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Abstract: Let G be a finite group. We prove that G is nilpotent if the set of conjugacy class sizes of primary and

bipirimary elements is {1,m, n,mn} with m and n coprime. Moreover, m and n are distinct primes power.
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1. Introduction

Throughout this paper all groups considered are finite and G always denotes a group. For an element x of

a group G we denote by xG the conjugacy class containing x , and by |xG| the conjugacy class size of x . A

primary element is an element of prime power order and a biprimary (triprimary) element is an element whose

order is divisible by precisely two (three) primes. The rest of the notation and terminology is standard; readers

may refer to [7].

In recent years, there has been tremendous interest in studying the structure of a group by some

arithmetical conditions imposed on the conjugacy class sizes of G . A classical result due to Itô [8] is that

a group G with two conjugacy class sizes is nilpotent and G is solvable if it has three conjugacy class sizes.

Beltrán and Felipe [3, 2] studied groups with four conjugacy class sizes and proved that if the set of conjugacy

class sizes of G is {1,m, n,mn} with integers m,n > 1 coprime, then G is nilpotent with m and n distinct

primes power.

To investigate the influence of partial conjugacy class sizes on the structure of groups is also an interesting

topic. For instance, Li [11] proved that a group G is solvable if its conjugacy class size of every primary element

is either 1 or m with m a fixed integer. In [9], Jiang and Shao showed that if the set of conjugacy class sizes

of primary, biprimary, and triprimary elements is {1,m, n,mn} with m and n coprime, then G is solvable.

In the present paper, we are concerned with the influence of conjugacy class sizes of primary and biprimary

elements on the structure of groups. Our main result is the following:

Theorem A Let G be a group. Further let m , n > 1 be two coprime integers. If the set of conjugacy class

sizes of primary and biprimary elements of G is {1,m, n,mn} , then G is nilpotent. Furthermore, m = pa and

n = qb for distinct primes p and q .

The authors proved in [14] that:
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Theorem B ([14, Main Theorem]) Let G be a solvable group and let m and n be two coprime integers.

Suppose further that the conjugacy class size of every primary or biprimary element is one of {1,m, n,mn} and

all of these occur. Then G is nilpotent. In particular, m = pa and n = qb for distinct primes p and q .

As a result, our main task of this paper is to prove the solvability of G . That is:

Theorem C Let G be a group. Further let m , n > 1 be two coprime integers. If the set of conjugacy class

sizes of primary and biprimary elements of G is {1,m, n,mn} , then G is solvable.

In order to show Theorem C, first we prove a special case:

Theorem D Let G be a group and n be an integer coprime to p . If the set of conjugacy class sizes of primary

and biprimary elements of G is {1, pa, n, pan} with positive integer a , then G is solvable.

2. Preliminaries

Before taking up the problems, we first give some lemmas that will be used in the sequel.

Lemma 2.1 ([12, Theorem 5]) If for some prime p every primary p′ -element of a group G has conjugacy

class size prime to p , then the Sylow p -subgroup of G is a direct factor of G .

Lemma 2.2 ([10, Theorem 3.2]) Let G be a group such that pa is the highest power of a prime p that divides

the conjugacy class size of a biprimary element of G . Assume that there is a p -element in G whose conjugacy

class size is precisely pa . Then G has a normal p -complement.

Lemma 2.3 ([4, Corollary B]) Let G be a group and suppose that the conjugacy class size of every primary

element is 1 or m . Then G is nilpotent. More precisely, m = pn for some prime p , and G = P × A with A

abelian and P a p -group.

Lemma 2.4 Let G be a group and p a prime. Then every p -element has a p -power conjugacy class size if

and only if G = Op(G)×Op′(G).

Proof The sufficiency is obvious; we only prove the necessity. Since every p -element has a p -power conjugacy

class size, we see that Op(G) ∈ Sylp(G) by [1, Corollary 4]. By the Schur–Zassenhaus theorem, G has a Hall

p′ -subgroup, say H . On the other hand, for an arbitrary element y ∈ G , we may write y = yp · yp′ , where yp

and yp′ are the p -part and the p′ -part of y , respectively. Since |yGp | is a p -power, there is some g ∈ G such that

yp′ ≤ Hg ≤ CG(yp), yielding yp ∈ CG(H)g . As a result, y ∈ CG(H)gHg , leading to G ⊆
∪

g∈G(CG(H)H)g .

