Turkish Journal of Mathematics Turk J Math
(2016) 40: 397 — 410

© TUBITAK
TUBITAK Research Article doi:10.3906/mat-1502-75

http://journals.tubitak.gov.tr/math/

The M[-] and —[M] functors and five short lemma in H,-modules

Yaser VAZIRI*, Mansour GHADIRI, Bijan DAVVAZ
Department of Mathematics, Yazd University, Yazd, Iran

Received: 26.02.2015 . Accepted/Published Online: 24.08.2015 . Final Version: 10.02.2016

Abstract: The largest class of multivalued systems satisfying the module-like axioms are the H,-modules. The main
tools concerning the class of H,-modules with the ordinary modules are the fundamental relations. Based on the relation
€, exact sequences in H,-modules are defined. In this paper, we introduce the H,-module M[A] and determine its
heart and the connection between equivalence relations €3, 4) and €% . Moreover, we define the M [-] and —[M] functors

and investigate the exactness and some concepts related to them. Finally, we prove the five short lemma in H,-modules.
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1. Introduction

A hyperstructure (or hypergroupoid) is a nonempty set H together with a hyperoperation defined on H, that
is, a mapping of H x H into the family of nonempty subsets of H. In 1934, Marty introduced the concept of
a hypergroup [12] as a nonempty set H equipped with a hyperoperation * : H x H — P*(H) that satisfies
the associative law: (x *xy) *x z = x x (y x 2) for every x,y,z € H and the reproduction axiom is valid, i.e.
x+xH =Hxx = H for every x € H; it means that for any x,y € H there exist u,v € H such that y € x xu

and y € vxx. If A, B are nonempty subsets of H then Ax B is given by Ax B =/ g axb. Moreover,

a€A,be
ax A is used for {z} * A and Az for A« {x}. Several books have been written to date on hyperstructures
[2, 3,9, 15]. The concept of H,-structures as a larger class than the well-known hyperstructures was introduced
by Vougiouklis at the Fourth Congress of AHA (Algebraic Hyperstructures and Applications) [16], where the
axioms are replaced by the weak ones, that is, instead of the equality on sets one has nonempty intersections.
The basic definitions and results of H,-structures can be found in [6, 9, 15]. This concept has been further
investigated by many researchers. The largest class of multivalued systems satisfying the module-like axioms is
the class of H,-modules (or H,-vector spaces) [1, 4, 5, 7, 10, 11, 13, 14, 17].

In 2001, Davvaz and Ghadiri defined exact sequences in H,-modules and proved some results in this
respect [3]. In Section 2, we recall some basic concepts for the sake of completeness and we present some
examples for the definitions. In Section 3, we introduce the concepts of M[—] and —[M] functors and investigate
some related concepts. In Section 4, we determine the heart of M[A] and the connection between equivalence

relations €}, and €} . Finally, we investigate the exactness of functors M[—] and —[M] and prove the five

short lemma in H,-modules.

*Correspondence: forutan.vaziri@yahoo.com
2010 AMS Mathematics Subject Classification: 16Y99, 16E05, 20N20.
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2. Basic concepts

In this section we recall some basic concepts. Let H be a nonempty set and P*(H) be the family of nonempty
subsets of H. Every function % : H x H — P*(H) is called a hyperoperation on H and (H,x) is called a
hyperstructure. The hyperstructure (H, ) is called an H,-group if

(1) The * is weak associative, i.e. z* (y*x2)N(x*xy)*z#0,

(2) The reproduction axiom holds, i.e. a* H = H+*a = H for every a € H.

We say H is weak commutative if for every z,y € H, x xyNy*x # (.
A multivalued system (R, +,-) is called an H,-ring if the following axioms hold

(1) (R,+) is a weak commutative H,-group,
(2) (R,-) is a weak associative, i.e. z-(y-2)N(x-y) 2z #0 for every z,y,2 € R,

(3) The - hyperoperation is weak distributive with respect to +, i.e. for every z,y,z € R, we have
z-(y+z)N(z-y+z-2)#0, (z+y) zN(z-z+y 2)#0.

For example, if (H,+) is an H,-group, then for every hyperoperation - such that {z,y} C -y for every
x,y € H, the hyperstructure (H,+,-) is an H,-ring. Therefore, we can construct some H,-rings by a given
H,-group [15].

