Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тüвітак

Turk J Math
(2016) 40: $397-410$
(c) TÜBİTAK
doi:10.3906/mat-1502-75

The $\mathbf{M}[-]$ and $-[\mathbf{M}]$ functors and five short lemma in H_{v}-modules

Yaser VAZIRI*, Mansour GHADIRI, Bijan DAVVAZ
Department of Mathematics, Yazd University, Yazd, Iran

| Received: 26.02 .2015 | Accepted/Published Online: 24.08 .2015 | Final Version: 10.02 .2016 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

The largest class of multivalued systems satisfying the module-like axioms are the H_{v}-modules. The main tools concerning the class of H_{v}-modules with the ordinary modules are the fundamental relations. Based on the relation ε^{*}, exact sequences in H_{v}-modules are defined. In this paper, we introduce the H_{v}-module $M[A]$ and determine its heart and the connection between equivalence relations $\varepsilon_{M[A]}^{*}$ and ε_{A}^{*}. Moreover, we define the $M[-]$ and $-[M]$ functors and investigate the exactness and some concepts related to them. Finally, we prove the five short lemma in H_{v}-modules.

Key words: H_{v}-module, exact sequence, five short lemma, weak equality, fundamental relation ε^{*}

1. Introduction

A hyperstructure (or hypergroupoid) is a nonempty set H together with a hyperoperation defined on H, that is, a mapping of $H \times H$ into the family of nonempty subsets of H. In 1934, Marty introduced the concept of a hypergroup [12] as a nonempty set H equipped with a hyperoperation $*: H \times H \longrightarrow \mathcal{P}^{*}(H)$ that satisfies the associative law: $(x * y) * z=x *(y * z)$ for every $x, y, z \in H$ and the reproduction axiom is valid, i.e. $x * H=H * x=H$ for every $x \in H$; it means that for any $x, y \in H$ there exist $u, v \in H$ such that $y \in x * u$ and $y \in v * x$. If A, B are nonempty subsets of H then $A * B$ is given by $A * B=\bigcup_{a \in A, b \in B} a * b$. Moreover, $a * A$ is used for $\{x\} * A$ and $A * x$ for $A *\{x\}$. Several books have been written to date on hyperstructures [2, 3, 9, 15]. The concept of H_{v}-structures as a larger class than the well-known hyperstructures was introduced by Vougiouklis at the Fourth Congress of AHA (Algebraic Hyperstructures and Applications) [16], where the axioms are replaced by the weak ones, that is, instead of the equality on sets one has nonempty intersections. The basic definitions and results of H_{v}-structures can be found in [6, 9, 15]. This concept has been further investigated by many researchers. The largest class of multivalued systems satisfying the module-like axioms is the class of H_{v}-modules (or H_{v}-vector spaces) $[1,4,5,7,10,11,13,14,17]$.

In 2001, Davvaz and Ghadiri defined exact sequences in H_{v}-modules and proved some results in this respect [8]. In Section 2, we recall some basic concepts for the sake of completeness and we present some examples for the definitions. In Section 3, we introduce the concepts of $M[-]$ and $-[M]$ functors and investigate some related concepts. In Section 4, we determine the heart of $M[A]$ and the connection between equivalence relations $\varepsilon_{M[A]}^{*}$ and ε_{A}^{*}. Finally, we investigate the exactness of functors $M[-]$ and $-[M]$ and prove the five short lemma in H_{v}-modules.

[^0]
2. Basic concepts

In this section we recall some basic concepts. Let H be a nonempty set and $\mathcal{P}^{*}(H)$ be the family of nonempty subsets of H. Every function $*: H \times H \rightarrow \mathcal{P}^{*}(H)$ is called a hyperoperation on H and $(H, *)$ is called a hyperstructure. The hyperstructure $(H, *)$ is called an H_{v}-group if
(1) The $*$ is weak associative, i.e. $x *(y * z) \cap(x * y) * z \neq \emptyset$,
(2) The reproduction axiom holds, i.e. $a * H=H * a=H$ for every $a \in H$.

We say H is weak commutative if for every $x, y \in H, x * y \cap y * x \neq \emptyset$.
A multivalued system $(R,+, \cdot)$ is called an H_{v}-ring if the following axioms hold
(1) $(R,+)$ is a weak commutative H_{v}-group,
(2) (R, \cdot) is a weak associative, i.e. $x \cdot(y \cdot z) \cap(x \cdot y) \cdot z \neq \emptyset$ for every $x, y, z \in R$,
(3) The \cdot hyperoperation is weak distributive with respect to + , i.e. for every $x, y, z \in R$, we have $x \cdot(y+z) \cap(x \cdot y+x \cdot z) \neq \emptyset,(x+y) \cdot z \cap(x \cdot z+y \cdot z) \neq \emptyset$.

For example, if $(H,+)$ is an H_{v}-group, then for every hyperoperation • such that $\{x, y\} \subseteq x \cdot y$ for every $x, y \in H$, the hyperstructure $(H,+, \cdot)$ is an H_{v}-ring. Therefore, we can construct some H_{v}-rings by a given H_{v}-group [15].

Let M be a nonempty set. Then M is called a left H_{v}-module over an H_{v}-ring R if $(M,+)$ is a weak commutative H_{v}-group and there exists a map $\cdot: R \times M \rightarrow \mathcal{P}^{*}(M)$ denoted by $(r, m) \mapsto r m$ such that for every $r_{1}, r_{2} \in R$ and every $m_{1}, m_{2} \in M$, we have
(1) $r_{1}\left(m_{1}+m_{2}\right) \cap\left(r_{1} m_{1}+r_{1} m_{2}\right) \neq \emptyset$,
(2) $\left(r_{1}+r_{2}\right) m_{1} \cap\left(r_{1} m_{1}+r_{2} m_{1}\right) \neq \emptyset$,
(3) $\left(r_{1} r_{2}\right) m_{1} \cap r_{1}\left(r_{2} m_{1}\right) \neq \emptyset$.

Let M_{1} and M_{2} be two H_{v}-modules over an H_{v}-ring R. A mapping $f: M_{1} \longrightarrow M_{2}$ is called a strong H_{v}-homomorphism if for every $x, y \in M_{1}$ and every $r \in R$, we have $f(x+y)=f(x)+f(y)$ and $f(r x)=r f(x)$.

The H_{v}-modules M_{1} and M_{2} are called isomorphic if the H_{v}-homomorphism f is one to one and onto. It is denoted by $M_{1} \cong M_{2}$.

By using a certain type of equivalence relations, we can connect hyperstructures to usual structures. The smallest of these relations are called fundamental relations and denoted by $\beta^{*}, \gamma^{*}, \varepsilon^{*}$, so that if H is an H_{v}-group (H_{v}-ring, H_{v}-module over an H_{v}-ring R) then H / β^{*} is a group $\left(H / \gamma^{*}\right.$ is a ring, H / ε^{*} is an R / γ^{*}-module). The fundamental relation ε^{*} on an H_{v}-module M can be defined as follows:

Consider the left H_{v}-module M over an H_{v}-ring R. If ϑ denotes the set of all expressions consisting of finite hyperoperations of either on R and M or of the external hyperoperations applying on finite sets of elements of R and M, a relation ε can be defined on M whose transitive closure is the fundamental relation ε^{*}. The relation ε is defined as follows: for every $x, y \in M, x \varepsilon y$ if and only if $\{x, y\} \subseteq u$ for some $u \in \vartheta$; i.e.

$$
x \varepsilon y \Leftrightarrow x, y \in \sum_{i=1}^{n} m_{i}^{\prime}, m_{i}^{\prime}=m_{i} \text { or } m_{i}^{\prime}=\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} r_{i j k}\right) m_{i},
$$

where $m_{i} \in M, r_{i j k} \in R$.