Consequently, G = CG(H)H , implying H �G and thus G = Op(G)×Op′(G). 2

Lemma 2.5 ([14, Lemma 2.5]) Suppose that the three smallest nontrivial conjugacy class sizes of primary and

biprimary elements are a < b < c with (a, b) = 1 and a2 < c . Then the set W := {g ∈ G| |gG| = 1 or a} is a

normal subgroup of G .

Lemma 2.6 ([6, Theorem 5.3.4]) Let P ×Q be the direct product of a p -group P and a p′ -group Q . Suppose

that G is a p -group such that CG(P ) ≤ CG(Q). Then Q acts trivially on G .
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Lemma 2.7 ([14, Lemma 2.6]) Let G = K ⋊H and g ∈ H . Then CG(g) = CK(g)CH(g).

Lemma 2.8 ([13, 9.1.10]) Let the group G possess a nilpotent Hall π -subgroup H . Then every π -subgroup

of G is contained in a conjugate of H . In particular, all Hall π -subgroups of G are conjugate.

3. Proof of Theorem D

Proof If there exists a prime r ∈ π(G)− ({p} ∪ π(n)), then Lemma 2.1 shows that the Sylow r -subgroup R

of G is a direct factor of G , implying that the conjugacy class size of each r -element is an r -number. As a

result, R ≤ Z(G) and we may write G = A×B , where A ≤ Z(G) and B is a Hall {p} ∪ π(n)-subgroup of G .

As central factors are irrelevant in this context, we conclude that the set of conjugacy class sizes of primary and

biprimary elements of B is {1, pa, n, pan} . Without loss of generality, G can be assumed as a {p}∪π(n)-group.

Moreover, we may suppose that |π(n)| ≥ 2 since, otherwise, G is a {p, q} -group for some prime q distinct from

p , and the theorem follows immediately by [5, Theorem 2]. We divide the proof into several steps.

Step 1. There exists no p -element of conjugacy class size pa .

Assume false. Then G has a normal p -complement K by Lemma 2.2. Further, for every primary element

x ∈ K , we have

|G : K||K : CK(x)| = |G : CG(x)||CG(x) : CK(x)|,

yielding to |xK | = 1 or n . As a result, K is nilpotent by Lemma 2.3. Moreover, G is solvable according to [7,

Theorem 6.4.3], and we are done.

Step 2. There is no p′ -element of conjugacy class size n .

Assume on the contrary that y is a p′ -element of conjugacy class size n . By considering its primary

decomposition, y can be assumed to be a q -element for some q ∈ π(n). Further, for every primary q′ -element

x ∈ CG(y), we obtain that |CG(y) : CCG(y)(x)| = |CG(y) : CG(xy)| = 1 or pa , which follows by Lemma 2.1

that CG(y) = CG(y)q ×CG(y)q′ , where CG(y)q′ is the normal Hall q′ -subgroup of CG(y).

On the other hand, for every primary element z ∈ CG(y)q′ , we see that CG(y)q ≤ CG(z), indicating

that CG(y) ∩ CG(z) = CG(y)q(CG(y)q′ ∩ CG(z)). This implies that |CG(y)q′ : CCG(y)q′
(z)| = |CG(y)q′ :

CG(y)q′ ∩CG(z)| = |CG(y) : CG(yz)| = 1 or pa . Then Lemma 2.3 gives that CG(y)q′ is nilpotent and thus

CG(y)q′ = P × B , where P ∈ Sylp(G) and B is a Hall {p, q}′ -subgroup of CG(y). Moreover, CG(y) =

CG(y)p′ × P . Let t be a primary p′ -element of conjugacy class size pa in G , which exists by Step 1. Without

loss we may assume that y ∈ CG(t), yielding t ∈ CG(y)p′ , against the fact that CG(y)p′ is centralized by P .