Let M be a nonempty set. Then M is called a left H,-module over an H,-ring R if (M,+) is a weak
commutative H,-group and there exists a map - : R x M — P*(M) denoted by (r,m) — rm such that for

every ri,72 € R and every mi, me € M, we have

(1) ri(ma +ma) N (rimy +rima) # 0,
(2) (Tl + T2)m1 N (T1m1 + ’I"le) 7& @7
(3) (rir2)mi Nri(ramy) # 0.

Let My and M5 be two H,-modules over an H,-ring R. A mapping f : My — M, is called a strong
H,-homomorphism if for every x,y € My and every r € R, we have f(z+y) = f(z)+ f(y) and f(rz) =rf(z).

The H,-modules M; and M> are called isomorphic if the H,-homomorphism f is one to one and onto.
It is denoted by M; = M.

By using a certain type of equivalence relations, we can connect hyperstructures to usual structures.
The smallest of these relations are called fundamental relations and denoted by £*,v*,&*, so that if H is
an H,-group (H,-ring, H,-module over an H,-ring R) then H/B* is a group (H/v* is a ring, H/e* is an
R/~v*-module). The fundamental relation €* on an H,-module M can be defined as follows:

Consider the left H,-module M over an H,-ring R. If 9 denotes the set of all expressions consisting
of finite hyperoperations of either on R and M or of the external hyperoperations applying on finite sets of
elements of R and M, a relation ¢ can be defined on M whose transitive closure is the fundamental relation
e*. The relation ¢ is defined as follows: for every z,y € M, x ¢ y if and only if {z,y} C u for some u € 9;

i.€e.

n n; kij
zey & x,y € Y my, my =mgor my = 3. (] rijr)mi,
i=1 J=1 k=1

where m; € M, 71, € R.
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Suppose that v*(r) is the equivalence class containing r € R and £*(x) is the equivalence class containing
x € M. On M/e* the ® and the external product ® using the v* classes in R are defined as follows:
For every z,y € M, and for every r € R,

e*(z) ®e*(y) = (), for every c € e*(z) + " (y),

Y (r) ®e*(x) = e*(d), for every d € v*(r) - *(x).

The kernel of canonical map ¢ : M — M/e%, is called the heart of M and it is denoted by wyy, i.e.
wy = {x € M | ¢(x) = 0}, where 0 is the unit element of the group (M/e*,&). One can prove that the unit

element of the group (M/e*, @) is equal to wys. By the definition of wys, we have
Wapy = Ker(¢:wy — wn /ey, =0) = wr.
The kernel of a strong H,-homomorphism f: A — B is defined as follows:

Ker(f)={a€ A| f(a) € wp}.

Let M; and Ms be two H,-modules over an H,-ring R and let €}, , €}, , and €}, .57, be the fundamental

relations on My, My, and M; x M, respectively; then
(w1, 22)€0, % a1, W1, Y2) € 1€}, y1 and Taehy, y2; for all (z1,22), (Y1,y2) € My x Mo

and it is easy to see that (M1 X Ma)/e}y «nr, = Mi/ehy, X Ma/ehy,, [14, 15].

Definition 2.1 [8] Let M be an H,-module and X,Y be nonempty subsets of M. We say X 1is weak equal

to Y and write X 2 Y if and only if for every x € X there exists y € Y such that ¢%,(z) = €4,(y) and for
every y € Y there exists © € X such that e, (z) = &3, (y).

Definition 2.2 [5] Let My LN M, EEN My — o — M, ELN M, be a sequence of H,-modules and

strong H, -homomorphisms. We say this sequence is exact if for every 2 <i <n, Im(f;_1) = Ker(f;).

Definition 2.3 [5] A function f: My —s My is called weak-monic if for every my,m; € My, f(my) = f(m))
implies €3, (m1) = €}y (mll) and f is called weak-epic if for every mo € My there exists my € My such that

1
e, (m2) = &3y, (f(ma)). Finally f is called weak-isomorphism if f is weak-monic and weak-epic.
We present the following example for the above definitions.

Example 1 Let R be an H,-ring. Consider the following H,-modules on R.