Suppose that $\gamma^{*}(r)$ is the equivalence class containing $r \in R$ and $\varepsilon^{*}(x)$ is the equivalence class containing $x \in M$. On M / ε^{*} the \oplus and the external product \odot using the γ^{*} classes in R are defined as follows:

For every $x, y \in M$, and for every $r \in R$,

$$
\begin{aligned}
& \varepsilon^{*}(x) \oplus \varepsilon^{*}(y)=\varepsilon^{*}(c), \text { for every } c \in \varepsilon^{*}(x)+\varepsilon^{*}(y) \\
& \gamma^{*}(r) \odot \varepsilon^{*}(x)=\varepsilon^{*}(d), \text { for every } d \in \gamma^{*}(r) \cdot \varepsilon^{*}(x)
\end{aligned}
$$

The kernel of canonical map $\phi: M \longrightarrow M / \varepsilon_{M}^{*}$ is called the heart of M and it is denoted by ω_{M}, i.e. $\omega_{M}=\{x \in M \mid \phi(x)=0\}$, where 0 is the unit element of the group $\left(M / \varepsilon^{*}, \oplus\right)$. One can prove that the unit element of the group $\left(M / \varepsilon^{*}, \oplus\right)$ is equal to ω_{M}. By the definition of ω_{M}, we have

$$
\omega_{\omega_{M}}=\operatorname{Ker}\left(\phi: \omega_{M} \longrightarrow \omega_{M} / \varepsilon_{\omega_{M}}^{*}=0\right)=\omega_{M}
$$

The kernel of a strong H_{v}-homomorphism $f: A \longrightarrow B$ is defined as follows:

$$
\operatorname{Ker}(f)=\left\{a \in A \mid f(a) \in \omega_{B}\right\} .
$$

Let M_{1} and M_{2} be two H_{v}-modules over an H_{v}-ring R and let $\varepsilon_{M_{1}}^{*}, \varepsilon_{M_{2}}^{*}$, and $\varepsilon_{M_{1} \times M_{2}}^{*}$ be the fundamental relations on M_{1}, M_{2}, and $M_{1} \times M_{2}$ respectively; then

$$
\left(x_{1}, x_{2}\right) \varepsilon_{M_{1} \times M_{2}}^{*}\left(y_{1}, y_{2}\right) \Leftrightarrow x_{1} \varepsilon_{M_{1}}^{*} y_{1} \text { and } x_{2} \varepsilon_{M_{2}}^{*} y_{2} ; \text { for all }\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in M_{1} \times M_{2}
$$

and it is easy to see that $\left(M_{1} \times M_{2}\right) / \varepsilon_{M_{1} \times M_{2}}^{*} \cong M_{1} / \varepsilon_{M_{1}}^{*} \times M_{2} / \varepsilon_{M_{2}}^{*}[14,15]$.
Definition 2.1 [8] Let M be an H_{v}-module and X, Y be nonempty subsets of M. We say X is weak equal to Y and write $X \stackrel{w}{=} Y$ if and only if for every $x \in X$ there exists $y \in Y$ such that $\varepsilon_{M}^{*}(x)=\varepsilon_{M}^{*}(y)$ and for every $y \in Y$ there exists $x \in X$ such that $\varepsilon_{M}^{*}(x)=\varepsilon_{M}^{*}(y)$.

Definition 2.2 [8] Let $M_{0} \xrightarrow{f_{1}} M_{1} \xrightarrow{f_{2}} M_{2} \longrightarrow \cdots \longrightarrow M_{n-1} \xrightarrow{f_{n}} M_{n}$ be a sequence of H_{v}-modules and strong H_{v}-homomorphisms. We say this sequence is exact if for every $2 \leq i \leq n, \operatorname{Im}\left(f_{i-1}\right) \stackrel{w}{=} \operatorname{Ker}\left(f_{i}\right)$.

Definition 2.3 [8] A function $f: M_{1} \longrightarrow M_{2}$ is called weak-monic if for every $m_{1}, m_{1}^{\prime} \in M_{1}, f\left(m_{1}\right)=f\left(m_{1}^{\prime}\right)$ implies $\varepsilon_{M_{1}}^{*}\left(m_{1}\right)=\varepsilon_{M_{1}}^{*}\left(m_{1}^{\prime}\right)$ and f is called weak-epic if for every $m_{2} \in M_{2}$ there exists $m_{1} \in M_{1}$ such that $\varepsilon_{M_{2}}^{*}\left(m_{2}\right)=\varepsilon_{M_{1}}^{*}\left(f\left(m_{1}\right)\right)$. Finally f is called weak-isomorphism if f is weak-monic and weak-epic.

We present the following example for the above definitions.

Example 1 Let R be an H_{v}-ring. Consider the following H_{v}-modules on R.
(1) $M=\{a, b\}$ together with the following hyperoperations:

$$
\begin{array}{c|ll}
*_{M} & a & b \\
\hline a & a & b \\
b & b & a
\end{array} \text { and } \quad{ }_{M}: \underset{(r, m) \mapsto\{a\}}{ } \quad \begin{gathered}
\\
\hline
\end{gathered}
$$

(2) $M_{1}=\{0,1,2\}$ together with the following hyperoperations:

$*_{M_{1}}$	0	1	2		
0	0	1	2		
1	1	0,2	1		
2	2	1	0	and $\quad{ }_{M_{1}}: R \underset{\left(r, m_{1}\right) \mapsto\{0\}}{ } \quad$	
:---:					

(3) $M_{2}=\{\overline{0}, \overline{1}, \overline{2}\}$ together with the following hyperoperations:

$*_{M_{2}}$	$\overline{0}$	$\overline{1}$	$\overline{\mathcal{D}}$		
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$		
$\overline{1}$	$\overline{1}$	$\overline{\mathcal{D}}$	$\overline{0}$	and	$M_{2}: R \underset{\left(r, m_{2}\right) \mapsto M_{2}}{R \times M_{2} \rightarrow \mathcal{P}^{*}\left(M_{2}\right)}$
$\overline{\mathcal{D}}$	$\overline{\mathcal{D}}$	$\overline{0}$	$\overline{1}$		

Since $\{0,2\} \subseteq 1 *_{M_{1}} 1, r \cdot m_{1}=0$ for every $r \in R$ and every $m_{1} \in M_{1}$ and $0 *_{M_{1}} 0=0$, we obtain $M_{1} /$ $\varepsilon_{M_{1}}^{*}=\left\{\varepsilon_{M_{1}}^{*}(0)=\varepsilon_{M_{1}}^{*}(2)=\{0,2\}, \varepsilon_{M_{1}}^{*}(1)=\{1\}\right\}$. Moreover, since $\varepsilon_{M_{1}}^{*}(0)+\varepsilon_{M_{1}}^{*}(1)=\varepsilon_{M_{1}}^{*}(1)$, it follows that $\omega_{M_{1}}=\varepsilon_{M_{1}}^{*}(0)=\{0,2\}$. Since $r \cdot{ }_{M_{2}} m_{2}=M_{2}$ for every $r \in R$ and every $m_{2} \in M_{2}$, we obtain $M_{2} /$ $\varepsilon_{M_{2}}^{*}=\{\{\overline{0}, \overline{1}, \bar{Q}\}\}$ and $\omega_{M_{2}}=\varepsilon_{M_{2}}^{*}(\overline{0})=\varepsilon_{M_{2}}^{*}(\overline{1})=\varepsilon_{M_{2}}^{*}(\overline{\mathcal{L}})=M_{2}$.