Step 3. If x is a p -element of conjugacy class size pan , then CG(x) = CG(x)p × CG(x)p′ , where

CG(x)p is the Sylow p -subgroup of CG(x) and CG(x)p′ ≰ Z(G) is the abelian Hall p′ -subgroup of CG(x),

respectively. On the other hand, if y is an r -element of conjugacy class size pan with prime r ̸= p , then

CG(y) = CG(y)p ×CG(y)p′ , where CG(y)p ≰ Z(G) is the abelian Sylow p -subgroup of CG(y) and CG(y)p′

is the Hall π′ -subgroup of CG(y).

Let x be a p -element of conjugacy class size pan . Then for every primary p′ -element z ∈ CG(x), we

obtain that CG(xz) = CG(x) ∩CG(z) ≤ CG(x). By the maximality of pan , we see that CG(xz) = CG(x) ≤
CG(z) and thus z ∈ Z(CG(x)). This shows that CG(x) = CG(x)p × CG(x)p′ , where CG(x)p is the Sylow

p -subgroup of CG(x) and CG(x)p′ is the abelian Hall p′ -subgroup of CG(x). Assume that CG(x)p′ ≤ Z(G).
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Then CG(x)p′ = Z(G)p′ and thus |G : Z(G)|p′ = n . We prove that CG(t)p = Z(G)p for every noncentral

primary p′ -element t . If not, we may select some element w ∈ CG(t)p − Z(G) satisfying |wG| = n or pan by

Step 2. Both cases indicate that Z(G)p′ is a Hall p′ -subgroup of CG(w), yielding that t ∈ Z(G), contrary to

the choice of t . Hence, |G : Z(G)|p = pa and thus |G : Z(G)| = |G : Z(G)|p|G : Z(G)|p′ = pan , against the

existence of a primary or biprimary element of conjugacy class size pan .

Let y be an r -element of conjugacy class sizes pan with r ̸= p . The same argument above implies that

CG(y) = CG(y)r×CG(y)r′ = CG(y)p×CG(y)p′ , where CG(y)p is the abelian Sylow p -subgroup of CG(y) and

CG(y)p′ is the Hall p′ -subgroup of CG(y). Suppose that CG(y)p ≤ Z(G). Then CG(y)p = Z(G)p , yielding

that |G : Z(G)|p = pa . We prove that CG(w)p′ = Z(G)p′ for every noncentral p -element w . Otherwise, we

select some element t ∈ CG(w)p′ − Z(G), a primary element. Then |tG| = pa or pan by Step 2. Further,

both cases imply that Z(G)p is a Sylow p -subgroup of CG(t), yielding that w ∈ Z(G), contrary to the choice

of w . This shows that |G : Z(G)|p′ = n and thus |G : Z(G)| = |G : Z(G)|p|G : Z(G)|p′ = pan , against our

assumption.

In the following, we divide the proof into two cases: pa > n and pa < n .

Case 1. pa > n .

Step 4. Lp := {x ∈ G|x is a p -element such that |xG| = 1 or n} is an abelian normal Sylow p -subgroup

of G .

Since pa > n , by Lemma 2.5 we see that W := {x ∈ G| |xG| = 1 or n} is a normal subgroup of G .

Moreover, W = Lp × Z(G)p′ since there is no p′ -element of conjugacy class size n by Step 2. As a result,

Lp �G . Moreover, Lp is abelian since |uLp | divides (|Lp|, n) = 1 for each element u ∈ Lp .

If Lp is not a Sylow p -subgroup of G , then there exists a p -element y such that |yG| = pan by Step 1,

which leads to CG(y) = CG(y)p ×CG(y)p′ with the abelian Hall p′ -subgroup CG(y)p′ such that CG(y)p′ ≰
Z(G) by Step 3. Taking an arbitrary primary element z ∈ CG(y)p′ − Z(G), we see that CG(y) ≤ CG(z) and

thus CLp(y) ≤ CLp(z), which follows by Lemma 2.6 that z ∈ CG(Lp) =: M . Consequently, CG(y)p′ ≤ M .