(1) M = {a,b} together with the following hyperoperations:

*pr |l a b
a |a b and -p:RxM— P (M)
b | b a (r;m)—{a}
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(2) My ={0,1,2} together with the following hyperoperations:

s, |01 2
0o o 1 2 .
1 1 0.9 1 and 'NIIIRXM1—>'P (Ml)
2 12 1 0 (rm)=0)

(3) My =1{0,1,2} together with the following hyperoperations:

. |

and My ¢ R x My — P*(MQ)

(T‘,mg)l—}Mg

NSNS i
[NSTRNR=T R
~ DAY Y

SSTRASTRV |

Since {0,2} C 1#p, 1, r-mq =0 for every v € R and every my € My and 0%y, 0 = 0, we obtain M/
e, = 1en,(0) = €3y, (2) = {0,2},e3,, (1) = {1}}. Moreover, since €y, (0) + 3, (1) = €34, (1), it follows
that wy, = €3, (0) = {0,2}. Since r -pr, mg = My for every r € R and every ma € My, we obtain My/
er, = 110,1,2}} and wyr, = €34, (0) = €3, (1) = €3, (2) = My

Since (My x Ma)/ehs «pp, = Mi/eyy, x Ma/eyy, , it follows that

My x MQ/EEJlxMZ = {{(O’ 0)7 (07 [)7 (052)7 (27 0)’ (25 j)r (27?7)}7 {(17 0)’ (17 j)? (Lg)}} .

Note that wyr, v, = Wiy X Wi, - The subsets X = {(2,1),(2,2),(1,1),(1,2)} and Y = {(0,2),((1,0)}
of My x My are weakly equal. Now consider f € M[M; x M|, where f(a) = (2,2), f(b) = (1,0) and
g € My[My x My, where g(0) = (1,1), g(1) =(2,2), 9(2) = (1,1). Then f is weak-epic and g is weak-monic.

3. M[-] and —[M] functors

Let f: A — B be astrong H,-homomorphism of H,-modules over an H,-ring R. Then F : A/e% — B/e%;,
where F(e%(a)) = e5(f(a)) is an R/v*-homomorphism of R/y*-modules. Let R be a weak-commutative H,-
ring and H be the set of all H,-modules and all strong R-homomorphisms. One can show that H is a category.
Furthermore, set H* the category of R/y*-modules and R/v*-homomorphisms. Then T : H — H* defined
by T(A) = A/ey and T(f : A— B) = F : A/e* — B/e%;, where F (% (a)) = e} (f(a)) is a covariant functor
[8]. Now we want to introduce M[—] and —[M] functors and investigate some related concepts.

Suppose that M and N are two H,-modules and M[N] is the set of all functions on M with values in
N. First we equip M[N] to appropriate hyperoperations to be an H,-module. Then we introduce the functors
M[—] and —[M] and investigate some related concepts. Throughout this paper, the hyperoperations in M, N
and M[N] will be shown with the same symbols.

Theorem 3.1 The M[N] with the following hyperoperations is an H, -module.

f+g={heM[N]|h(x)e f(z)+g(z), Ve e M},
r-f={ke M[N]| k(z) er- f(x), Yo € M}.
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Proof The hyperoperations + and - in M[N] are well defined and for + and - in N are well defined. Let
f,9,h € M[N]. We have

(f+9)+h ={le M[N]|l(z) € f(z) +g(x), Vo € M} +h=U;c;p,l+h
={L € M[N] | L(z) € l(z) + h(z), Yz € M, l(z) € f(x) + g(x)}

and

fH+(g+h) =f+{keM[N]|k(z)€g(x)+h(z), Vo € M} = Upeyn f+F
={K e M|N] | K(z) € f(x) + k(x), Yo € M, k(x) € g(z) + h(x)}.

Since N is an H,-group, for all x € M there exists n, € [(f(z) + g(z)) + h(2)] N [f(z) + (9(z) + h(z))]. We
define u € M[N] by u(xz) = n,, according to the choice axiom. Then u € [(f +g) +h]N[f + (g + h)] and
associativity is satisfied.

For the reproduction axiom let f,g € M[A]. Then for all x € M, f(z),g(x) € N and so there exists
Yz € N such that f(z) € g(z) + y.. We define h € M[N] by h(z) = y,; then f € g+ h. Similarly, there

exists b € M[N] such that f € h' 4+ g. Since N is an H,-module, the conditions of H,-modules are satisfied
in M[N]. We check only one of the H,-module conditions. Let 1,70 € R and f € M[N]. Since N is an
H,-module, it follows that for every x € M there exists n, € [(r1 + r2)f(z)] N [r1f(z) + r2f(z)]. We define
h € M[N] by h(z) =ng. Obviously, h € [(r1 + r2)f] N [(r1f + r2f)] # 0. 0

Lemma 3.2 Let f: A— B be a strong H,-homomorphism and M be an H,-module. Then
(1) The map ]_”: M[A] — M|[B] defined by ]_" (¢) = f oo is a strong H, -homomorphism.