Since $\left(M_{1} \times M_{2}\right) / \varepsilon_{M_{1} \times M_{2}}^{*} \cong M_{1} / \varepsilon_{M_{1}}^{*} \times M_{2} / \varepsilon_{M_{2}}^{*}$, it follows that

$$
M_{1} \times M_{2} / \varepsilon_{M_{1} \times M_{2}}^{*}=\{\{(0, \overline{0}),(0, \overline{1}),(0, \bar{Q}),(2, \overline{0}),(2, \overline{1}),(2, \bar{Q})\},\{(1, \overline{0}),(1, \overline{1}),(1, \bar{Q})\}\}
$$

Note that $\omega_{M_{1} \times M_{2}}=\omega_{M_{1}} \times \omega_{M_{2}}$. The subsets $X=\{(2, \overline{1}),(2, \overline{\mathscr{V}}),(1, \overline{1}),(1, \overline{\mathcal{D}})\}$ and $Y=\{(0, \overline{\mathcal{L}}),((1, \overline{0})\}$ of $M_{1} \times M_{2}$ are weakly equal. Now consider $f \in M\left[M_{1} \times M_{2}\right]$, where $f(a)=(2, \overline{2}), f(b)=(1, \overline{0})$ and $g \in M_{1}\left[M_{1} \times M_{2}\right]$, where $g(0)=(1, \overline{1}), g(1)=(2, \overline{2}), g(2)=(1, \overline{1})$. Then f is weak-epic and g is weak-monic.

3. $\mathrm{M}[-]$ and $-[\mathrm{M}]$ functors

Let $f: A \longrightarrow B$ be a strong H_{v}-homomorphism of H_{v}-modules over an H_{v}-ring R. Then $F: A / \varepsilon_{A}^{*} \longrightarrow B / \varepsilon_{B}^{*}$, where $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(f(a))$ is an R / γ^{*}-homomorphism of R / γ^{*}-modules. Let R be a weak-commutative H_{v} ring and \mathbf{H} be the set of all H_{v}-modules and all strong R-homomorphisms. One can show that \mathbf{H} is a category. Furthermore, set \mathbf{H}^{*} the category of R / γ^{*}-modules and R / γ^{*}-homomorphisms. Then $T: \mathbf{H} \longrightarrow \mathbf{H}^{*}$, defined by $T(A)=A / \varepsilon_{A}^{*}$ and $T(f: A \longrightarrow B)=F: A / \varepsilon^{*} \longrightarrow B / \varepsilon_{B}^{*}$, where $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(f(a))$ is a covariant functor [8]. Now we want to introduce $M[-]$ and $-[M]$ functors and investigate some related concepts.

Suppose that M and N are two H_{v}-modules and $M[N]$ is the set of all functions on M with values in N. First we equip $M[N]$ to appropriate hyperoperations to be an H_{v}-module. Then we introduce the functors $M[-]$ and $-[M]$ and investigate some related concepts. Throughout this paper, the hyperoperations in M, N and $M[N]$ will be shown with the same symbols.

Theorem 3.1 The $M[N]$ with the following hyperoperations is an H_{v}-module.

$$
\begin{aligned}
& f+g=\{h \in M[N] \mid h(x) \in f(x)+g(x), \forall x \in M\}, \\
& r \cdot f=\{k \in M[N] \mid k(x) \in r \cdot f(x), \forall x \in M\} .
\end{aligned}
$$

Proof The hyperoperations + and \cdot in $M[N]$ are well defined and for + and \cdot in N are well defined. Let $f, g, h \in M[N]$. We have

$$
\begin{aligned}
(f+g)+h & =\{l \in M[N] \mid l(x) \in f(x)+g(x), \forall x \in M\}+h=\bigcup_{l \in f+g} l+h \\
& =\{L \in M[N] \mid L(x) \in l(x)+h(x), \forall x \in M, l(x) \in f(x)+g(x)\}
\end{aligned}
$$

and

$$
\begin{aligned}
f+(g+h) & =f+\{k \in M[N] \mid k(x) \in g(x)+h(x), \forall x \in M\}=\bigcup_{k \in g+h} f+k \\
& =\{K \in M[N] \mid K(x) \in f(x)+k(x), \forall x \in M, k(x) \in g(x)+h(x)\}
\end{aligned}
$$

Since N is an H_{v}-group, for all $x \in M$ there exists $n_{x} \in[(f(x)+g(x))+h(x)] \cap[f(x)+(g(x)+h(x))]$. We define $u \in M[N]$ by $u(x)=n_{x}$, according to the choice axiom. Then $u \in[(f+g)+h] \cap[f+(g+h)]$ and associativity is satisfied.

For the reproduction axiom let $f, g \in M[A]$. Then for all $x \in M, f(x), g(x) \in N$ and so there exists $y_{x} \in N$ such that $f(x) \in g(x)+y_{x}$. We define $h \in M[N]$ by $h(x)=y_{x}$; then $f \in g+h$. Similarly, there exists $h^{\prime} \in M[N]$ such that $f \in h^{\prime}+g$. Since N is an H_{v}-module, the conditions of H_{v}-modules are satisfied in $M[N]$. We check only one of the H_{v}-module conditions. Let $r_{1}, r_{2} \in R$ and $f \in M[N]$. Since N is an H_{v}-module, it follows that for every $x \in M$ there exists $n_{x} \in\left[\left(r_{1}+r_{2}\right) f(x)\right] \cap\left[r_{1} f(x)+r_{2} f(x)\right]$. We define $h \in M[N]$ by $h(x)=n_{x}$. Obviously, $h \in\left[\left(r_{1}+r_{2}\right) f\right] \cap\left[\left(r_{1} f+r_{2} f\right)\right] \neq \emptyset$.

Lemma 3.2 Let $f: A \longrightarrow B$ be a strong H_{v}-homomorphism and M be an H_{v}-module. Then
(1) The map $\bar{f}: M[A] \longrightarrow M[B]$ defined by $\bar{f}(\phi)=f \circ \phi$ is a strong H_{v}-homomorphism.
(2) The map $\bar{f}: B[M] \longrightarrow A[M]$ defined by $\bar{f}(\phi)=\phi \circ f$ is a strong H_{v}-homomorphism.

Proof (1) Let $\phi_{1}, \phi_{2} \in M[A]$. Then

$$
\begin{aligned}
& \bar{f}\left(\phi_{1}+\phi_{2}\right)=\left\{f \circ h \mid h \in M[A], h(m) \in \phi_{1}(m)+\phi_{2}(m), \forall m \in M\right\} \\
& \bar{f}\left(\phi_{1}\right)+\bar{f}\left(\phi_{2}\right)=f \circ \phi_{1}+f \circ \phi_{2}=\left\{h^{\prime} \in M[B] \mid h^{\prime}(m) \in f \circ \phi_{1}(m)+f \circ \phi_{2}(m)\right\} .
\end{aligned}
$$

Suppose that $f \circ h \in \bar{f}\left(\phi_{1}+\phi_{2}\right)$, where $h \in M[A]$ and $h(m) \in \phi_{1}(m)+\phi_{2}(m)$ for every $m \in M$. Then $f(h(m)) \in f\left(\phi_{1}(m)+\phi_{2}(m)\right)=f\left(\phi_{1}(m)\right)+f\left(\phi_{2}(m)\right)$. Therefore, $\bar{f}\left(\phi_{1}+\phi_{2}\right) \subseteq \bar{f}\left(\phi_{1}\right)+\bar{f}\left(\phi_{2}\right)$.

Conversely, suppose that $h^{\prime} \in \bar{f}\left(\phi_{1}\right)+\bar{f}\left(\phi_{2}\right)$. We need to find an $h \in M[A]$ such that $h^{\prime}=f o h$ and $h(m) \in \phi_{1}(m)+\phi_{2}(m)$. By hypothesis for $m \in M$, we have

$$
h^{\prime}(m)=b_{m} \in f \circ \phi_{1}(m)+f \circ \phi_{2}(m)=f\left(\phi_{1}(m)+\phi_{2}(m)\right) \subseteq \operatorname{Im}(f)
$$

Therefore, $b_{m} \in f\left(\phi_{1}(m)+\phi_{2}(m)\right)$. Now, according to the choice axiom, we can select $a \in f^{-1}\left(b_{m}\right)$ such that $a \in \phi_{1}(m)+\phi_{2}(m)$ and define $h(m)=a$.

