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Abstract: The largest class of multivalued systems satisfying the module-like axioms are the Hv -modules. The main

tools concerning the class of Hv -modules with the ordinary modules are the fundamental relations. Based on the relation

ε∗ , exact sequences in Hv -modules are defined. In this paper, we introduce the Hv -module M [A] and determine its

heart and the connection between equivalence relations ε∗M [A] and ε∗A . Moreover, we define the M [−] and −[M ] functors

and investigate the exactness and some concepts related to them. Finally, we prove the five short lemma in Hv -modules.
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1. Introduction

A hyperstructure (or hypergroupoid) is a nonempty set H together with a hyperoperation defined on H , that

is, a mapping of H ×H into the family of nonempty subsets of H . In 1934, Marty introduced the concept of

a hypergroup [12] as a nonempty set H equipped with a hyperoperation ∗ : H ×H −→ P∗(H) that satisfies

the associative law: (x ∗ y) ∗ z = x ∗ (y ∗ z) for every x, y, z ∈ H and the reproduction axiom is valid, i.e.

x ∗H = H ∗ x = H for every x ∈ H ; it means that for any x, y ∈ H there exist u, v ∈ H such that y ∈ x ∗ u
and y ∈ v ∗ x . If A , B are nonempty subsets of H then A ∗B is given by A ∗B =

∪
a∈A,b∈B a ∗ b . Moreover,

a ∗ A is used for {x} ∗ A and A ∗ x for A ∗ {x} . Several books have been written to date on hyperstructures

[2, 3, 9, 15]. The concept of Hv -structures as a larger class than the well-known hyperstructures was introduced

by Vougiouklis at the Fourth Congress of AHA (Algebraic Hyperstructures and Applications) [16], where the

axioms are replaced by the weak ones, that is, instead of the equality on sets one has nonempty intersections.

The basic definitions and results of Hv -structures can be found in [6, 9, 15]. This concept has been further

investigated by many researchers. The largest class of multivalued systems satisfying the module-like axioms is

the class of Hv -modules (or Hv -vector spaces) [1, 4, 5, 7, 10, 11, 13, 14, 17].

In 2001, Davvaz and Ghadiri defined exact sequences in Hv -modules and proved some results in this

respect [8]. In Section 2, we recall some basic concepts for the sake of completeness and we present some

examples for the definitions. In Section 3, we introduce the concepts of M [−] and −[M ] functors and investigate

some related concepts. In Section 4, we determine the heart of M [A] and the connection between equivalence

relations ε∗M [A] and ε∗A . Finally, we investigate the exactness of functors M [−] and −[M ] and prove the five

short lemma in Hv -modules.
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2. Basic concepts

In this section we recall some basic concepts. Let H be a nonempty set and P∗(H) be the family of nonempty

subsets of H . Every function ∗ : H × H → P∗(H) is called a hyperoperation on H and (H, ∗) is called a

hyperstructure. The hyperstructure (H, ∗) is called an Hv -group if

(1) The ∗ is weak associative, i.e. x ∗ (y ∗ z) ∩ (x ∗ y) ∗ z ̸= ∅ ,

(2) The reproduction axiom holds, i.e. a ∗H = H ∗ a = H for every a ∈ H .

We say H is weak commutative if for every x, y ∈ H , x ∗ y ∩ y ∗ x ̸= ∅.
A multivalued system (R,+, ·) is called an Hv -ring if the following axioms hold

(1) (R,+) is a weak commutative Hv -group,

(2) (R, ·) is a weak associative, i.e. x · (y · z) ∩ (x · y) · z ̸= ∅ for every x, y, z ∈ R ,

(3) The · hyperoperation is weak distributive with respect to +, i .e. for every x, y, z ∈ R , we have

x · (y + z) ∩ (x · y + x · z) ̸= ∅ , (x+ y) · z ∩ (x · z + y · z) ̸= ∅ .