(2) The map ];: B[M] — A[M] defined by ]; (¢) = o f is a strong H,-homomorphism.
Proof (1) Let ¢1,¢2 € M[A]. Then

[ (@14 2) = {foh | h & M[A], hm) € b1(m) + 62(m), Vim & M},

F @)+ f (¢2) = fodi+ foda={h € M[B]| h'(m)€ fogpi(m)+ fops(m)}.

Suppose that foh E]_f (¢1 + ¢2), where h € M[A] and h(m) € ¢1(m) + ¢2(m) for every m € M. Then
F(h(m)) € F(é1(m) + 62(m)) = f(d1(m)) + f(d2(m)). Therefore, f (¢1+ d2) Sf (¢1)+ f (J2).

Conversely, suppose that h’ GJ_“ (¢1)+ ]_c (¢2). We need to find an h € M[A] such that h" = foh and
h(m) € ¢1(m) + ¢2(m). By hypothesis for m € M, we have

h'(m) = by € foi(m)+ foga(m) = f(d1(m)+ da(m)) C Im(f).

Therefore, b,, € f(¢1(m) + ¢d2(m)). Now, according to the choice axiom, we can select a € f~1(b,,) such that
a € ¢1(m) + ¢2(m) and define h(m) = a.
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Similarly, one can show that ]_” (rg)=r } (6).
(2) Let ¢1,¢2 € B[M} Then

f (614 62) = {ho f | he BIMLh() € 61(b) + 62(b)},
F @1+ [ (92) =10 f+d20f={h € AM]| W (a) € 610 f(a) + 620 f(a)}.

Suppose that ho f 6]7“ (¢1+¢2), where h € B[M] and h(b) € ¢1(b) + ¢2(b) for every b € B. Since Im(f) C B,
we have h(f(a)) € ¢1(f(a)) + ¢2(f(a)) for every a € A. Therefore, ]_f (¢1 + ¢2) g]_" (¢1)+ ]_“ (P2).

Conversely, suppose that h’ 6]_” (¢1)+ ]? (¢2). We need to find an h € B[M] such that W =hof

and (D) € ¢1(b) + ¢2(b). For every b € Im(f) C B we define h(b) = h'(a), where f(a) = b and for every
b € B\Im(f) according to the choice axiom we select an my, in ¢1(b) + ¢2(b) C M and define h(b) = my. Then

h satisfies the requirement conditions.

Similarly, one can show that ]_‘ (rg)=r } (0). O

Lemma 3.3 Let M be an H,-module and f: A — B be a morphism in the category H. Then

(1) M[-]:H— H defined by M[-](A) = M[A] and M[-](f) = f: M[A] — M|[B], where J?(QS) =fog is

a covariant functor.

(2) —[M]:H— H defined by —[M](A) = A[M] and —[M](f) = f: B[]M] — A[M], where J_”(qé) =¢of is
a contravariant functor.

Proof (1) By Theorem 3.1 if A is an H,-module, then M[—](A) = M[A] is an H,-module. By Lemma

3.2if f: A— B is a strong H,-homomorphism, then M[—|(f) =f is a strong H,-homomorphism. Now let

AL B 2 Chbea strong H, -homomorphism in H. Then
M[=](go [)(¢) =go fod=g(fod)=M[-](g)(fe¢)=M[-|(g)c M[-](f)(4)

and for every A € objH we have M[-](14)(¢) = 1a0¢ = ¢. Then M[-](14) = 1p/—ya) and so M[-] is a

covariant functor.

(2) By Theorem 3.1 if A is an H,-module, then —[M](A) = A[M] is an H,-module. By Lemma 3.2

if f:A— B is a strong H,-homomorphism, then —[M](f) :]_” is a strong H,-homomorphism. Now let

ALsB 2 Chea strong H,-homomorphism in H. Then

—[M](go f)(@) =dogof=(dog)f=—[M|(f)(dog)=—[M|(f)e—[M](g)(¢),

and for every A € objH we have —[M](14)(¢) = ¢po1a = ¢. Then, —[M](1a) = 1_{as(a) and so —[M] is a

contravariant functor. O
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Lemma 3.4 Let

A—B

Al Bl

be a commutative diagram of H,-modules and strong H,-homomorphisms. Then the following diagrams are

commutative.