Similarly, one can show that $\bar{f}(r \phi)=r \bar{f}(\phi)$.
(2) Let $\phi_{1}, \phi_{2} \in B[M]$. Then

$$
\begin{aligned}
& \bar{f}\left(\phi_{1}+\phi_{2}\right)=\left\{h \circ f \mid h \in B[M], h(b) \in \phi_{1}(b)+\phi_{2}(b)\right\}, \\
& \bar{f}\left(\phi_{1}\right)+\bar{f}\left(\phi_{2}\right)=\phi_{1} \circ f+\phi_{2} \circ f=\left\{h^{\prime} \in A[M] \mid h^{\prime}(a) \in \phi_{1} \circ f(a)+\phi_{2} \circ f(a)\right\} .
\end{aligned}
$$

Suppose that $h \circ f \in \bar{f}\left(\phi_{1}+\phi_{2}\right)$, where $h \in B[M]$ and $h(b) \in \phi_{1}(b)+\phi_{2}(b)$ for every $b \in B$. Since $\operatorname{Im}(f) \subseteq B$, we have $h(f(a)) \in \phi_{1}(f(a))+\phi_{2}(f(a))$ for every $a \in A$. Therefore, $\bar{f}\left(\phi_{1}+\phi_{2}\right) \subseteq \bar{f}\left(\phi_{1}\right)+\bar{f}\left(\phi_{2}\right)$.

Conversely, suppose that $h^{\prime} \in \bar{f}\left(\phi_{1}\right)+\bar{f}\left(\phi_{2}\right)$. We need to find an $h \in B[M]$ such that $h^{\prime}=h \circ f$ and $h(b) \in \phi_{1}(b)+\phi_{2}(b)$. For every $b \in \operatorname{Im}(f) \subseteq B$ we define $h(b)=h^{\prime}(a)$, where $f(a)=b$ and for every $b \in B \backslash \operatorname{Im}(f)$ according to the choice axiom we select an m_{b} in $\phi_{1}(b)+\phi_{2}(b) \subseteq M$ and define $h(b)=m_{b}$. Then h satisfies the requirement conditions.

Similarly, one can show that $\bar{f}(r \phi)=r \bar{f}(\phi)$.

Lemma 3.3 Let M be an H_{v}-module and $f: A \longrightarrow B$ be a morphism in the category \boldsymbol{H}. Then
(1) $M[-]: \boldsymbol{H} \longrightarrow \boldsymbol{H}$ defined by $M[-](A)=M[A]$ and $M[-](f)=\bar{f}: M[A] \longrightarrow M[B]$, where $\bar{f}(\phi)=f \circ \phi$ is a covariant functor.
(2) $-[M]: \boldsymbol{H} \longrightarrow \boldsymbol{H}$ defined by $-[M](A)=A[M]$ and $-[M](f)=\bar{f}: B[M] \longrightarrow A[M]$, where $\bar{f}(\phi)=\phi \circ f$ is a contravariant functor.
Proof (1) By Theorem 3.1 if A is an H_{v}-module, then $M[-](A)=M[A]$ is an H_{v}-module. By Lemma 3.2 if $f: A \longrightarrow B$ is a strong H_{v}-homomorphism, then $M[-](f)=\bar{f}$ is a strong H_{v}-homomorphism. Now let $A \xrightarrow{f} B \xrightarrow{g} C$ be a strong H_{v}-homomorphism in \mathbf{H}. Then

$$
M[-](g \circ f)(\phi)=g \circ f \circ \phi=g(f \circ \phi)=M[-](g)(f \circ \phi)=M[-](g) \circ M[-](f)(\phi)
$$

and for every $A \in \operatorname{obj} \mathbf{H}$ we have $M[-]\left(1_{A}\right)(\phi)=1_{A} \circ \phi=\phi$. Then $M[-]\left(1_{A}\right)=1_{M[-](A)}$ and so $M[-]$ is a covariant functor.
(2) By Theorem 3.1 if A is an H_{v}-module, then $-[M](A)=A[M]$ is an H_{v}-module. By Lemma 3.2 if $f: A \longrightarrow B$ is a strong H_{v}-homomorphism, then $-[M](f)=\bar{f}$ is a strong H_{v}-homomorphism. Now let $A \xrightarrow{f} B \xrightarrow{g} C$ be a strong H_{v}-homomorphism in \mathbf{H}. Then

$$
-[M](g \circ f)(\phi)=\phi \circ g \circ f=(\phi \circ g) f=-[M](f)(\phi \circ g)=-[M](f) \circ-[M](g)(\phi),
$$

and for every $A \in \operatorname{obj} \mathbf{H}$ we have $-[M]\left(1_{A}\right)(\phi)=\phi \circ 1_{A}=\phi$. Then, $-[M]\left(1_{A}\right)=1_{-[M](A)}$ and so $-[M]$ is a contravariant functor.

Lemma 3.4 Let

be a commutative diagram of H_{v}-modules and strong H_{v}-homomorphisms. Then the following diagrams are commutative.

Proof We have $T(A)=A / \varepsilon_{A}^{*}$ and $T(f: A \longrightarrow B)=F: A / \varepsilon^{*} \longrightarrow B / \varepsilon_{B}^{*}$, where $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(f(a))$. Therefore,

$$
K \circ F=T(k) \circ T(f)=T(k \circ f)=T(g \circ h)=T(g) \circ T(h)=G \circ H .
$$

We have $M[-](A)=M[A], M[-](f: A \longrightarrow B)=\bar{f}: M[A] \longrightarrow M[B]$, where $\bar{f}(\phi)=f \circ \phi$. Therefore,

$$
\begin{aligned}
\bar{k} \circ \bar{f} & =M[-](k) \circ M[-](f)=M[-](k \circ f)=M[-](g \circ h) \\
& =M[-](g) \circ M[-](h)=\bar{g} \circ \bar{h} .
\end{aligned}
$$

We know that the combination of two covariant functors is a covariant functor. Therefore, the map $S=$ $T \circ M[-]: \mathbf{H} \longrightarrow \mathbf{H}^{*}$ is a covariant functor, where

$$
S(A)=M[A] / \varepsilon_{M[A]}^{*} \text { and } S(f: A \longrightarrow B)=\bar{F}: M[A] / \varepsilon_{M[A]}^{*} \longrightarrow M[B] / \varepsilon_{M[B]}^{*}
$$

where $\bar{F}\left(\varepsilon_{M[A]}^{*}(\phi)\right)=\varepsilon_{M[B]}^{*}(f \circ \phi)$.

Lemma 3.5 For every $A \in \operatorname{obj} \boldsymbol{H}, \tau_{A}: T(A) \longrightarrow S(A)$ defined by $\tau_{A}\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{M[A]}^{*}\left(\phi_{a}\right)$ is a R / γ^{*}-homomorphism, where $\phi_{a}: M \longrightarrow A$ defined by $\phi_{a}(m)=$ a for every $m \in M$. Then the family $\tau=\left(\tau_{A}: T(A) \longrightarrow S(A)\right)_{A \in o b j \boldsymbol{H}}$ is a natural transformation from T to S.

