

are adjacent vertices in Γ(R).

Case 2: If x /∈ Nil(R) and y ∈ Nil(R), then m = 1 (by 2(i)). Hence, x ∈
√
Ann(y)\Nil(R) and by

hypothesis xy = 0. Thus, x and y are adjacent vertices in Γ(R).

Case 3: If x /∈ Nil(R) and y /∈ Nil(R), then x ∈
√
Ann(ym)\Nil(R) ⊂ Ann(ym) and so xym = 0. Thus,

y ∈
√
Ann(x)\Nil(R) ⊂ Ann(x), as desired. 2

One can consider, for example, Z24 , Z2 × Z8 , and Z2[X,Y ]/(XY 2, X3) to get an example of a ring R

that contains a nilpotent element with index of at least three and such that there is an element x ∈ Z(R)\Nil(R)

with Ann(x2) ̸= Ann(x).

To show that conditions (i) and (ii) of both (2) and (3) of Theorem 2.1 are independent, we give the

following examples. First note that one can show easily that 2(ii) is equivalent to 3(ii).

Example 2.3 1. To give an example of a ring R that contains a nilpotent element with index two and

contains an element x ∈ Z(R)\Nil(R) such that Ann(x2) ̸= Ann(x) , we can consider the following rings:

Z12 , Z18 , Z36 , Z2[X,Y ]/(XY 2, X2) , and Z2 × Z4 .

2. The following rings can be used as an example of a ring R that contains a nilpotent element with index

at least three and such that Nil(R) = Z(R) : Z2m (with m ≥ 3) and Z2[X]/(X3) .

However, it does not seem easy to get an example of a ring R that contains a nilpotent element with index

of at least three and such that Z(R) ̸= Nil(R) with Ann(x2) = Ann(x) for every element x ∈ Z(R)\Nil(R).

Then, in order to construct such an example, one should establish at first some of its properties. For that, we

set the following result.

Proposition 2.4 Let R be a ring that satisfies the following properties: Nil(R) ̸= {0} , Nil(R) ⊊ Z(R) , and

Ann(x2) = Ann(x) for every x ∈ Z(R)\Nil(R) .

Then, for every y ∈ Nil(R) and every x ∈ Z(R)\Nil(R) , Ann(x) ⊂ Ann(y) .

Consequently, Ann(x)Nil(R) = {0} for every x ∈ Z(R)\Nil(R) .

If furthermore there exists an element t ∈ Nil(R) such that t2 ̸= 0 , then, for every x ∈ Z(R)\Nil(R) ,

t /∈ Ann(x) .

Consequently, for every x ∈ Z(R)\Nil(R) , Ann(x) ⊂ Ann(t) ⊂ Nil(R) such that z2 = 0 for every

z ∈ Ann(x) .

Proof First, consider y ∈ Nil(R) and x ∈ Z(R)\Nil(R) and suppose that Ann(x) ⊈ Ann(y). Then there is

an element a ∈ R such that ax = 0 and ay ̸= 0. Then a(x+y) = ay ̸= 0. However, for n ∈ N with yn = 0, we

have a(x+ y)n = 0. This means that Ann(x+ y) ̸= Ann(x+ y)n , which is absurd (by hypothesis and Lemma

2.2).
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This shows that z2 = 0 for every nilpotent element z ∈ Ann(x). Thus, it remains to prove that

Ann(t) ⊂ Nil(R). If not, there is then an element a ∈ Ann(y) such that a /∈ Nil(R). Thus, Ann(a) ⊂ Ann(y),

but y ∈ Ann(a) implies that y2 = 0, which is absurd. 2

Now we are in a position to give the desired example. For that we use a new ring construction recently

introduced in [1].

Let R be a commutative ring with 1 ̸= 0 and let M1 and M2 be R -submodules of a commutative

R -algebra L such that (M1)
2 := {xy|x, y ∈ M1} ⊂ M2 . Then we call 2-trivial extension of R by (M1,M2)

the ring denoted by R⋉2 M1 ⋉M2 whose underlying group is A×M1 ×M2 with multiplication given by

(a,m1,m2)(b, n1, n2) = (ab, an1 + bm1, an2 + bm2 +m1n1).

Note that this construction is an extension of the well-known trivial extension of a ring by a module (see, for

instance, [3]). In fact, R⋉2 0⋉M2 can be seen as the trivial extension of a ring R by M2 .