Aley d B/} M[A] ——— M[B]

M[B]

Al/gj:ll 4(;>B1/8*B1 M[A1]

g9

Proof We have T(A) = A/e% and T(f: A— B) = F: A/e* — B/el, where F(c%(a)) = ei(f(a)).
Therefore,

KoF=T(k)oT(f)y=T(ko f)y=T(goh)=T(g9)oT(h)=GoH.
We have M[—](A) = M[A], M[-](f : A — B) =f: M[A] —s M[B)], where f (¢) = f o ¢. Therefore,
kof =M[-](k)oM[-](f)=M[-](kof)=M[-](goh)
M[-](g) o
O

We know that the combination of two covariant functors is a covariant functor. Therefore, the map S =

T o M[—]:H— H* is a covariant functor, where

S(A) = M[A]/e3y1a) and S(f : A — B) =F: M[A]/e}y1a) — M[B]/e3y,

where F (ER“A](@) = 57\4[3](f 0¢).

Lemma 3.5 Forevery A € objH, 74 : T(A) — S(A) defined by Ta(c%(a)) = 5*M[A](¢a) is a R/~v* -homomorphism,
where ¢q : M — A defined by ¢o(m) = a for every m € M. Then the family 7 = (14 : T(A) — S(A)) AcobjH
s a natural transformation from T to S'.

Proof We have
Ta(a(a) ®ex(b)) = Ta(eh(a+b)) = €y (b)),
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where t € a + b. On the other hand, we obtain

Ta(eh(a)) ® Ta(eh () = ehppa)(da) ® ehppay(dn) = MA](¢G+¢b)
:5}‘\4[,4]({¢EM[ ]| ¢(m) € ¢po(m) + ¢p(m), ¥Ym € M})
=eya{o € M[A] | ¢(m) € a+b, Ym € M})
= 4y (D4),

) = 7a(e%(a)) ®Ta(e%(b)). Similarly, we have

Ta(y"(r) ©ei(a)) = 7Ta(e4(d)), for some d € y*(r) - €% (a)
= €hypa)(¢a), for some d €7 -a

and
() O TaER(@) =7 (0) © =y ()
= €hrpa)(h) for some h € 7 g
= €hrpay(P);
where for every m € M, h(m) € r - ¢o(m) = r - a. Therefore,
Ta(y"(r) © €ia(a)) = 7" (r) © Ta(€la(a)).

Now let f: A — B be a morphism in H and consider the following diagram.

T(A) = S(A)

We have
S(f)oTaleh(a)) = S(f)(E*M[A] (¢a)) = E*M[B](f © ¢a),
o T(f)(e4(a)) = T8(e(f(a)) = 4y5)(P1(a))-
Obviously, f o ¢s = ¢f) and so S(f)oTa =710 T(f) and 7:T — S is a natural transformation. O

Lemma 3.6 Let Hy and Hs be two H,-modules. Then Hy x Hy is a product object in H category.
Proof The proof is straightforward. O

Note that Lemma 3.6 can be generalized to the cartesian product of n arbitrary H,-modules.

Theorem 3.7 Let M be an H,-module. Then M[H; x Hy] = M[H;] x M[H3].

Proof It is easy to see that the map ¢ : M[H;| x M[Hy] — M[H; x Hs] defined by ¢(f1, f2) = f: M — Hy X Ha,
where f(m) = (f1(m), fa(m)) is well defined. Now we have

o((f1,91) + (f2r92)) = o({(f,9) | f € fr + f2, 9 € g1+ g2})
={h | h(m) = (f(m),g(m)), f(m) € fi(m) + f2(m), g(m) € gi(m) + g2(m)}.
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On the other hand, we have

#((f1,91)) = h € M[Hy x Hy] such that h(m) = (fi(m), g1(m)),
&((f2,92)) = k € M[Hy x Hy)] such that k(m) = (f2(m)

And

h+k={l[1(m) € h(m) + k(m) = (f1(m), g1(m)) + (fa(m), ga(m))}
={l|1l(m) = (f(m),g(m)), f(m) € fr(m)+ fa(m), g(m) € g1(m) + ga(m)}.