Proof We have

$$
\tau_{A}\left(\varepsilon_{A}^{*}(a) \oplus \varepsilon_{A}^{*}(b)\right)=\tau_{A}\left(\varepsilon_{A}^{*}(a+b)\right)=\varepsilon_{M[A]}^{*}\left(\phi_{t}\right)
$$

where $t \in a+b$. On the other hand, we obtain

$$
\begin{aligned}
\tau_{A}\left(\varepsilon_{A}^{*}(a)\right) \oplus \tau_{A}\left(\varepsilon_{A}^{*}(b)\right) & =\varepsilon_{M[A]}^{*}\left(\phi_{a}\right) \oplus \varepsilon_{M[A]}^{*}\left(\phi_{b}\right)=\varepsilon_{M[A]}^{*}\left(\phi_{a}+\phi_{b}\right) \\
& =\varepsilon_{M[A]}^{*}\left(\left\{\phi \in M[A] \mid \phi(m) \in \phi_{a}(m)+\phi_{b}(m), \forall m \in M\right\}\right) \\
& =\varepsilon_{M[A]}^{*}(\{\phi \in M[A] \mid \phi(m) \in a+b, \forall m \in M\}) \\
& =\varepsilon_{M[A]}^{*}\left(\phi_{t}\right)
\end{aligned}
$$

where $t \in a+b$. Therefore, $\tau_{A}\left(\varepsilon_{A}^{*}(a) \oplus \varepsilon_{A}^{*}(b)\right)=\tau_{A}\left(\varepsilon_{A}^{*}(a)\right) \oplus \tau_{A}\left(\varepsilon_{A}^{*}(b)\right)$. Similarly, we have

$$
\begin{aligned}
\tau_{A}\left(\gamma^{*}(r) \odot \varepsilon_{A}^{*}(a)\right) & =\tau_{A}\left(\varepsilon_{A}^{*}(d)\right), \text { for some } d \in \gamma^{*}(r) \cdot \varepsilon_{A}^{*}(a) \\
& =\varepsilon_{M[A]}^{*}\left(\phi_{d}\right), \text { for some } d \in r \cdot a
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma^{*}(r) \odot \tau_{A}\left(\varepsilon_{A}^{*}(a)\right) & =\gamma^{*}(r) \odot \varepsilon_{M[A]}^{*}\left(\phi_{a}\right) \\
& =\varepsilon_{M[A]}^{*}(h) \text { for some } h \in r \cdot \phi_{a} \\
& =\varepsilon_{M[A]}^{*}(h),
\end{aligned}
$$

where for every $m \in M, h(m) \in r \cdot \phi_{a}(m)=r \cdot a$. Therefore,

$$
\tau_{A}\left(\gamma^{*}(r) \odot \varepsilon_{A}^{*}(a)\right)=\gamma^{*}(r) \odot \tau_{A}\left(\varepsilon_{A}^{*}(a)\right)
$$

Now let $f: A \longrightarrow B$ be a morphism in H and consider the following diagram.

We have

$$
\begin{aligned}
& S(f) \circ \tau_{A}\left(\varepsilon_{A}^{*}(a)\right)=S(f)\left(\varepsilon_{M[A]}^{*}\left(\phi_{a}\right)\right)=\varepsilon_{M[B]}^{*}\left(f \circ \phi_{a}\right), \\
& \tau_{B} \circ T(f)\left(\varepsilon_{A}^{*}(a)\right)=\tau_{B}\left(\varepsilon_{B}^{*}(f(a))\right)=\varepsilon_{M[B]}^{*}\left(\phi_{f(a)}\right)
\end{aligned}
$$

Obviously, $f \circ \phi_{a}=\phi_{f(a)}$ and so $S(f) \circ \tau_{A}=\tau_{B} \circ T(f)$ and $\tau: T \longrightarrow S$ is a natural transformation.

Lemma 3.6 Let H_{1} and H_{2} be two H_{v}-modules. Then $H_{1} \times H_{2}$ is a product object in \boldsymbol{H} category.
Proof The proof is straightforward.
Note that Lemma 3.6 can be generalized to the cartesian product of n arbitrary H_{v}-modules.

Theorem 3.7 Let M be an H_{v}-module. Then $M\left[H_{1} \times H_{2}\right] \cong M\left[H_{1}\right] \times M\left[H_{2}\right]$.
Proof It is easy to see that the map $\phi: M\left[H_{1}\right] \times M\left[H_{2}\right] \longrightarrow M\left[H_{1} \times H_{2}\right]$ defined by $\phi\left(f_{1}, f_{2}\right)=f: M \longrightarrow H_{1} \times H_{2}$, where $f(m)=\left(f_{1}(m), f_{2}(m)\right)$ is well defined. Now we have

$$
\begin{aligned}
& \phi\left(\left(f_{1}, g_{1}\right)+\left(f_{2}, g_{2}\right)\right)=\phi\left(\left\{(f, g) \mid f \in f_{1}+f_{2}, g \in g_{1}+g_{2}\right\}\right) \\
& =\left\{h \mid h(m)=(f(m), g(m)), f(m) \in f_{1}(m)+f_{2}(m), g(m) \in g_{1}(m)+g_{2}(m)\right\} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \phi\left(\left(f_{1}, g_{1}\right)\right)=h \in M\left[H_{1} \times H_{2}\right] \text { such that } h(m)=\left(f_{1}(m), g_{1}(m)\right) \\
& \phi\left(\left(f_{2}, g_{2}\right)\right)=k \in M\left[H_{1} \times H_{2}\right] \text { such that } k(m)=\left(f_{2}(m), g_{2}(m)\right)
\end{aligned}
$$

And

$$
\begin{aligned}
& h+k=\left\{l \mid l(m) \in h(m)+k(m)=\left(f_{1}(m), g_{1}(m)\right)+\left(f_{2}(m), g_{2}(m)\right)\right\} \\
& =\left\{l \mid l(m)=(f(m), g(m)), f(m) \in f_{1}(m)+f_{2}(m), g(m) \in g_{1}(m)+g_{2}(m)\right\} .
\end{aligned}
$$

Therefore, $\phi\left(\left(f_{1}, g_{1}\right)+\left(f_{2}, g_{2}\right)\right)=\phi\left(\left(f_{1}, g_{1}\right)\right)+\phi\left(\left(f_{2}, g_{2}\right)\right)$.
Similarly, one can show that $\phi(r(f, g))=r \phi((f, g))$.
Now let $f \in M\left[H_{1} \times H_{2}\right]$, where $f(m)=\left(h_{1 m}, h_{2 m}\right)$. We define $f_{1} \in M\left[H_{1}\right]$ by $f(m)=h_{1 m}$ and $f_{2} \in M\left[H_{2}\right]$ by $f(m)=h_{2 m}$. Obviously, $\phi\left(\left(f_{1}, f_{2}\right)\right)=f$.

Finally, suppose that $\phi\left(\left(f_{1}, f_{2}\right)\right)=\phi\left(\left(g_{1}, g_{2}\right)\right)$. Then, for every $m \in M$, we obtain $\left(f_{1}(m), f_{2}(m)\right)=$ $\left(g_{1}(m), g_{2}(m)\right)$ and so $\left(f_{1}, f_{2}\right)=\left(g_{1}, g_{2}\right)$.

Note that in finite mode in Theorem 3.7 we have

$$
\begin{aligned}
\left|M\left[H_{1}\right] \times M\left[H_{2}\right]\right| & =\left|M\left[H_{1}\right]\right| \times\left|M\left[H_{2}\right]\right|=\left|H_{1}\right|^{|M|} \times\left|H_{2}\right|^{|M|} \\
& =\left|H_{1} \times H_{2}\right|^{|M|}=\left|M\left[H_{1} \times H_{2}\right]\right|
\end{aligned}
$$

Therefore, it is sufficient to show that ϕ is one to one or onto.