For example, if (H,+) is an Hv -group, then for every hyperoperation · such that {x, y} ⊆ x ·y for every

x, y ∈ H , the hyperstructure (H,+, ·) is an Hv -ring. Therefore, we can construct some Hv -rings by a given

Hv -group [15].

Let M be a nonempty set. Then M is called a left Hv -module over an Hv -ring R if (M,+) is a weak

commutative Hv -group and there exists a map · : R ×M → P∗(M) denoted by (r,m) 7→ rm such that for

every r1, r2 ∈ R and every m1,m2 ∈M, we have

(1) r1(m1 +m2) ∩ (r1m1 + r1m2) ̸= ∅ ,

(2) (r1 + r2)m1 ∩ (r1m1 + r2m1) ̸= ∅ ,

(3) (r1r2)m1 ∩ r1(r2m1) ̸= ∅ .

Let M1 and M2 be two Hv -modules over an Hv -ring R . A mapping f :M1 −→M2 is called a strong

Hv -homomorphism if for every x, y ∈M1 and every r ∈ R , we have f(x+y) = f(x)+f(y) and f(rx) = rf(x).

The Hv -modules M1 and M2 are called isomorphic if the Hv -homomorphism f is one to one and onto.

It is denoted by M1
∼=M2 .

By using a certain type of equivalence relations, we can connect hyperstructures to usual structures.

The smallest of these relations are called fundamental relations and denoted by β∗, γ∗, ε∗ , so that if H is

an Hv -group (Hv -ring, Hv -module over an Hv -ring R) then H/β∗ is a group (H/γ∗ is a ring, H/ε∗ is an

R/γ∗ -module). The fundamental relation ε∗ on an Hv -module M can be defined as follows:

Consider the left Hv -module M over an Hv -ring R . If ϑ denotes the set of all expressions consisting

of finite hyperoperations of either on R and M or of the external hyperoperations applying on finite sets of

elements of R and M , a relation ε can be defined on M whose transitive closure is the fundamental relation

ε∗ . The relation ε is defined as follows: for every x, y ∈ M , x ε y if and only if {x, y} ⊆ u for some u ∈ ϑ ;

i.e.

xεy ⇔ x, y ∈
n∑

i=1

m
′

i, m
′

i = mi or m
′

i =
ni∑
j=1

(
kij∏
k=1

rijk)mi,

where mi ∈M, rijk ∈ R.
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Suppose that γ∗(r) is the equivalence class containing r ∈ R and ε∗(x) is the equivalence class containing

x ∈M . On M/ε∗ the ⊕ and the external product ⊙ using the γ∗ classes in R are defined as follows:

For every x, y ∈M , and for every r ∈ R ,

ε∗(x)⊕ ε∗(y) = ε∗(c), for every c ∈ ε∗(x) + ε∗(y),

γ∗(r)⊙ ε∗(x) = ε∗(d), for every d ∈ γ∗(r) · ε∗(x).

The kernel of canonical map ϕ :M −→M/ε∗M is called the heart of M and it is denoted by ωM , i.e.

ωM = {x ∈ M | ϕ(x) = 0} , where 0 is the unit element of the group (M/ε∗,⊕). One can prove that the unit

element of the group (M/ε∗,⊕) is equal to ωM . By the definition of ωM , we have

ωωM
= Ker(ϕ : ωM −→ ωM/ε

∗
ωM

= 0) = ωM .

The kernel of a strong Hv -homomorphism f : A −→ B is defined as follows:

Ker(f) = {a ∈ A | f(a) ∈ ωB}.

Let M1 and M2 be two Hv -modules over an Hv -ring R and let ε∗M1
, ε∗M2

, and ε∗M1×M2
be the fundamental

relations on M1 , M2 , and M1 ×M2 respectively; then

(x1, x2)ε
∗
M1×M2

(y1, y2) ⇔ x1ε
∗
M1
y1 and x2ε

∗
M2
y2; for all (x1, x2), (y1, y2) ∈M1 ×M2

and it is easy to see that (M1 ×M2)/ε
∗
M1×M2

∼=M1/ε
∗
M1

×M2/ε
∗
M2

[14, 15].