Note that Nil(R⋉2M1⋉M2) = Nil(R)⋉2M1⋉M2 and Z(R⋉2M1⋉M2) = {(r,m1,m2) ∈ R⋉M1⋉M2|r ∈
Z(R) ∪ Z(M1) ∪ Z(M2)} . Also note that if M1 contains an element m such that m2 ̸= 0, then (0,m, 0) is a

nilpotent element of index 3.

Example 2.5 Let R = Z⋉ Z2 . Then Z ∼= (Z⋉ Z2)/({0}⋉Z2) is an R -module with the scalar multiplication

defined as follows: (a, n)x := ax for every (a, n, x) ∈ Z3 .

The ring S = R⋉2 Z ⋉ Z satisfies the following properties:

• S contains a nilpotent element with index three.

• Nil(R) ⊊ Z(R) .

• For every x ∈ Z(R)\Nil(R) , Ann(x2) = Ann(x) .

Proof To get the result it suffices to show that, for every x ∈ Z(S)\Nil(S),

Ann(x) = {((0, 0), 0, 0); (0, 1), 0, 0)}.

This equality is a simple consequence of the fact that Nil(S) = {((0, n), s, t)|(n, s, t) ∈ Z3} and Z(S)\Nil(S) =
{((2k, n), s, t)|k ∈ Z∗ and (n, s, t) ∈ Z3} . 2

The following particular cases are simple consequences of Theorem 2.1.

Corollary 2.6 Let R be a ring. If R contains a nilpotent element of index 3 , then Γ(R) ̸= Γ(R) .

Corollary 2.7 Let R be a reduced ring. Then Γ(R) = Γ(R) .

Proof Assume that there is an element x ∈ Z(R)∗ such that Ann(x) ̸= Ann(x2). Then there is z ∈ Z(R)∗

such that zx2 = 0 and zx ̸= 0, and hence zx ∈ Nil(R)\{0} , a contradiction since R is reduced. 2

Now we show when Γ(R) = Γ(R) for the finite direct product of rings.

Proposition 2.8 Let (Ri)1≤i≤n be a finite family of rings with n ∈ N∗\{1} . Then Γ(
n∏

i=1

Ri) = Γ(
n∏

i=1

Ri) if

and only if Ri is reduced for every 1 ≤ i ≤ n .
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Proof It suffices to prove the case where n = 2.

(⇒) Suppose that R1 is not reduced. Then there is an element x1 ̸= 0 such that x2
1 = 0. We have

(1, 0)(x1, 1) = (x1, 0) ̸= (0, 0) but (1, 0)(x1, 1)
2 = (0, 0). Then, by Theorem 2.1, Γ(R1 × R2) ̸= Γ(R1 × R2), a

contradiction.

(⇐) Use Corollary 2.7. 2

As a simple consequence of Proposition 2.8, we determine when the graph Γ(Zn) coincides with Γ(Zn).

Corollary 2.9 Let n =
k∏

i=1

Pαi
i be the prime factorization of an integer n with k ∈ N∗ . Consider m :=

Sup{αi | 1 ≤ i ≤ k} . Then Γ(Zn) ̸= Γ(Zn) if and only if either m ≥ 3 or (m = 2 and k ≥ 2) .

Consequently, Γ(Zn) = Γ(Zn) if and only if either n = p2 for some prime p or n is square-free. In

particular, if Zn has nonzero nilpotent elements, then Γ(Zn) = Γ(Zn) if and only if Γ(Zn) is complete.

We end this section with the following simple examples.s
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3. Diameter of extended graphs of rings

In this section, we study the diameter of extended graphs of rings.

Certainly, as an extension of the classical graph of [11, Theorem 2.3], Γ(R) has diameter of at most 3.

Theorem 3.1 Let R be a ring. Then Γ(R) is connected with diam(Γ(R)) ≤ 3.

Now we determine some situations where diam(Γ(R)) ≤ 2.

In the following result, as an analog of [11, Theorem 2.5], we characterize when Γ(R) has a vertex adjacent

to every other vertex (i.e. when Γ(R) has a spanning tree that is a star graph).