Corollary 3.8 Let $M, H_{1}, H_{2}, \cdots, H_{n}$ be H_{v}-modules. Then

$$
M\left[H_{1} \times H_{2} \times H_{3} \times \cdots \times H_{n}\right] \cong M\left[H_{1}\right] \times M\left[H_{2}\right] \times M\left[H_{3}\right] \times \cdots \times M\left[H_{n}\right]
$$

4. Five short lemma in H_{v}-modules

Let $f: A \longrightarrow B$ be a strong H_{v}-homomorphism of H_{v}-modules over an H_{v}-ring R. Then we have $f\left(\omega_{A}\right) \subseteq \omega_{B}$ and so $\omega_{A} \subseteq \operatorname{Ker}(f)$. Furthermore, $\operatorname{Ker}(f)=\omega_{A}$ if and only if f is weak-monic [8]. In this section, we determine the heart of $M[A]$ and the connection between equivalence relations $\varepsilon_{M[A]}^{*}$ and ε_{A}^{*}. Moreover, we check the exactness of $M[-]$ and $-[M]$ functors. Finally, we investigate the five short lemma in H_{v}-modules.

Lemma 4.1 If $\varepsilon_{M[A]}^{*}(f)=\varepsilon_{M[A]}^{*}(g)$, then $\varepsilon_{A}^{*}(f(m))=\varepsilon_{A}^{*}(g(m))$, for every $m \in M$; i.e. if for some $m \in M$, $\varepsilon_{A}^{*}(f(m)) \neq \varepsilon_{A}^{*}(g(m))$ then $\varepsilon_{M[A]}^{*}(f) \neq \varepsilon_{M[A]}^{*}(g)$.
Proof Suppose that $f \varepsilon_{M[A]}^{*} g$. Then there exist $f_{0}=f, f_{1}, \cdots, f_{n}=g$ in $M[A]$ such that $f_{i} \varepsilon_{M[A]}$ f_{i+1} for $i=0,1, \ldots, n-1$. Therefore, $\left\{f_{i}, f_{i+1}\right\} \subseteq \sum_{j=1}^{n_{i}} g_{i j}^{\prime}$, for $i=0,1, \ldots, n-1$, where $g_{i j}^{\prime}=g_{i j}$ or $g_{i j}^{\prime}=\sum_{k=1}^{n_{i j}}\left(\prod_{l=1}^{l_{i j k}} r_{i j k l}\right) g_{i j}$ for $g_{i j} \in M[A]$ and $r_{i j k l} \in R$. Now, since

$$
\sum_{j=1}^{n_{i}} g_{i j}^{\prime}=\left\{h \in M[N] \mid h(m) \in g_{i 1}^{\prime}(m)+g_{i 2}^{\prime}(m)+\cdots+g_{i n_{i}}^{\prime}(m), \forall m \in M\right\}
$$

VAZIRI et al./Turk J Math

we have $\left\{f_{i}(m), f_{i+1}(m)\right\} \subseteq \sum_{j=1}^{n_{i}} g_{i j}^{\prime}(m)$ for every $m \in M$ and so there exist $a_{0}=f_{0}(m)=f(m), a_{1}=$ $f_{1}(m), \ldots, a_{n}=f_{n}(m)=g(m) \in A$ such that $a_{i} \varepsilon_{A} a_{i+1}$, for $i=0,1, \ldots, n-1$. Therefore, for every $m \in M$, we have $f(m) \varepsilon_{A}^{*} g(m)$.
In the following example we show that the converse of Lemma 4.1 is not true in general.

Example 2 Consider $f, g \in M\left[M_{1} \times M_{2}\right]$ as in Example 1 and define $f(a)=(2, \overline{\mathcal{Q}}), f(b)=(1, \overline{0})$ and $g(a)=(0, \overline{1}), g(b)=(1, \overline{\mathcal{D}})$. By Example 1 we have $\varepsilon_{M_{1} \times M_{2}}^{*}(f(a))=\varepsilon_{M_{1} \times M_{2}}^{*}(g(a))$ and $\varepsilon_{M_{1} \times M_{2}}^{*}(f(b))=$ $\varepsilon_{M_{1} \times M_{2}}^{*}(g(b))$. Since for every $r \in R$ and every $m_{1} \in M_{1}, r m_{1}=\{0\}$ and, on the other hand, for every two elements m_{2} and m_{2}^{\prime} of $M_{2}, m_{2} *_{M_{2}} m_{2}^{\prime}$ is a singleton, it follows that $\varepsilon_{M\left[M_{1} \times M_{2}\right]}^{*}(f) \neq \varepsilon_{M\left[M_{1} \times M_{2}\right]}^{*}(g)$.

In the following lemma, we determine the heart of $M[A]$.

Lemma 4.2 Let M and A be two H_{v}-modules. Then $\omega_{M[A]}=M\left[\omega_{A}\right]$.
Proof Suppose that $f \in \omega_{M[A]}$. Then for every $g \in M[A]$ we have

$$
\varepsilon_{M[A]}^{*}(g)=\varepsilon_{M[A]}^{*}(f) \oplus \varepsilon_{M[A]}^{*}(g)\left(=\varepsilon_{M[A]}^{*}(f+g)\right)
$$

Now by Lemma 4.1 for every $m \in M$ we obtain

$$
\varepsilon_{A}^{*}((f+g)(m))=\varepsilon_{A}^{*}(g(m))
$$

However, for every $m \in M$ we have $(f+g)(m)=\{l(m) \mid l \in f+g\}=f(m)+g(m)$. Hence,

$$
\varepsilon_{A}^{*}((f+g)(m))=\varepsilon_{A}^{*}(f(m)+g(m))=\varepsilon_{A}^{*}(f(m)) \oplus \varepsilon_{A}^{*}(g(m))=\varepsilon_{A}^{*}(g(m))
$$

Therefore, for every $m \in M$, we obtain $\varepsilon_{A}^{*}(f(m)) \in \omega_{A}$ and so $f \in M\left[\omega_{A}\right]$.
Conversely, suppose that $f \in M\left[\omega_{A}\right]$. Then for every $g \in M[A]$ and all $m \in M$ we have

$$
\varepsilon_{A}^{*}(f(m)+g(m))=\varepsilon_{A}^{*}(f(m)) \oplus \varepsilon_{A}^{*}(g(m))=\varepsilon_{A}^{*}(g(m))
$$

Therefore, for every $g \in M[A]$ and all $m \in M$, we have $f(m)+g(m) \in \varepsilon_{A}^{*}(g(m))$ and we obtain

$$
\varepsilon_{M[A]}^{*}(f) \oplus \varepsilon_{M[A]}^{*}(g)=\varepsilon_{M[A]}^{*}(f+g)=\varepsilon_{M[A]}^{*}(\{l \mid l(m) \in f(m)+g(m)\})=\varepsilon_{M[A]}^{*}(g)
$$

and consequently $f \in \omega_{M[A]}$.
In the following, we want to investigate the exactness of $-[M]$ and $M[-]$ functors.
Let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence. Then for every $a \in A$ we have $f(a) \in \operatorname{Im}(f) \stackrel{w}{=} \operatorname{Ker}(g)$ and so $\varepsilon_{B}^{*}(f(a))=\varepsilon_{B}^{*}(b)$ for some $b \in \operatorname{Ker}(g)$. Now we obtain

$$
\varepsilon_{C}^{*}(g(f(a)))=G\left(\varepsilon_{B}^{*}(f(a))\right)=G\left(\varepsilon_{B}^{*}(b)\right)=\varepsilon_{C}^{*}(g(b))=\omega_{C}
$$

Therefore, for every $a \in A$ we have $g(f(a)) \in \omega_{C}$.