On the other hand, because z has conjugacy class size pa or pan , we see that |CG(z) : CG(y)| = 1 or n . Note

that Lp ≤ CG(z). This indicates Lp ≤ CG(y) and thus y ∈ M . We conclude that M contains all p -elements

of G as Lp is abelian. As a result, CG(y) ≤ M and |G : M | is a p′ -number. Note that M ≤ CG(k) for every

k ∈ Lp − Z(G) because Lp is abelian. This yields that n divides |G : M | .
Along with the equality

|G : M ||M : CG(y)| = |G : CG(y)| = pan,

we see clearly that |G : M | = n and |M : CG(y)| = pa , indicating that CG(y)p′ is a Hall p′ -subgroup of

M . Further, every p -element of M has conjugacy class size 1 or pa in M . By Lemma 2.4, we see that

M = Mp ×CG(y)p′ , where Mp ∈ Sylp(G) and CG(y)p′ ≰ Z(G) by Step 3. If we choose a noncentral primary

element w ∈ CG(y)p′ , we get |wG| = n , against Step 2.

Step 5. Conclusion in Case 1.

Since G has an abelian normal Sylow p -subgroup Lp , we obtain that G has a p -complement H by the

Schur–Zassenhaus theorem. If H is abelian, then G is solvable by [7, Theorem 6.4.3], which follows by Theorem

B that G is nilpotent. Write G = P ×H , where P ∈Sylp(G). Consequently, H ≤ Z(G), a contradiction to our
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assumption. As a result, H is nonabelian. Lemma 2.7 implies that the set of conjugacy class sizes of primary

elements of H is {1, n} . Hence, H is nilpotent by Lemma 2.3, yielding that G is solvable, and the theorem is

proved.

Case 2. pa < n .

Step 6. Let q be a prime dividing n . Denote that Lq := {x ∈ G| x is a q -element such that |xG| = 1

or pa}. If Lq is not central, then Lq is the normal Sylow q -subgroup of G .

Since pa < n , we obtain that Lp′ := {x ∈ G| x is a p′ -element such that |xG| = 1 or pa} is an abelian

normal p′ -subgroup of G if we apply a similar argument as in Step 4. Further, Lq is abelian.

Assume that Lq ≰ Z(G). If Lq is not a Sylow q -subgroup of G , then there exists a q -element w satisfying

|wG| = pan according to Step 2. Step 3 implies that CG(w) = CG(w)p ×CG(w)p′ , where CG(w)p ≰ Z(G) is

the abelian Sylow p -subgroup of CG(w) and CG(w)p′ is the Hall p′ -subgroup of CG(w). For each element

u ∈ CG(w)p − Z(G), we have CG(w) ≤ CG(u), yielding CLq (w) ≤ CLq (u). By Lemma 2.6, we obtain that

u ∈ CG(Lq) =: N and thus CG(x)p ≤ N . On the other hand, we see that |CG(u) : CG(w)| = 1 or pa .

Since Lq ≤ CG(u), it follows that Lq ≤ CG(w), leading to w ∈ N . Consequently, every q -element of G lies

in N . Fix y ∈ Lq a noncentral q -element. We see that CG(w)p ≤ N ≤ CG(y) as Lq is abelian. Moreover,

|CG(y) : N ||N : CG(w)p| = |CG(y) : CG(w)p| is a p′ -number, which implies that CG(w)p ∈ Sylp(N) and

CG(w)p ∈ Sylp(CG(y)).

We claim that there exists some g ∈ CG(y) such that v ∈ CG(CG(w)
g
p) for an arbitrary element

v ∈ CG(y)− Z(G). If there exists some component vi of v with conjugacy class size pan , say v1 , then we see

easily that CG(v) = CG(v1). Moreover, |CG(y) : CG(yv1)| = n . By Sylow’s theorem, we see that there exists

some g ∈ CG(y) such that CG(w)
g
p ≤ CG(yv1) ≤ CG(v1) = CG(v), leading to v ∈ CG(CG(w)

g
p). Hence, we

assume that every component has no conjugacy class size pan . Let v1 be the p -component of v and v2, . . . , vt

be all the p′ -components of v . We show that CG(v2 · · · vt) = CG(v2). If t = 2, there is nothing to prove.