Definition 2.1 [8] Let M be an Hv -module and X,Y be nonempty subsets of M . We say X is weak equal

to Y and write X
w
= Y if and only if for every x ∈ X there exists y ∈ Y such that ε∗M (x) = ε∗M (y) and for

every y ∈ Y there exists x ∈ X such that ε∗M (x) = ε∗M (y) .

Definition 2.2 [8] Let M0
f1−→ M1

f2−→ M2 −→ · · · −→ Mn−1
fn−→ Mn be a sequence of Hv -modules and

strong Hv -homomorphisms. We say this sequence is exact if for every 2 ≤ i ≤ n, Im(fi−1)
w
= Ker(fi) .

Definition 2.3 [8] A function f :M1 −→M2 is called weak-monic if for every m1,m
′

1 ∈M1 , f(m1) = f(m
′

1)

implies ε∗M1
(m1) = ε∗M1

(m
′

1) and f is called weak-epic if for every m2 ∈ M2 there exists m1 ∈ M1 such that

ε∗M2
(m2) = ε∗M1

(f(m1)) . Finally f is called weak-isomorphism if f is weak-monic and weak-epic.

We present the following example for the above definitions.

Example 1 Let R be an Hv -ring. Consider the following Hv -modules on R .

(1) M = {a, b} together with the following hyperoperations:

∗M a b
a a b
b b a

and ·M : R×M → P∗(M)
(r,m)7→{a}
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(2) M1 = {0, 1, 2} together with the following hyperoperations:

∗M1 0 1 2
0 0 1 2
1 1 0,2 1
2 2 1 0

and ·M1 : R×M1 → P∗(M1)
(r,m1)7→{0}

(3) M2 = { 0̄ , 1̄ , 2̄} together with the following hyperoperations:

∗M2 0̄ 1̄ 2̄
0̄ 0̄ 1̄ 2̄
1̄ 1̄ 2̄ 0̄
2̄ 2̄ 0̄ 1̄

and ·M2 : R×M2 → P∗(M2)
(r,m2)7→M2

Since {0, 2} ⊆ 1 ∗M1 1 , r · m1 = 0 for every r ∈ R and every m1 ∈ M1 and 0 ∗M1 0 = 0 , we obtain M1/

ε∗M1
= {ε∗M1

(0) = ε∗M1
(2) = {0, 2}, ε∗M1

(1) = {1}} . Moreover, since ε∗M1
(0) + ε∗M1

(1) = ε∗M1
(1) , it follows

that ωM1 = ε∗M1
(0) = {0, 2} . Since r ·M2 m2 = M2 for every r ∈ R and every m2 ∈ M2 , we obtain M2/

ε∗M2
= {{ 0̄,1̄,2̄}} and ωM2 = ε∗M2

( 0̄) = ε∗M2
( 1̄) = ε∗M2

( 2̄) =M2 .

Since (M1 ×M2)/ε
∗
M1×M2

∼=M1/ε
∗
M1

×M2/ε
∗
M2

, it follows that

M1 ×M2/ε
∗
M1×M2

= {{(0, 0̄), (0, 1̄), (0, 2̄), (2, 0̄), (2, 1̄), (2, 2̄)}, {(1, 0̄), (1, 1̄), (1, 2̄)}} .

Note that ωM1×M2 = ωM1 × ωM2 . The subsets X = {(2, 1̄), (2, 2̄), (1, 1̄), (1, 2̄)} and Y = {(0, 2̄), ((1, 0̄)}
of M1 × M2 are weakly equal. Now consider f ∈ M [M1 × M2] , where f(a) = (2, 2̄) , f(b) = (1, 0̄) and

g ∈M1[M1×M2] , where g(0) = (1, 1̄) , g(1) = (2, 2̄) , g(2) = (1, 1̄) . Then f is weak-epic and g is weak-monic.