Theorem 3.2 Let R be a ring. Then there is a vertex x of Γ(R) that is adjacent to every other vertex if and

only if either R ∼= Z2 ×D , where D is an integral domain, or Z(R) =
√
Ann(xnx−1) .
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Proof (⇒) Suppose that x is adjacent to every other vertex of Γ(R). If x is a nilpotent element, then for every

nonzero zero divisor element y ̸= x there are two positive integers α , β such that yαxβ = 0 with yα ̸= 0 and

xβ ̸= 0 (since x and y are adjacent in Γ(R)); thus, β < nx and yαxnx−1 = 0 and hence y ∈
√
Ann(xnx−1).

Finally, since x is nilpotent, x ∈
√
Ann(xnx−1), and therefore Z(R) =

√
Ann(xnx−1).

If x /∈ Nil(R)∗ then x2 = x , if not there are two positive integers α and β such that (x2)αxβ = x2α+β =

0, a contradiction since x /∈ Nil(R)∗ , so R = Rx ⊕ R(1− x). Hence, we may assume that R = R1 × R2 with

(1, 0) adjacent to every other vertex. For any 1 ̸= z ∈ R1 , (z, 0) is a zero divisor, so there are n,m ∈ N∗ such

that (z, 0)n(1, 0)m = (0, 0) and (z, 0)n ̸= (0, 0), a contradiction. Hence, R1
∼= Z2 . If R2 is not an integral

domain, then there is a nonzero t ∈ Z(R2). Then (1, t) is a zero divisor of R , which is not adjacent to (1, 0),

a contradiction. Thus, R2 must be an integral domain.

(⇐). If R ∼= Z2 × D for D an integral domain, then(1, 0) is adjacent to every other vertex. If

Z(R) =
√
Ann(xnx−1) for some nonzero x ∈ R , then x is adjacent to every other vertex. 2

We next determine when Γ(R) is a complete graph (i.e. where the diameter of Γ(R) is one). In [11,

Theorem 2.8], it was proved that the graph Γ(R) is complete if and only if either R ∼= Z2 × Z2 or xy = 0 for

every x , y ∈ Z(R)∗ (i.e. Z(R)2 = 0). For our case, we have the following result.

Theorem 3.3 Let R be a ring. Then Γ(R) is a complete graph if and only if either R ∼= Z2 × Z2 or

Z(R) = Nil(R) and for every x , y ∈ Z(R)∗ xnx−1yny−1 = 0 .

Proof (⇐) By definition.

(⇒) Suppose that Γ(R) is complete.

If Z(R) = Nil(R) then, by definition, xnx−1xnx−1 = 0 for every element x ∈ Nil(R). Since Γ(R) is

complete, for all distinct elements x , y ∈ Z(R)∗ there are two positive integers n and m such that xnym = 0

with xn ̸= 0 and ym ̸= 0. Necessarily n < nx and m < my , and therefore xnx−1yny−1 = 0.

Now suppose that Z(R) ̸= Nil(R). Since Γ(R) is complete and by Theorem 3.2, we have R ∼= Z2 ×D ,

where D is an integral domain. Hence, for distinct a , b ∈ D\{0} , (0, a) and (0, b) are adjacent in Γ(R), and

then there are two positive integers n and m such that (0, a)n(0, b)m = (0, 0), so a = 0 or b = 0 and thus

necessarily D ∼= Z2 . 2

To establish an analogy with the classical case we set Z(R) := {xnx−1|x ∈ Nil(R)∗} Z(R)2 :=

{xnx−1yny−1|x, y ∈ Nil(R)∗} .

Corollary 3.4 Let R be a ring such that Γ(R) ̸= Γ(R) . Then Γ(R) is complete if and only if Z(R) = Nil(R)

and Z(R)2 = {0} .

In [7, Theorem 2.2], the diameter of Γ(R) was studied when Z(R) = Nil(R) ̸= {0} . For our case, we

have the following result, which is slightly different from [7, Theorem 2.2].

Theorem 3.5 Let R be a ring with Z(R) = Nil(R) ̸= {0} . Then diam(Γ(R)) ≤ 2 and exactly one of the

following three cases must occur.
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1. |Z(R)∗| = 1 . Then R is isomorphic to Z4 or Z2[X]/(X2) , and diam(Γ(R)) = 0 .

2. |Z(R)∗| ≥ 2 and Z(R)2 = {0} . Then Γ(R) is a complete graph, and diam(Γ(R)) = 1 .