Assume then that t > 2 and j ∈ {3, . . . , t} . Then |vG2 | = pa and |vGj | = pa by Step 2. Moreover, it follows

that pa = |vG2 | | |(v2vj)G| ≤ |vG2 ||vGj | = p2a < pan by [13, 1.3.11], yielding CG(v2vj) = CG(v2). Further,

CG(v2 · · · vt) = CG(v2), as required. This gives that CG(v) = CG(v1v2). In particular, CG(v) = CG(v1) =

CG(v2) if we apply a similar argument above. Recall that |CG(y) : CG(yv1)| = n . By Sylow’s theorem, there

exists some g ∈ CG(y) such that CG(w)
g
p ≤ CG(yv1) ≤ CG(v1), leading to v1 ∈ CG(CG(w)

g
p). If v2 is a

q -element, then CG(w)p ≤ N ≤ CG(v2) is also a Sylow p -subgroup of CG(v2) by the second argument of this

step, leading to v2 ∈ CG(CG(w)p); if v2 is a q′ -component, then CG(yv2) = CG(v2) = CG(y), which also

implies that v2 ∈ CG(CG(w)
g
p). Consequently, CG(w)

g
p ≤ CG(v1v2) = CG(v), yielding v ∈ CG(CG(w)

g
p), as

claimed.

Therefore, CG(y) =
∪

g∈CG(y) CG(CG(w)p)
g , which forces that CG(w)p must be central in CG(y).

However, CG(w)p is not central in G by Step 3. Thus, if we choose some noncentral element u1 ∈ CG(y)p , we

have CG(y) ≤ CG(u1), leading to |uG
1 | = pa , against Step 1.

Step 7. Conclusion in Case 2.

Let t ∈ CG(y) be an arbitrary element. Write t = tq · tq′ as before. If we apply a similar argument in
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Step 6, we obtain that

CG(y) =
∪

g∈CG(y)

CCG(y)(CG(y)p)
gLq =

∪
g∈CG(y)

(CCG(y)(CG(y)pLq))
g,

which yields CG(y) = CCG(y)(CG(y)p)Lq . Hence, |G : CCG(y)(CG(y)p)| is a {p, q} -number. Now, if there

exists some noncentral element u ∈ CG(y)p that has conjugacy class size n or pan , we see that n is a q -power,

against |π(n)| ≥ 2. 2

4. Proof of Theorem C

Proof If we reason similarly as to the proof of Theorem D, we may assume that G is a (π(m) ∪ π(n))-group

with |π(m)| ≥ 2 and |π(n)| ≥ 2. Write π := π(m). The proof will be completed in several following steps.

Step 1. If x is a primary π -element of conjugacy class size mn , then CG(x) = CG(x)π × CG(x)π′ ,

where CG(x)π′ ≰ Z(G) is an abelian Hall π′ -subgroup of CG(x). Analogously, if y is a primary π′ -element

of conjugacy class size mn , then CG(y) = CG(y)π × CG(y)π′ , where CG(y)π ≰ Z(G) is an abelian Hall

π -subgroup of CG(y).

This follows exactly by a similar argument as in Step 3 of Theorem D.

Step 2. G has no primary π -element of conjugacy class size m . Analogously, there exists no π′ -element

of conjugacy class size n .

By the symmetry of m and n , we only prove the first statement. Let x be a primary π -element of

conjugacy class size m . We may consider x as a p -element with p ∈ π . Then for every primary p′ -element

y ∈ CG(x), we have |CG(x) : CCG(x)(y)| = |CG(x) : CG(xy)| = 1 or n , which follows by Lemma 2.1 that

CG(x) = CG(x)p ×CG(x)p′ , where CG(x)p′ is the Hall p′ -subgroup of CG(x).