Now, by considering $-[M]$ functor on the exact sequence $A \xrightarrow{f} B \xrightarrow{g} C$, we obtain

$$
C[M] \xrightarrow{\bar{g}} B[M] \xrightarrow{\bar{f}} A[M]
$$

We want to check the exactness of this sequence. We have

$$
\begin{aligned}
& \operatorname{Im}(\bar{g})=\{\bar{g}(\phi) \mid \phi \in C[M]\}=\{\phi \circ g \mid \phi \in C[M]\} \\
& \operatorname{Ker}(\bar{f})=\left\{\psi \in B[M] \mid \bar{f}(\psi)=\psi \circ f \in \omega_{A[M]}=A\left[\omega_{M}\right]\right\}
\end{aligned}
$$

Let ϕ be a function in $C[M]$ such that $\phi\left(\omega_{C}\right) \cap \omega_{M}=\emptyset$ (note that it is necessary for $\omega_{M} \neq M$). Then for every $a \in A$, since $g \circ f(a) \in \omega_{C}$ and $\phi\left(\omega_{C}\right) \cap \omega_{M}=\emptyset$, we obtain $\varepsilon_{M}^{*}(\phi(g(f(a)))) \neq \omega_{M}$. On the other hand, for every $\psi \in \operatorname{Ker}(\bar{f})$ and every $a \in A, \varepsilon_{M}^{*}(\psi(f(a)))=\omega_{M}$. Thus, by Lemma 4.1 for $\phi \circ g \in \operatorname{Im}(\bar{g})$ there is no member of $\operatorname{Ker}(\bar{g})$ such that its class is equal to the class of $\phi \circ g$. Therefore, in general the $-[M]$ functor is not exact. The same discussion is established for the $M[-]$ functor.

Example 3 Consider the H_{v}-modules M, M_{1}, and M_{2} as Example 1 and the sequence $M \xrightarrow{f} M_{1} \xrightarrow{i} M_{1}$, where $f(a)=0, f(b)=2$, and i is identity. It is easy to see that the sequence $M \xrightarrow{f} M_{1} \xrightarrow{i} M_{1}$ is exact. However, the sequence

$$
M_{1}\left[M_{1} \times M_{2}\right] \stackrel{\bar{i}}{\longrightarrow} M_{1}\left[M_{1} \times M_{2}\right] \xrightarrow{\bar{f}} M\left[M_{1} \times M_{2}\right]
$$

is not exact, because for $\phi \in M_{1}\left[M_{1} \times M_{2}\right]$ defined by $\phi(0)=(1, \overline{1}), \phi(1)=(2, \overline{1})$, and $\phi(2)=(1, \overline{\mathcal{L}})$ there is no member of $\operatorname{Ker}(\bar{f})$ such that its class is equal to the class of ϕ.

In the following theorem we show that if the converse of Lemma 4.1 is established, then the functors $M[-]$ and $-[M]$ are exact.

Theorem 4.3 Let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence of H_{v}-modules and strong H_{v}-homomorphisms. If the converse of Lemma 4.1 is established, then the sequences

$$
\begin{align*}
& C[M] \xrightarrow{\bar{g}} B[M] \xrightarrow{\bar{f}} A[M] \tag{1}\\
& M[A] \xrightarrow{\bar{f}} M[B] \xrightarrow{\bar{g}} M[C] \tag{2}
\end{align*}
$$

are exact sequences.
Proof We prove (2). The proof of (1) is similar. Suppose that $h \in \operatorname{Im}(\bar{f})$. Then there exists $\phi \in M[A]$ such that $h=\bar{f}(\phi)=f \circ \phi \in M[B]$. For every $m \in M, f \circ \phi(m) \in \operatorname{Im}(f)$ and so there exists $b_{m} \in \operatorname{Ker}(g)$ such that $\varepsilon_{B}^{*}(f \circ \phi(m))=\varepsilon_{B}^{*}\left(b_{m}\right)$. Now we define $k \in M[B]$ by $k(m)=b_{m}$. Since $\bar{g}(k)=g o k \in M\left[\omega_{C}\right]=\omega_{M[C]}$, we obtain $k \in \operatorname{Ker} \bar{g}$. Finally, by the converse of Lemma 4.1 we have $\varepsilon_{M[B]}^{*}(h)=\varepsilon_{M[B]}^{*}(k)$.

Conversely, let $k \in \operatorname{Ker}(\bar{g})$; then $\bar{g}(k)=g \circ k \in \omega_{M[C]}=M\left[\omega_{C}\right]$. Therefore, for all $m \in M$, $g \circ k(m) \in \omega_{C}$ and $k(m) \in \operatorname{Ker}(g)$. Then there exists $b_{m}=f(a) \in \operatorname{Im}(f)$ for some $a \in A$ such that $\varepsilon_{B}^{*}\left(b_{m}\right)=\varepsilon_{B}^{*}(k(m))$. We define $\psi \in M[A]$ by $\psi(m)=a$ and set $\phi=f \circ \psi=\bar{f}(\psi) \in \operatorname{Im}(\bar{f})$. Now by the converse of Lemma 4.1 we obtain $\varepsilon_{M[B]}^{*}(k)=\varepsilon_{M[B]}^{*}(\phi)$.

Lemma 4.4 Let A, B, and C be H_{v}-modules. Then
(1) $\omega_{A} \xrightarrow{i} A \xrightarrow{f} B$ is exact if and only if f is weak-monic.
(2) $B \xrightarrow{g} C \xrightarrow{j} \omega_{C}$ is exact if and only if g is weak-epic.
(3) $\omega_{A} \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{j} \omega_{C}$ is exact if and only if f is weak-monic, g is weak-epic, and $\operatorname{Im}(f) \stackrel{w}{=}$ $\operatorname{Ker}(g)$.
Proof (1) Suppose that the given sequence is exact. It is sufficient to show that $\operatorname{Ker}(f)=\omega_{A}$. We always have $\omega_{A} \subseteq \operatorname{Ker}(f)$. On the other hand, if $a \in \operatorname{Ker}(f)$, then there exists $a_{1} \in \operatorname{Im}(i)=\omega_{A}$ such that $\varepsilon_{A}^{*}(a)=\varepsilon_{A}^{*}\left(a_{1}\right)=\omega_{A}$ and so $a \in \omega_{A}$. Therefore, $\operatorname{Ker}(f)=\omega_{A}$ and f is weak-monic.

Conversely, suppose that f is weak-monic. Then, $\operatorname{Ker}(f)=\omega_{A}=\operatorname{Im}(i)$ and consequently $\operatorname{Ker}(f) \stackrel{w}{=}$ $\operatorname{Im}(i)$.
(2) Suppose that the given sequence is exact. Then $\operatorname{Im}(g) \stackrel{w}{=} \operatorname{Ker}(j)$ and so for every $c \in \operatorname{Ker}(j)(=$ C since $\left.\omega_{\omega_{C}}=\omega_{C}\right)$ there exists $b \in B$ such that $\varepsilon_{C}^{*}(g(b))=\varepsilon_{C}^{*}(c)$. Therefore, g is weak-epic.

Conversely, suppose that g is weak-epic. Then for every $c \in C(=\operatorname{Ker}(j))$ there exists $b \in B$ such that $\varepsilon_{C}^{*}(g(b))=\varepsilon_{C}^{*}(c)$. On the other hand, for all $g(b) \in \operatorname{Im}(g) \subseteq C$ there exist some $t \in B$ such that $\varepsilon_{C}^{*}(g(b))=\varepsilon_{C}^{*}(g(t))$, where $g(t) \in C=\operatorname{Ker}(j)$ and consequently $\operatorname{Im}(g) \stackrel{w}{=} \operatorname{Ker}(j)$.
(3) It follows from (1), (2), and the definition of exactness.

Lemma 4.5 Let $f: A \longrightarrow B$ be a strong H_{v}-homomorphism of H_{v}-modules. Then f is weak-epic if and only if F is onto. Moreover, f is weak-monic if and only if F is one to one. Finally, f is a weak isomorphism if and only if F is an isomorphism.
Proof Suppose that f is weak-epic and $\varepsilon_{B}^{*}(b) \in B / \varepsilon_{B}^{*}$. Since f is weak-epic, there exists $a \in A$ such that $\varepsilon_{B}^{*}(f(a))=\varepsilon_{B}^{*}(b)$. However, $\varepsilon_{B}^{*}(f(a))=F\left(\varepsilon_{A}^{*}(a)\right)$. Therefore, $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(b)$ and consequently F is onto.