Therefore, ¢((f1,91) + (f2,92)) = ¢((f1,91)) + ¢((f2,92))-
Similarly, one can show that ¢(r(f,g)) = ro((f,9)).

Now let f € M[H, x Hs], where f(m) = (hlm,th) We define f; € M[Hy] by f(m) = hi, and
f2 € M[Hs] by f(m) = ham. Obviously, ¢((f1, f2)) =

Finally, suppose that ¢((f1, f2)) = ¢((91,92))- Then, for every m € M, we obtain (fi(m), f2(m)) =
(91(m), g2(m)) and so (f1, f2) = (91, 92)- a

Note that in finite mode in Theorem 3.7 we have

IMIH] x MHy]| = [M{H,]| % [M[H]| = |H|M x |Hy| M
— |Hy x Ho| M = |M[H, x 1))

Therefore, it is sufficient to show that ¢ is one to one or onto.

Corollary 3.8 Let M, Hy, Hs,--- ,H, be H,-modules. Then

MI[Hy x Hy X Hg X +-+ x H,| &2 M[H;] x M[Hy] x M[H3] x --- x M[H,].

4. Five short lemma in H,-modules

Let f: A — B be a strong H,-homomorphism of H,-modules over an H,-ring R. Then we have f(wa) C wp
and so wyq C Ker(f). Furthermore, Ker(f) = w4 if and only if f is weak-monic [8]. In this section, we

determine the heart of M[A] and the connection between equivalence relations €ha) and €. Moreover, we

check the exactness of M[—] and —[M] functors. Finally, we investigate the five short lemma in H,-modules.

Lemma 4.1 If &4 (f) = €3141(9)  then €4(f(m)) = €}4(g(m)), for every m € M ; i.e. if for some m € M,
4 (F(m)) # 4 (g(m)) then <300 (F) # a1 (9)
Proof  Suppose that f e}, g. Then there exist fo = f, f1,---,fn = g in MTJA] such that f; eprpa)

fixr for i = 0,1,...,n — 1. Therefore, {f;, fiz1} C ilg;j, for ¢ = 0,1,...,n — 1, where g;j = g;j or
i=

, ni; lijk
gii = > (Il rijra)gij for gij € M[A] and 73 € R. Now, since
k=1 I=1

ig;j = {h € M[NV| h(m) € giy (m) + gia(m) + -+ giy, (m), Vi € M},
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we have {f;(m), fixr1(m)} C Z g;j(m) for every m € M and so there exist a9 = fo(m) = f(m),a; =
j=1

film),...,an = fn(m) = g(m) € A such that a; €4 a;41, for i =0,1,...,n— 1. Therefore, for every m € M,
we have f(m) €% g(m). O

In the following example we show that the converse of Lemma 4.1 is not true in general.

Example 2 Consider f,g € M[M; x Ms] as in Example 1 and define f(a) = (2,2), f(b) = (1,0) and
gla) = (0,1), g(b) = (1,2). By Ezample 1 we have Ehnyxan (F(a)) = €hrwns, (9(a)) and €3y a, (f(D) =
€ty x a1, (9(b)) . Since for every r € R and every my € My, rmy = {0} and, on the other hand, for every two

elements mo and ml2 of My, ma *y, ml2 s a singleton, it follows that 5>1k\/I[M1xM2](f) #£ 57\/I[M1><M2](g)'
In the following lemma, we determine the heart of M[A].

Lemma 4.2 Let M and A be two H,-modules. Then wyrja) = Mlwa].
Proof Suppose that f € wysa). Then for every g € M[A] we have
€n1a1(9) = Ehrpa) () @ Ehrpa (9)( = eppa(f + 9))~
Now by Lemma 4.1 for every m € M we obtain
eal(f +9)(m)) = ea(g(m)).
However, for every m € M we have (f +g)(m)={l(m) |l € f+g} = f(m)+ g(m). Hence,
eal(f +9)(m)) = e4(f(m) + g(m)) = e4(f(m)) © e4(g(m)) = €4 (g(m)).