3. M[–] and –[M] functors

Let f : A −→ B be a strong Hv -homomorphism of Hv -modules over an Hv -ring R . Then F : A/ε∗A −→ B/ε∗B ,

where F (ε∗A(a)) = ε∗B(f(a)) is an R/γ∗ -homomorphism of R/γ∗ -modules. Let R be a weak-commutative Hv -

ring and H be the set of all Hv -modules and all strong R -homomorphisms. One can show that H is a category.

Furthermore, set H* the category of R/γ∗ -modules and R/γ∗ -homomorphisms. Then T : H −→ H* , defined

by T (A) = A/ε∗A and T (f : A −→ B) = F : A/ε∗ −→ B/ε∗B , where F (ε∗A(a)) = ε∗B(f(a)) is a covariant functor

[8]. Now we want to introduce M [−] and −[M ] functors and investigate some related concepts.

Suppose that M and N are two Hv -modules and M [N ] is the set of all functions on M with values in

N . First we equip M [N ] to appropriate hyperoperations to be an Hv -module. Then we introduce the functors

M [−] and −[M ] and investigate some related concepts. Throughout this paper, the hyperoperations in M, N

and M [N ] will be shown with the same symbols.

Theorem 3.1 The M [N ] with the following hyperoperations is an Hv -module.

f + g = {h ∈M [N ] | h(x) ∈ f(x) + g(x), ∀x ∈M},
r · f = {k ∈M [N ] | k(x) ∈ r · f(x), ∀x ∈M}.
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Proof The hyperoperations + and · in M [N ] are well defined and for + and · in N are well defined. Let

f, g, h ∈M [N ] . We have

(f + g) + h = {l ∈M [N ] | l(x) ∈ f(x) + g(x), ∀x ∈M}+ h =
∪

l∈f+g l + h

= {L ∈M [N ] | L(x) ∈ l(x) + h(x), ∀x ∈M, l(x) ∈ f(x) + g(x)}

and

f + (g + h) = f + {k ∈M [N ] | k(x) ∈ g(x) + h(x), ∀x ∈M} =
∪

k∈g+h f + k

= {K ∈M [N ] | K(x) ∈ f(x) + k(x), ∀x ∈M, k(x) ∈ g(x) + h(x)}.

Since N is an Hv -group, for all x ∈ M there exists nx ∈ [(f(x) + g(x)) + h(x)] ∩ [f(x) + (g(x) + h(x))] . We

define u ∈ M [N ] by u(x) = nx , according to the choice axiom. Then u ∈ [(f + g) + h] ∩ [f + (g + h)] and

associativity is satisfied.

For the reproduction axiom let f, g ∈ M [A] . Then for all x ∈ M , f(x), g(x) ∈ N and so there exists

yx ∈ N such that f(x) ∈ g(x) + yx . We define h ∈ M [N ] by h(x) = yx ; then f ∈ g + h . Similarly, there

exists h
′ ∈M [N ] such that f ∈ h

′
+ g . Since N is an Hv -module, the conditions of Hv -modules are satisfied

in M [N ] . We check only one of the Hv -module conditions. Let r1, r2 ∈ R and f ∈ M [N ] . Since N is an

Hv -module, it follows that for every x ∈ M there exists nx ∈ [(r1 + r2)f(x)] ∩ [r1f(x) + r2f(x)]. We define

h ∈M [N ] by h(x) = nx. Obviously, h ∈ [(r1 + r2)f ] ∩ [(r1f + r2f)] ̸= ∅ . 2

Lemma 3.2 Let f : A −→ B be a strong Hv -homomorphism and M be an Hv -module. Then

(1) The map
−
f :M [A] −→M [B] defined by

−
f (ϕ) = f ◦ ϕ is a strong Hv -homomorphism.

(2) The map
−
f : B[M ] −→ A[M ] defined by

−
f (ϕ) = ϕ ◦ f is a strong Hv -homomorphism.