For each primary element y ∈ CG(x)p′ , we have CG(x)p ≤ CG(y), implying CG(x) ∩ CG(y) =

CG(x)p(CG(x)p′ ∩ CG(y)). As a result, |CG(x)p′ : CCG(x)p′
(y)| = |CG(x)p′ : CG(x)p′ ∩ CG(y)| = |CG(x) :

CG(xy)| = 1 or n . If n occurs, then n is a prime power according to Lemma 2.3, against our assumption.

Hence, CG(x)p′ is abelian, implying that G has an abelian Hall π′ -subgroup H . Let y ∈ G be a primary or

biprimary element of conjugacy class sizes n . We may assume without loss that y is a q -element with prime

q ∈ π if we consider the primary decomposition of y . As a result, there is some g ∈ G such that xg ∈ CG(y),

yielding that y ∈ CG(x
g) = CG(x)

g
π ×Hg . Moreover, Hg ≤ CG(y), against |yG| = n .

Without loss of generality, we will assume that n < m in the following.

Step 3. Write Lπ := {x ∈ G|x is a π -element with |xG| = 1 or n} . Then Lπ is a nontrivial abelian

normal π -subgroup of G .

By Lemma 2.5, the set W := {x ∈ G||xG| = 1 or n} is a normal subgroup of G . Moreover, it follows

by Step 2 that W = Lπ × Z(G)π′ and, consequently, Lπ is a nontrivial normal π -subgroup of G . Further, for

each primary element y ∈ Lπ , we have that |yLπ | divides (|Lπ|, n) = 1, indicating that Lπ is abelian.

Write Lq := {x ∈ G|x to be a q -element such that |xG| = 1 or n} with q ∈ π . Then Lπ is the direct

product of the subgroups Lq for all primes q ∈ π . As a sequence, Lq is an abelian normal subgroup of G .

Step 4. If Lq is not central in G , then Lq is a Sylow q -subgroup of G .
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Assume that Lq ≰ Z(G). If Lq is not a Sylow q -subgroup of G , then there exists some q -element

w of conjugacy class size mn by Step 2. Moreover, Step 1 gives that CG(w) = CG(w)π × CG(w)π′ with

CG(w)π′ ≰ Z(G) abelian. For every u ∈ CG(w)π′ , we have CG(w) ≤ CG(u) and, in particular, CLq (w) ≤
CLq (u). By applying Lemma 2.6, we get u ∈ CG(Lq) =: N and, therefore, CG(w)π′ ≤ N . On the other hand,

|CG(u) : CG(w)| = 1 or n since u has conjugacy class size m or mn . Note that Lq ≤ CG(u). This implies

that Lq ≤ CG(w) and thus w ∈ N . We conclude that N contains all q -elements of G .

Fix y ∈ Lq − Z(G). Then CG(w)π′ ≤ N ≤ CG(y). Moreover, |CG(y) : N ||N : CG(w)π′ | = |CG(y) :

CG(w)π′ | is a π -number, indicating that both |CG(y) : N | and |N : CG(w)π′ | are π -numbers. Therefore,

CG(w)π′ ≰ Z(G) is an abelian Hall π′ -subgroup of N and CG(y). Let R ≤ CG(w)π′ ≤ N be a noncentral

Sylow r -subgroup of CG(y) with r ∈ π′ . We prove that for every noncentral element v ∈ CG(y)−Z(G), there

exists some g ∈ CG(y) such that v ∈ CG(R
g).

If there is some component vi of conjugacy class size mn , say v1 , then CG(v) = CG(v1). Moreover,

if v1 is a q -component, then R ≤ N ≤ CG(v1), yielding v ∈ CG(R); if v1 is a q′ -component, then

CG(yv1) = CG(v1) ≤ CG(y) and |CG(y) : CG(yv1)| = n . By Sylow’s theorem, there exists some g ∈ CG(y)

such that Rg ≤ CG(yv1) = CG(v1) = CG(v), leading to v ∈ CG(R
g). As a consequence, we assume that v

has no component of conjugacy class size mn . Write v = (v1 · · · vr) · (vr+1 · · · vt), where v1, ..., vr are all the