Therefore, for every m € M, we obtain €% (f(m)) € wa and so f € M[wa].
Conversely, suppose that f € M[wa]. Then for every g € M[A] and all m € M we have

ea(f(m) +g(m)) = e4(f(m)) @ a(g(m)) = e4(g(m)).
Therefore, for every g € M[A] and all m € M, we have f(m)+ g(m) € £%(g(m)) and we obtain
Ena)(f) @ enrpa)(9) = i) (f + 9) = ehgpa({L | Um) € f(m) + g(m)}) = elypa(9)

and consequently f € war(a)- O

In the following, we want to investigate the exactness of —[M] and M[—] functors.

Let A 25 B % C be an exact sequence. Then for every a € A we have f(a) € Im(f) = Ker(g) and
so e5(f(a)) = ek (b) for some b € Ker(g). Now we obtain

Therefore, for every a € A we have ¢g(f(a)) € we.
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Now, by considering —[M] functor on the exact sequence A RNy BNV , we obtain

C[M] - BIM] 4, A[M].

We want to check the exactness of this sequence. We have

Im(9) = {9 (9) | ¢ € CIM]} = {pog | ¢ € C[M]},
Ker(f)={y € BIM] | f (¥) =40 f € wapnn = Alwml}.

Let ¢ be a function in C[M] such that ¢(we) Nwyr = @ (note that it is necessary for wy # M ). Then for
every a € A, since go f(a) € we and ¢(we) Nwar = 0, we obtain e}, (p(g(f(a)))) # war. On the other hand,

for every ¢ € Ker(f) and every a € A, €},(¢(f(a))) = war. Thus, by Lemma 4.1 for ¢ o g € Im(9g) there is

no member of K er(g) such that its class is equal to the class of ¢ o g. Therefore, in general the —[M] functor

is not exact. The same discussion is established for the M[—] functor.

Example 3 Consider the H, -modules M, My, and Ms as Example 1 and the sequence M L) M, N My,

where f(a) =0, f(b) =2, and i is identity. It is easy to see that the sequence M N M, 55 M, is exact.

However, the sequence

MMy x My) —5 My [M;y x M) L MM, x Mo
is not exact, because for ¢ € Mi[M; x Ms] defined by ¢(0) = (1,1), ¢(1) = (2,1), and ¢(2) = (1,2) there is

no member of Ker(f) such that its class is equal to the class of ¢.

In the following theorem we show that if the converse of Lemma 4.1 is established, then the functors
M[—] and —[M] are exact.

Theorem 4.3 Let A 1+ B %5 C be an exact sequence of H,-modules and strong H, -homomorphisms. If

the converse of Lemma 4.1 is established, then the sequences

C[M] - B[M] i> A[M] (1)
MIA] - M[B] - M(C] 2)

are exact Sequences.

Proof We prove (2). The proof of (1) is similar. Suppose that h € Im(f). Then there exists ¢ € M[A] such
that h :J_“ (¢) = fop € M[B]. For every m € M, fo¢(m) € Im(f) and so there exists b,, € Ker(g) such
that €% (f o ¢(m)) = e%(by). Now we define k € M[B] by k(m) = b,,. Since g (k) = gok € M|wc] = wMmic]

we obtain k € Ker ¢ . Finally, by the converse of Lemma 4.1 we have enm () = earppy (F) -
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Conversely, let k € Ker(9); then g (k) = gok € wyc] = Mlwc]. Therefore, for all m € M,
gok(m) € we and k(m) € Ker(g). Then there exists b,, = f(a) € Im(f) for some a € A such that

ex(bm) = efx(k(m)). We define ¢ € M[A] by ¢(m) = a and set ¢ = fo) :J_‘ (W) € Im(]_c). Now by the

converse of Lemma 4.1 we obtain &} 5/(k) = €}/(5/(¢). O

Lemma 4.4 Let A, B, and C be H,-modules. Then
(1) wa A5 B s exact if and only if f is weak-monic.

(2) B C AN we is exact if and only if g is weak-epic.
(8) wa Aty oy we is exact if and only if f is weak-monic, g is weak-epic, and Im(f) =
Ker(g).

Proof (1) Suppose that the given sequence is exact. It is sufficient to show that Ker(f) = wa. We always
have wq C Ker(f). On the other hand, if a € Ker(f), then there exists a; € Im(i) = wa such that

e%(a) =e*(a1) =wa and so a € wy. Therefore, Ker(f) =wa and f is weak-monic.