Proof (1) Let ϕ1, ϕ2 ∈M [A] . Then

−
f (ϕ1 + ϕ2) = {f ◦ h | h ∈M [A], h(m) ∈ ϕ1(m) + ϕ2(m), ∀m ∈M},
−
f (ϕ1)+

−
f (ϕ2) = f ◦ ϕ1 + f ◦ ϕ2 = {h′ ∈M [B] | h′

(m) ∈ f ◦ ϕ1(m) + f ◦ ϕ2(m)}.

Suppose that f ◦ h ∈
−
f (ϕ1 + ϕ2), where h ∈ M [A] and h(m) ∈ ϕ1(m) + ϕ2(m) for every m ∈ M . Then

f(h(m)) ∈ f(ϕ1(m) + ϕ2(m)) = f(ϕ1(m)) + f(ϕ2(m)). Therefore,
−
f (ϕ1 + ϕ2) ⊆

−
f (ϕ1)+

−
f (ϕ2).

Conversely, suppose that h
′ ∈

−
f (ϕ1)+

−
f (ϕ2). We need to find an h ∈ M [A] such that h

′
= foh and

h(m) ∈ ϕ1(m) + ϕ2(m). By hypothesis for m ∈M, we have

h
′
(m) = bm ∈ f ◦ ϕ1(m) + f ◦ ϕ2(m) = f(ϕ1(m) + ϕ2(m)) ⊆ Im(f).

Therefore, bm ∈ f(ϕ1(m) + ϕ2(m)). Now, according to the choice axiom, we can select a ∈ f−1(bm) such that

a ∈ ϕ1(m) + ϕ2(m) and define h(m) = a .
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Similarly, one can show that
−
f (rϕ) = r

−
f (ϕ).

(2) Let ϕ1, ϕ2 ∈ B[M ] . Then

−
f (ϕ1 + ϕ2) = {h ◦ f | h ∈ B[M ], h(b) ∈ ϕ1(b) + ϕ2(b)},
−
f (ϕ1)+

−
f (ϕ2) = ϕ1 ◦ f + ϕ2 ◦ f = {h′ ∈ A[M ] | h′

(a) ∈ ϕ1 ◦ f(a) + ϕ2 ◦ f(a)}.

Suppose that h◦f ∈
−
f (ϕ1+ϕ2), where h ∈ B[M ] and h(b) ∈ ϕ1(b)+ϕ2(b) for every b ∈ B . Since Im(f) ⊆ B ,

we have h(f(a)) ∈ ϕ1(f(a)) + ϕ2(f(a)) for every a ∈ A . Therefore,
−
f (ϕ1 + ϕ2) ⊆

−
f (ϕ1)+

−
f (ϕ2).

Conversely, suppose that h
′ ∈

−
f (ϕ1)+

−
f (ϕ2). We need to find an h ∈ B[M ] such that h

′
= h ◦ f

and h(b) ∈ ϕ1(b) + ϕ2(b). For every b ∈ Im(f) ⊆ B we define h(b) = h
′
(a), where f(a) = b and for every

b ∈ B\Im(f) according to the choice axiom we select an mb in ϕ1(b)+ϕ2(b) ⊆M and define h(b) = mb . Then

h satisfies the requirement conditions.

Similarly, one can show that
−
f (rϕ) = r

−
f (ϕ). 2

Lemma 3.3 Let M be an Hv -module and f : A −→ B be a morphism in the category H. Then

(1) M [−] :H−→H defined by M [−](A) =M [A] and M [−](f) =
−
f :M [A] −→M [B] , where

−
f (ϕ) = f ◦ ϕ is

a covariant functor.

(2) −[M ] :H−→H defined by −[M ](A) = A[M ] and −[M ](f) =
−
f : B[M ] −→ A[M ] , where

−
f (ϕ) = ϕ ◦ f is

a contravariant functor.