3. |Z(R)∗| ≥ 2 and Z(R)2 ̸= {0} . If Z(R)2 = 0 then Γ(R) is a complete graph, and diam(Γ(R)) = 1 . If

not diam(Γ(R)) = 2 .

Proof 1. If |Z(R)∗| = 1 in this case Γ(R) = Γ(R), and then R ∼= Z4 or Z2[X]/(X2) by [17, Proposition 2.2].

2. If |Z(R)∗| ≥ 2 and Z(R)2 = {0} , then xy = 0 for all x, y ∈ Z(R). Thus, Γ(R) is a complete graph

and diam(Γ(R)) = 1.

3. By Corollary 3.4, Γ(R) is a complete graph; hence diam(Γ(R)) = 1. If not, there is x , y ∈ Z(R)∗

such that xnx−1yny−1 ̸= 0 and hence xy /∈ {0, x, y} , so x− xy − y is a path between x and y of length 2. 2

Now we study the diameter of the graph of finite direct products of rings.

Proposition 3.6 Let R =
n∏

i=1

Ri where (Ri)1≤i≤n is a finite family of rings with n ∈ N∗\{1} .

1. If n = 2 , we have the following assertions:

(a) diam(Γ(R)) = diam(Γ(R)) = 1 if and only if R1
∼= R2

∼= Z2 .

(b) If R1 and R2 are integral domains with |R1| ≥ 3 or |R2| ≥ 3 , then Γ(R) = Γ(R) and diam(Γ(R)) =

2 . In this case Γ(R) is a complete bipartite graph.

(c) If at least one of R1 and R2 contains a nonnilpotent zero divisor, then diam(Γ(R)) = diam(Γ(R)) =

3 .

(d) If at least one of R1 and R2 is not integral domains such that all zero divisors are nilpotent in each

ring with nonzero zero divisors, then diam(Γ(R)) = 3 and diam(Γ(R)) = 2 .

2. If n ≥ 3 , diam(Γ(R)) = diam(Γ(R)) = 3 .

Proof Case n = 2 . The proof of both (a) and (b) is trivial.

We prove assertion (c). Suppose that R1 contains a nonnilpotent zero divisor z . Then there is an element

z′ ∈ R1 such that zz′ = 0. Then using the following path, in both Γ(R) and Γ(R), (1, 0)−(0, 1)−(z′, 0)−(z, 1),

and the fact that there is no vertex adjacent to both (1, 0) and (z, 1), we conclude that diam(Γ(R)) =

diam(Γ(R)) = 3.

(d). We prove only the case where, for instance, R1 is not integral domains such that all zero divisors are

nilpotent and R2 is integral domains. First, using the same path as above, we have diam(Γ(R)) = 3. However,

in Γ(R), d((1, 0), (z, 1)) = 1 for every z ∈ Z(R1)
∗ = Nil(R1). Now we have: Z(R)∗ = T1

∪
T2

∪
T3

∪
T4 where

T1 = {(a, 0)|a is regular} , T2 = {(b, 0)|b ∈ Z(R1)} , T3 = {(0, x)|x ∈ R2} , and T4 = {(a, x)|a ∈ Z(R1), x ∈
R2} . A simple study of the distance between any two elements shows that diam(Γ(R)) = 2.

Case n ≥ 3 . Note that (0, 1, 1, ..., 1) − (1, 0, 0, ..., 0) − (0, 0, ..., 0, 1) − (1, 1, ..., 1, 0) is a shortest path between

(0, 1, 1, ..., 1) and (1, 1, 1, ..., 0). 2

Proposition 3.6 helps to determine the diameter of Zn in some cases.
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Proposition 3.7 For a positive integer n ∈ N∗ , the following assertions hold true:

1. If n = 22 , then diam(Γ(Zn)) = 0 .

2. If either n = 2m with m > 2 or n = pm with p is an odd prime and m ≥ 2 , then diam(Γ(Zn)) = 1 . In

this case Γ(Zn) is a complete graph.

3. If n = pαqβ with p and q are distinct primes, then diam(Γ(Zn)) = 2 . In this case,

• If p = 2 and α = β = 1 , then Γ(Zn) is a star graph.

• If either (p = 2 , α = 2 and β = 1) or n = pq , then Γ(Zn) is a complete bipartite graph.