Conversely, suppose that f is weak-monic. Then, Ker(f) = wa = I'm(i) and consequently Ker(f) =
Im(i).

(2) Suppose that the given sequence is exact. Then Im(g) = Ker(j) and so for every ¢ € Ker(j)( =
C since wy,, = wc) there exists b € B such that €. (g(b)) = €& (c). Therefore, g is weak-epic.

Conversely, suppose that g is weak-epic. Then for every ¢ € C( =K er(j)) there exists b € B such
that €5 (g(b)) = €&(e). On the other hand, for all g(b) € Im(g) C C there exist some ¢ € B such that
),

ec(g(b)) = et (g(t)
(3) Tt follows from (1), (2), and the definition of exactness. O

where g(t) € C = Ker(j) and consequently I'm(g) £ Ker(j).

Lemma 4.5 Let f: A — B be a strong H,-homomorphism of H,-modules. Then f is weak-epic if and only
if F is onto. Moreover, [ is weak-monic if and only if F is one to one. Finally, f is a weak isomorphism if

and only if F is an isomorphism.

Proof Suppose that f is weak-epic and e5(b) € B/e%. Since f is weak-epic, there exists a € A such that

et (f(a)) = e5(b). However, ei(f(a)) = F(e*(a)). Therefore, F(e%(a)) = €%(b) and consequently F' is onto.
Conversely, let F' be onto. Then for every b € B there exists €% (a) € A/e% such that F(e%(a)) = e5(b).

However, F(e* (a)) = €5(f(a)). Therefore, there exists a € A such that £5(f(a)) = €% (b) and consequently f

is weak-epic. The second part is proved in [3]. The third part is an obvious result. O

Theorem 4.6 Let wy S RNE N BN N we be an ezxact sequence of H,-modules and strong H, -

homomorphisms over an H, -ring R. Then

0=wa/el,, - Afery 25 Bjey -5 Clet L wefel, =0
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is an exact sequence of R/~v*-homomorphisms and R/~y*-modules.

Proof It follows from Lemma 4.4, Lemma 4.5, and Theorem 4.8 of [8] that say if A 15 B %5 C is an exact

F €] .
sequence, then A/e* — B/ej; — C/ef is an exact sequence. O

Theorem 4.7 (Five short lemma in H,-modules) Let

wA A B C we
WA, A1 f1 B1 n Cl we,

be a commutative diagram of H,-modules and H,-homomorphisms over an H, -ring R with both rows ezxact.
Then

(1) If h and | are weak-monic, then k is weak-monic.
(2) If h and 1 are weak-epic, then k is weak-epic.

(8) If h and | are weak isomorphisms, then k is a weak isomorphism.
Proof (1) By Lemma 3.4 and Theorem 4.6 the following diagram of R/~v*-modules and R/~*-homomorphisms

is commutative with both rows exact:

F G

0=wa/el, Al B/e%, Cleg Clet, =0
I R
0= wAl/s’;Al — Ay /e}, ?Bl/sgl ?Cl/sa chl/sjf)cl =0.

By Lemma 4.5, H and L are one to one R/y*-homomorphisms. Then by the five short lemma in modules
K is a one to one R/v*-homomorphism. Therefore, by Lemma 4.5, k is a weak-monic R-homomorphism.

Alternative Proof. Tt is sufficient to show that Ker(k) = wp. We always have wp C Ker(k). On the
other hand, suppose that b € Ker(k). Then k(b) € wp, and so ¢1(k(b)) € ¢g1(wp,). Since g1(wp,) C we,,
we have ¢1(k(b)) € we,. Since g1 ok = log and [ is weak monic, we obtain ¢(b) € Ker(l) = we. Then

b€ Ker(g) = Im(f) and consequently
ep(b) = e5(f(a)) for some a € A. (3)

Since k is a strong H, -homomorphism, we have 3 (k(b)) = €5, (k(f(a))). Since ko f = fioh and b € Ker(k),
we obtain ef (k(b)) = €3, (f1(h(a))) = wp, . Therefore, fi(h(a)) € wp,. Since f; is weak-monic we obtain
h(a) € wa, and since h is weak-monic it follows that @ € wa. Thus, f(a) € f(wa) C wp and by Eq. (3) we
obtain ¢} (b) = e} (f(a)) = wp. Therefore, b € wp and the proof is complete.

(2) Tt is similar to (1).

(3) It follows from (1) and (2). O
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