Proof (1) By Theorem 3.1 if A is an Hv -module, then M [−](A) = M [A] is an Hv -module. By Lemma

3.2 if f : A −→ B is a strong Hv -homomorphism, then M [−](f) =
−
f is a strong Hv -homomorphism. Now let

A
f−→ B

g−→ C be a strong Hv -homomorphism in H. Then

M [−](g ◦ f)(ϕ) = g ◦ f ◦ ϕ = g(f ◦ ϕ) =M [−](g)(f ◦ ϕ) =M [−](g) ◦M [−](f)(ϕ)

and for every A ∈ objH we have M [−](1A)(ϕ) = 1A ◦ ϕ = ϕ . Then M [−](1A) = 1M [−](A) and so M [−] is a

covariant functor.

(2) By Theorem 3.1 if A is an Hv -module, then −[M ](A) = A[M ] is an Hv -module. By Lemma 3.2

if f : A −→ B is a strong Hv -homomorphism, then −[M ](f) =
−
f is a strong Hv -homomorphism. Now let

A
f−→ B

g−→ C be a strong Hv -homomorphism in H. Then

−[M ](g ◦ f)(ϕ) = ϕ ◦ g ◦ f = (ϕ ◦ g)f = −[M ](f)(ϕ ◦ g) = −[M ](f) ◦ −[M ](g)(ϕ),

and for every A ∈ objH we have −[M ](1A)(ϕ) = ϕ ◦ 1A = ϕ . Then, −[M ](1A) = 1−[M ](A) and so −[M ] is a

contravariant functor. 2
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Lemma 3.4 Let

A
f //

h

��

B

k

��
A1 g

// B1

be a commutative diagram of Hv -modules and strong Hv -homomorphisms. Then the following diagrams are

commutative.

A/ε∗A
F //

H

��

B/ε∗B

K

��
A1/ε

∗
A1 G

// B1/ε
∗
B1

M [A]

−
f //

−
h

��

M [B]

−
k

��
M [A1] −

g

// M [B1]

Proof We have T (A) = A/ε∗A and T (f : A −→ B) = F : A/ε∗ −→ B/ε∗B , where F (ε∗A(a)) = ε∗B(f(a)).

Therefore,

K ◦ F = T (k) ◦ T (f) = T (k ◦ f) = T (g ◦ h) = T (g) ◦ T (h) = G ◦H.

We have M [−](A) =M [A] , M [−](f : A −→ B) =
−
f :M [A] −→M [B] , where

−
f (ϕ) = f ◦ ϕ . Therefore,

−
k ◦

−
f =M [−](k) ◦M [−](f) =M [−](k ◦ f) =M [−](g ◦ h)

=M [−](g) ◦M [−](h) =
−
g ◦

−
h .

2

We know that the combination of two covariant functors is a covariant functor. Therefore, the map S =

T ◦M [−] :H−→H* is a covariant functor, where

S(A) =M [A]/ε∗M [A] and S(f : A −→ B) =
−
F :M [A]/ε∗M [A] −→M [B]/ε∗M [B],

where
−
F (ε∗M [A](ϕ)) = ε∗M [B](f ◦ ϕ).

Lemma 3.5 For every A ∈ objH , τA : T (A) −→ S(A) defined by τA(ε
∗
A(a)) = ε∗M [A](ϕa) is a R/γ

∗ -homomorphism,

where ϕa :M −→ A defined by ϕa(m) = a for every m ∈M . Then the family τ = (τA : T (A) −→ S(A))A∈objH

is a natural transformation from T to S .

Proof We have

τA(ε
∗
A(a)⊕ ε∗A(b)) = τA(ε

∗
A(a+ b)) = ε∗M [A](ϕt),
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where t ∈ a+ b. On the other hand, we obtain

τA(ε
∗
A(a))⊕ τA(ε

∗
A(b)) = ε∗M [A](ϕa)⊕ ε∗M [A](ϕb) = ε∗M [A](ϕa + ϕb)