Conversely, let F be onto. Then for every $b \in B$ there exists $\varepsilon_{A}^{*}(a) \in A / \varepsilon_{A}^{*}$ such that $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(b)$. However, $F\left(\varepsilon_{A}^{*}(a)\right)=\varepsilon_{B}^{*}(f(a))$. Therefore, there exists $a \in A$ such that $\varepsilon_{B}^{*}(f(a))=\varepsilon_{B}^{*}(b)$ and consequently f is weak-epic. The second part is proved in [8]. The third part is an obvious result.

Theorem 4.6 Let $\omega_{A} \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{j} \omega_{C}$ be an exact sequence of H_{v}-modules and strong H_{v} homomorphisms over an H_{v}-ring R. Then

$$
0=\omega_{A} / \varepsilon_{\omega_{A}}^{*} \xrightarrow{I} A / \varepsilon_{A}^{*} \xrightarrow{F} B / \varepsilon_{B}^{*} \xrightarrow{G} C / \varepsilon_{C}^{*} \xrightarrow{J} \omega_{c} / \varepsilon_{\omega_{c}}^{*}=0
$$

VAZIRI et al./Turk J Math

is an exact sequence of R / γ^{*}-homomorphisms and R / γ^{*}-modules.
Proof It follows from Lemma 4.4, Lemma 4.5, and Theorem 4.8 of [8] that say if $A \xrightarrow{f} B \xrightarrow{g} C$ is an exact sequence, then $A / \varepsilon_{A}^{*} \xrightarrow{F} B / \varepsilon_{B}^{*} \xrightarrow{G} C / \varepsilon_{C}^{*}$ is an exact sequence.

Theorem 4.7 (Five short lemma in H_{v}-modules) Let

be a commutative diagram of H_{v}-modules and H_{v}-homomorphisms over an H_{v}-ring R with both rows exact. Then
(1) If h and l are weak-monic, then k is weak-monic.
(2) If h and l are weak-epic, then k is weak-epic.
(3) If h and l are weak isomorphisms, then k is a weak isomorphism.

Proof (1) By Lemma 3.4 and Theorem 4.6 the following diagram of R / γ^{*}-modules and R / γ^{*}-homomorphisms is commutative with both rows exact:

By Lemma 4.5, H and L are one to one R / γ^{*}-homomorphisms. Then by the five short lemma in modules K is a one to one R / γ^{*}-homomorphism. Therefore, by Lemma 4.5, k is a weak-monic R-homomorphism.

Alternative Proof. It is sufficient to show that $\operatorname{Ker}(k)=\omega_{B}$. We always have $\omega_{B} \subseteq \operatorname{Ker}(k)$. On the other hand, suppose that $b \in \operatorname{Ker}(k)$. Then $k(b) \in \omega_{B_{1}}$ and so $g_{1}(k(b)) \in g_{1}\left(\omega_{B_{1}}\right)$. Since $g_{1}\left(\omega_{B_{1}}\right) \subseteq \omega_{C_{1}}$, we have $g_{1}(k(b)) \in \omega_{C_{1}}$. Since $g_{1} \circ k=l \circ g$ and l is weak monic, we obtain $g(b) \in \operatorname{Ker}(l)=\omega_{C}$. Then $b \in \operatorname{Ker}(g) \stackrel{w}{=} \operatorname{Im}(f)$ and consequently

$$
\begin{equation*}
\varepsilon_{B}^{*}(b)=\varepsilon_{B}^{*}(f(a)) \text { for some } a \in A \tag{3}
\end{equation*}
$$

Since k is a strong H_{v}-homomorphism, we have $\varepsilon_{B_{1}}^{*}(k(b))=\varepsilon_{B_{1}}^{*}(k(f(a)))$. Since $k \circ f=f_{1} \circ h$ and $b \in \operatorname{Ker}(k)$, we obtain $\varepsilon_{B_{1}}^{*}(k(b))=\varepsilon_{B_{1}}^{*}\left(f_{1}(h(a))\right)=\omega_{B_{1}}$. Therefore, $f_{1}(h(a)) \in \omega_{B_{1}}$. Since f_{1} is weak-monic we obtain $h(a) \in \omega_{A_{1}}$ and since h is weak-monic it follows that $a \in \omega_{A}$. Thus, $f(a) \in f\left(\omega_{A}\right) \subseteq \omega_{B}$ and by Eq. (3) we obtain $\varepsilon_{B}^{*}(b)=\varepsilon_{B}^{*}(f(a))=\omega_{B}$. Therefore, $b \in \omega_{B}$ and the proof is complete.
(2) It is similar to (1).
(3) It follows from (1) and (2).

VAZIRI et al./Turk J Math

References

[1] Alimohammady M, Roohi M. Minimal H_{v}-vector spaces. Ital J Pure Appl Math 2007; 22: 177-184.
[2] Corsini P. Prolegomena of Hypergroup Theory. Second edition, Udine, Tricesimo, Italy: Aviani, 1993.
[3] Corsini P, Leoreanu V. Applications of Hyperstructure Theory. Dordrecht, the Netherlands: Kluwer Academic Publishers (Advances in Mathematics), 2003.
[4] Davvaz B. Remarks on weak hypermodules. Bull Korean Math Soc 1999; 36: 599-608.
[5] Davvaz B. H_{v}-module of fractions. Proc 8th Algebra Seminar of Iranian Math Soc; 17-18 December; University of Tehran: 1996, pp. 37-46.
[6] Davvaz B. A brief survey of the theory of H_{v}-structures. Proc $8 t h$ International Congress on Algebraic Hyperstructures and Applications; 1-9 September 2002; Samothraki, Greece; Spanidis Press, 2003, pp. 39-70.
[7] Davvaz B. Approximations in H_{v}-modules. Taiwanese J Math 2002; 6: 499-505.
[8] Davvaz B, Ghadiri M. Weak equality and exact sequences in H_{v}-modules. Southeast Asian Bull Math 2001; 25: 403-411.
[9] Davvaz B, Leoreanu-Fotea V. Hyperring Theory and Applications. USA: International Academic Press, 2007.
[10] Davvaz B, Vougiouklis T. n-ary H_{v}-modules with external n-ary P-hyperoperation. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys 2014; 76: 141-150.
[11] Ghadiri M, Davvaz B. Direct system and direct limit of H_{v}-modules. Iran J Sci Technol Trans A Sci 2004; 28: 267-275.
[12] Marty F. Sur une generalization de la notion de groupe. In Proceedings of the 8th Congress des Mathematiciens; Scandinavia, Stockholm, Sweden: 1934, pp. 45-49.
[13] Taghavi A, Vougiouklis T, Hosseinzadeh R. A note on operators on normed finite dimensional weak hypervector spaces. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys 2012; 74: 103-108.
[14] Vougiouklis T. H_{v}-vector spaces. Proc 5th International Congress on Algebraic Hyperstructures and Applications; 4-10 July 1993; Iasi Romania. Palm Harbor, FL, USA: Hadronic Press, Inc, 1994, pp. 181-190.
[15] Vougiouklis T. Hyperstructures and Their Representations. Palm Harbor, FL, USA: Hadronic Press Inc, 1994.
[16] Vougiouklis T. The fundamental relation in hyperrings. The general hyperfield. Algebraic hyperstructures and applications (Xanthi, 1990). Teaneck, NJ, USA: World Sci Publishing, 1991, pp. 203-211.
[17] Vougiouklis T. Hypermatrix representations of finite H_{v}-groups. European J Combin (part B) 2015; 44: 307-315.

[^0]: *Correspondence: forutan.vaziri@yahoo.com
 2010 AMS Mathematics Subject Classification: 16Y99, 16E05, 20N20.