4. If n =
k∏

i=1

Pαi
i is the prime factorization of n with pi ̸= pj , for i ̸= j , and k ≥ 3 , then diam(Γ(R)) = 3 .

Proof 1. Let n = 22 ; then Z(Z4)
∗ = {2} and hence diam(Γ(Z4)) = 0.

2. Let n = 2m with m > 2 or n = pm where p is an odd prime and m ≥ 2. Then all zero divisors of

Zn are multiples of 2 for the first and p for the second. It is clear that all zero divisors are adjacent to each

other, so diam(Γ(Zn)) = 1 and Γ(R) is a complete graph.

3. Let n = pαqβ with p and q are distinct primes. Then, by Proposition 3.6, diam(Γ(Zn)) = 2.

If n = 2q , then Z(Zn)
∗ = {2h/0 < h < q} ∪ {q} . Hence, q is adjacent to every other vertex and

d(2h, 2h′) = 2 with 0 < h < q and 0 < h′ < q . Therefore, Γ(Z2q) is a star graph.

If n = 4q , then Z(Zn)
∗ = {2h/0 < h < 2q} ∪ {q} . The two following sets A := {2h/0 < h < 2q and

h ̸= q} and B := {kq/ 0 < k < 4} form a partition of Z(Zn)
∗ and show that Γ(Zn) is a complete bipartite

graph.

If n = pq , then Z(Zn)
∗ = {hp/0 < h < q}∪{kq/0 < k < p} . The two following sets A =: {hp/0 < h < q}

and B := {kq/k < p} form a partition of Z(Zn)
∗ and shows that Γ(Zn) is a complete bipartite graph.

4. Follows from Proposition 3.6. 2

4. Cycles in extended graphs of rings

In this section, we study the girth of Γ(R).

Since Γ(R) is a subgraph of Γ(R) and by [10, Theorem 2.4], we have gr(Γ(R)) ∈ {3, 4,∞} .

In the classical case there are some examples of rings R such that gr(Γ(R)) = ∞ . The following result

shows that when Γ(R) ̸= Γ(R), we have gr(Γ(R)) ∈ {3, 4} .

Theorem 4.1 Let R be a ring. If Γ(R) ̸= Γ(R) , then Γ(R) contains a cycle.

Proof Since Γ(R) ̸= Γ(R) and by Theorem 2.1, there is either a nilpotent element x with nx ≥ 3 or an

element x ∈ Z(R)\Nil(R) such that Ann(x) ̸= Ann(x2). For the first case, we have x− (x+xnx−1)−xnx−1−x

is a cycle of length 3. For the second case, there exists y ∈ Z(R)∗ such that yx2 = 0 and yx ̸= 0. If y2 = 0
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then y − (x+ y)− xy − y is a cycle of length 3. If not x− yx− x2 − y − x is a cycle of length 4. 2

Corollary 4.2 If R contains a nilpotent element of index greater than or equal to three, then gr(Γ(R)) = 3 .

Corollary 4.3 If there are elements x and z of Z(R)∗ such that x /∈ Nil(R) , z2 = 0 , zx ̸= 0 , and zx2 = 0

then gr(Γ(R)) = 3 .

In [7, Theorem 2.11], the girth of Γ(R) is studied when Z(R) = Nil(R) ̸= {0} . For our case, we have

the following slightly different result.

Theorem 4.4 Let R be a ring with Z(R) = Nil(R) ̸= {0} . Then exactly one of the following three cases must
occur.

1. If |Z(R)∗| = 1 , then R is isomorphic to Z4 or Z2[X]/(X2) , and gr(Γ(R)) = ∞ .

2. If |Z(R)∗| = 2 , then R is isomorphic to Z9 or Z3[X]/(X2) , and gr(Γ(R)) = ∞ .

3. If |Z(R)∗| = 3 , then R is isomorphic to Z8 , Z2[X]/(X3) , Z4[X]/(2X,X2 − 2) , Z2[X,Y ]/(X,Y )2 ,

Z4[X]/(2, X)2 , Z4[X]/(X2 +X + 1) , or F4[X]/(X2) , and gr(Γ(R)) = 3 .