π -components of v and vr+1, ..., vt are all the π′ -components of v , respectively. Note that CG(w)π′ is an

abelian Hall π′ -subgroup of CG(y). Then every π′ -element of CG(y) is contained in a conjugate of CG(w)π′

by applying Lemma 2.8. As a result, there exists some g ∈ CG(y) such that vr+1 · · · vt ∈ CG(w)
g
π′ , leading

to vr+1 · · · vt ∈ CG(R
g). Hence, Rg ≤ CG(vr+1 · · · vt). On the other hand, by Step 2, we see that each vi

has conjugacy class size n with i ∈ {1, . . . , r} . For every j ∈ {2, . . . , r} , we see that n = |vG1 | | |(v1vj)G| ≤
|vG1 ||vGj | = n2 by [13, 1.3.11], and this implies that CG(v1) = CG(v1vj), implying CG(v1 · · · vr) = CG(v1).

Analogously, CG(y) = CG(yv1) = CG(v1). If v1 is a q′ -element, then by Sylow’s theorem, there exists some

g ∈ CG(y) such that Rg ≤ CG(v1) and thus v1 ∈ CG(R
g); if v1 is a q -element, then by a similar argument

above we obtain that R ≤ N ≤ CG(v1). This shows that Rg ≤ CG(v1 · vr+1 · · · vt) = CG(v), yielding

v ∈ CG(R
g).

Therefore, CG(y) =
∪

g∈CG(y) CCG(y)(R)g , which implies that R must be central in CG(y). However, we

know that R is not central in G , and so if we take some noncentral u1 ∈ R , we have CG(y) ≤ CG(R) ≤ CG(u1).

This provides an r -element u1 of conjugacy class size n , against Step 2.

Step 5. Final contradiction.

We will complete this theorem in the following two cases:

Case 1. Lπ is a Hall π -subgroup of G .

By the Schur–Zassenhaus theorem, G has a π -complement H . If H is abelian, then G is solvable, and

we are done. Assume then that H is nonabelian. Then it follows by Lemma 2.7 that the conjugacy class sizes

of primary elements of H are {1, n} . Then Lemma 2.3 implies that H is nilpotent, yielding that G is also

solvable, and the theorem is proved.

Case 2. Lπ is not a Hall π -subgroup of G .

In this case, there must be some prime p ∈ π such that Lp ≤ Z(G). Further, by Step 2 there exists some

q ∈ π such that Lq is not central in G , and thus Lq is a Sylow q -subgroup of G by Step 4. Fix y a q -element
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of conjugacy class size n . Let t be a p -element of conjugacy class size mn in G . Without loss, we assume that

t ∈ CG(y). It follows by Step 1 that CG(t) = CG(t)π ×CG(t)π′ with CG(t)π′ ≰ Z(G) abelian. Notice that

|CG(y) : CG(y) ∩CG(t)| = m . Then CG(t)π′ is also a Hall π′ -subgroup of CG(y). According to Lemma 2.8,

all the Hall π′ -subgroups of CG(y) are conjugate.

Since CG(t)π′ ≰ Z(G), there exists a noncentral Sylow r -subgroup R of CG(y) for some prime r ∈ π′ .

The same arguments in Step 4 give that vp′ ≤ CG(R
g) for every element v ∈ CG(y). Thus, if we take into

account that Lq is a normal Sylow q -subgroup of G , we have

CG(y) =
∪

g∈CG(y)

CCG(y)(R)gLq =
∪

g∈CG(y)

(CCG(y)(R)Lq)
g.

This implies that CG(y) = CCG(y)(R)Lq , and accordingly, |CG(y) : CCG(y)(R)| is a q -number. Now

we take some noncentral u1 ∈ R , which has conjugacy class size m or mn . Observe that CCG(y)(R) ≤
CG(u1) ∩CG(y) = CG(u1y) ≤ CG(y), so that u1y has conjugacy class size n or mn . The first case leads to

CG(y) ≤ CG(u), which is a contradiction, and so u1y has conjugacy class size mn and it follows that m is a

q -power. By Theorem D, we obtain that G is solvable and the theorem is established. 2
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