4. If |Z(R)∗| ≥ 4 , then gr(Γ(R)) = 3 .

Proof All assertions follow from [7, Theorem 2.11] except the following cases: for R ∼= Z8 , 2 − 4 − 6 − 2

is a cycle of length 3. For R ∼= Z2[X]/(X3), X − X2 − (X2 + X) − X is a cycle of length 3. Finally, for

R ∼= Z4[X]/(2X,X2 − 2), 2−X − (X − 2)− 2 is a cycle of length 3. 2

[4, Theorems 2.3 and 2.5] allow us to establish situations where gr(Γ(R)) = 4. Namely, we have the two

following results.

Theorem 4.5 Let R be a commutative ring with Nil(R) ̸= 0 and gr(Γ(R)) = 4 . Then Γ(R) ̸= Γ(R) implies

that gr(Γ(R)) = 4 and Γ(R) is a complete bipartite graph.

Proof From [4, Theorem 2.3], R ∼= D × B where D is an integral domain with |D| ≥ 3 and B = Z4 or

Z2[X]/(X2). Then Z(R) = A∪B where A = {(a, x)|a ∈ D and x ∈ {0; 2}} and B = {(0, n)|n ∈ Z4} . One can

show that all elements of A are connected to all elements of B in Γ(R) such that Γ(R) is a complete bipartite

graph, and therefore gr(Γ(R)) = 4. 2

Theorem 4.6 Let R be a commutative ring with Nil(R) ̸= 0 and gr(Γ(R)) = ∞ . Then exactly one of the

following holds:

1. Γ(R) = Γ(R) is a singleton or a star graph. In this case gr(Γ(R)) = ∞ .

2. Γ(R) = K
1,3

(i.e. R ∼= Z2×Z4 or R ∼= Z2×Z2[X]/(X2)). In this case gr(Γ(R)) = 4 and Γ(R) ̸= Γ(R) .
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Proof Flows from [4, Theorem 2.5] and, when R ∼= Z2 × Z4 or R ∼= Z2 × Z2[X]/(X2), we have the following

cycle (1, 0)− (0, 2)− (1, 2)− (0, 1)− (1, 0) in Γ(R) of length 4 . 2

In [10, Theorem 3.5], the notion of complemented graph is used to characterize when the total quotient

ring of a reduced ring R is von Neumann regular. In Proposition 4.8 below we attempt to give a similar result.

In fact, when Γ(R) ̸= Γ(R), we only show that Γ(R) is complemented is a sufficient condition so that T (R)

be zero-dimensional. The converse remains an open problem. For that, we need the following definition and

lemma.

Let us say, as in [20], that distinct vertices x and y of Γ(R) are orthogonal, written x ⊥Γ(R) y , if x and

y are adjacent and there is no vertex z of Γ(R) that is adjacent to both x and y , i.e. the edge x− y is not a

part of any triangle of Γ(R). We say that Γ(R) is complemented if for each vertex x of Γ(R), there is a vertex

y of Γ(R) (called a complement of x) such that x ⊥Γ(R) y .

Lemma 4.7 Let R be a ring. If there are orthogonal elements x, y ∈ Z(R)∗ and there are n,m ∈ N∗\{1} such

that xnym = 0 with xn ̸= 0 and ym ̸= 0 , then xn + ym is a regular element of R .

Proof Suppose that z(xn + ym) = 0 for some z ∈ R\{0} . Let t = zxn = −zym , and then txn = tym = 0.

If t = x then xn+1 = 0. With t = zxn , we get xn = zx2n−1 = 0, a contradiction since xn ̸= 0. Similarly,

we prove that t ̸= y . Also, if t ̸= 0, then t is adjacent to both x and y , a contradiction since x ⊥Γ(R) y .

Then t = 0 and so zxn = −zym = 0. Then it remains to prove that z ̸= x and z ̸= y . Indeed, if z = x

then xn+1 = 0. Then x is adjacent to x2 (since xn+1 = x2xn−1 and x2 ̸= x). Now with xym = 0 we have

x2ym = 0. Then x2 is adjacent to both x and y , a contradiction. Similarly, we prove that z ̸= y . 2

Proposition 4.8 Let R be a ring with Γ(R) ̸= Γ(R) . If Γ(R) is complemented, then T (R) is zero-dimensional.

Proof First, note that all nilpotent elements have index 2 (since Γ(R) is complemented). Then by Theorem

2.1, there is an element x0 ∈ Z(R)\Nil(R) such that Ann(x) ̸= Ann(x2). This implies that there is z0 ∈ Z(R)

such that z0x0 ̸= 0 and z0x
2
0 = 0. Also, note that from Corollary 4.3 z0 /∈ Nil(R).

Now, to show that T (R) is zero-dimensional, it is sufficient to show that each nonminimal prime ideal

Q of R contains a regular element of R . Let P ⊂ Q be distinct prime ideals of R . Then there is x ∈ Q\P .

Note that x /∈ Nil(R). We have the following possible situations:

Case 1 (x is adjacent to x0 ): Then x0 ∈ Q and, by Lemma 4.7, there exist α , β ∈ N∗ such that xα
0 +xβ

is a regular element of R that belongs to Q .

Case 2 (x is adjacent to z0 ): The proof is the same as above.

Case 3 (x0 /∈ P ): Then xx0 ∈ Q\P . With xx0 adjacent to z0 and by Lemma 4.7, x2x2
0 + z0 is regular

and belongs to Q .

Case 4 (x0 ∈ P ): If z0 /∈ P , then xz0 ∈ Q\P and so xz0 is adjacent to x0 . By Lemma 4.7, xz0 + x2
0 is

regular and belongs to Q . If z0 ∈ P , then x2
0 + z0 is regular and belongs to Q since x2

0z0 = 0. 2

Now we study the girth of the graph of finite direct products of rings.

Proposition 4.9 Let R =
n∏

i=1

Ri where (Ri)1≤i≤n is a finite family of rings with n ∈ N∗\{1} .
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1. If n = 2 , we have the following assertions:

(a) gr(Γ(R)) = gr(Γ(R)) = ∞ if and only if R1 and R2 are integral domains and at least one is

isomorphic to Z2 .

(b) If R1 and R2 are integral domains with |R1| ≥ 3 and |R2| ≥ 3 , then Γ(R) = Γ(R) and gr(Γ(R)) = 4 .

(c) If at least one of R1 and R2 is not integral domains, then gr(Γ(R)) = gr(Γ(R)) = 3 .

2. If n ≥ 3 , then gr(Γ(R)) = gr(Γ(R)) = 3 .

Proof Case n = 2 . The proof of both (a) and (b) is trivial.

We prove assertion (c). Suppose that R1 contains a zero divisor z . Then there is an element z′ ∈ R1

such that zz′ = 0. Then (z, 0)− (z′, 1)− (0, 1)− (z, 0) is a cycle of length 3. Thus, gr(Γ(R)) = gr(Γ(R)) = 3.

Case n = 3 . (1, 0, 0, ..., 0) − (0, 1, 0, ..., 0) − (0, 0, 1, ..., 0) − (1, 0, ..., 0, 0) is a cycle of length 3. Thus,

gr(Γ(R)) = gr(Γ(R)) = 3. 2

Proposition 4.9 can be used to determine the girth of Zn in some cases.

Proposition 4.10 For a positive integer n ∈ N∗ , the following assertions hold true:

1. If n = 22 or n = 32 or n = 2p with p is an odd prime, then gr(Γ(Zn)) = ∞ .

2. If n = pq or n = 4p with p and q are odd primes, then gr(Γ(Zn)) = 4 .

3. We have gr(Γ(Zn)) = 3 if one of the three following assertions holds true:

(a) n = pm with m > 2 and p is prime,

(b) n = p2 with p > 3 is prime,

(c) n =
k∏

i=1

Pαi
i is the prime factorization of n with pi ̸= pj , for i ̸= j , and k ≥ 3 .

Proof 1. If n = 22 or n = 32 , then | Z(R)∗ |= 1 or | Z(R)∗ |= 2 respectively, and hence gr(Γ(R)) = ∞ . If

n = 2p , then Γ(R) is a star graph (see Proposition 3.7), and hence gr(Γ(R)) = ∞ .

2. If n = pq or n = 4p with p and q are odd primes, then Γ(R) is a complete bipartite graph (see

Proposition 3.7). Thus, gr(Γ(R)) = 4.

3. For both assertions (a) and (b), we have that Γ(R) is complete (see Proposition 3.7), and hence

gr(Γ(R)) = 3. For the third assertion, we have the following cycle of length 3: pα1
1 pα3

3 −pα2
2 pα3

3 −pα1
1 pα2

2 −pα1
1 pα3

3 .
2
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