= ε∗M [A]({ϕ ∈M [A] | ϕ(m) ∈ ϕa(m) + ϕb(m), ∀m ∈M})
= ε∗M [A]({ϕ ∈M [A] | ϕ(m) ∈ a+ b, ∀m ∈M})
= ε∗M [A](ϕt),

where t ∈ a+ b . Therefore, τA(ε
∗
A(a)⊕ ε∗A(b)) = τA(ε

∗
A(a))⊕ τA(ε

∗
A(b)). Similarly, we have

τA(γ
∗(r)⊙ ε∗A(a)) = τA(ε

∗
A(d)), for some d ∈ γ∗(r) · ε∗A(a)

= ε∗M [A](ϕd), for some d ∈ r · a

and

γ∗(r)⊙ τA(ε
∗
A(a)) = γ∗(r)⊙ ε∗M [A](ϕa)

= ε∗M [A](h) for some h ∈ r · ϕa
= ε∗M [A](h),

where for every m ∈M , h(m) ∈ r · ϕa(m) = r · a . Therefore,

τA(γ
∗(r)⊙ ε∗A(a)) = γ∗(r)⊙ τA(ε

∗
A(a)).

Now let f : A −→ B be a morphism in H and consider the following diagram.

T (A)
τA //

T (f)

��

S(A)

S(f)

��
T (B)

τB
// S(B)

We have

S(f) ◦ τA(ε∗A(a)) = S(f)(ε∗M [A](ϕa)) = ε∗M [B](f ◦ ϕa),
τB ◦ T (f)(ε∗A(a)) = τB(ε

∗
B(f(a))) = ε∗M [B](ϕf(a)).

Obviously, f ◦ ϕa = ϕf(a) and so S(f) ◦ τA = τB ◦ T (f) and τ : T −→ S is a natural transformation. 2

Lemma 3.6 Let H1 and H2 be two Hv -modules. Then H1 ×H2 is a product object in H category.

Proof The proof is straightforward. 2

Note that Lemma 3.6 can be generalized to the cartesian product of n arbitrary Hv -modules.

Theorem 3.7 Let M be an Hv -module. Then M [H1 ×H2] ∼=M [H1]×M [H2] .

Proof It is easy to see that the map ϕ :M [H1]×M [H2] −→M [H1 ×H2] defined by ϕ(f1, f2) = f :M −→ H1 ×H2 ,

where f(m) = (f1(m), f2(m)) is well defined. Now we have

ϕ((f1, g1) + (f2, g2)) = ϕ({(f, g) | f ∈ f1 + f2, g ∈ g1 + g2})
= {h | h(m) = (f(m), g(m)), f(m) ∈ f1(m) + f2(m), g(m) ∈ g1(m) + g2(m)}.
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On the other hand, we have

ϕ((f1, g1)) = h ∈M [H1 ×H2] such that h(m) = (f1(m), g1(m)),
ϕ((f2, g2)) = k ∈M [H1 ×H2] such that k(m) = (f2(m), g2(m)).

And

h+ k = {l | l(m) ∈ h(m) + k(m) = (f1(m), g1(m)) + (f2(m), g2(m))}
= {l | l(m) = (f(m), g(m)), f(m) ∈ f1(m) + f2(m), g(m) ∈ g1(m) + g2(m)}.

Therefore, ϕ((f1, g1) + (f2, g2)) = ϕ((f1, g1)) + ϕ((f2, g2)).

Similarly, one can show that ϕ(r(f, g)) = rϕ((f, g)).

Now let f ∈ M [H1 × H2] , where f(m) = (h1m, h2m). We define f1 ∈ M [H1] by f(m) = h1m and

f2 ∈M [H2] by f(m) = h2m . Obviously, ϕ((f1, f2)) = f .

Finally, suppose that ϕ((f1, f2)) = ϕ((g1, g2)). Then, for every m ∈ M , we obtain (f1(m), f2(m)) =

(g1(m), g2(m)) and so (f1, f2) = (g1, g2). 2

Note that in finite mode in Theorem 3.7 we have

|M [H1]×M [H2]| = |M [H1]| × |M [H2]| = |H1||M | × |H2||M |

= |H1 ×H2||M |
= |M [H1 ×H2]|.

Therefore, it is sufficient to show that ϕ is one to one or onto.

Corollary 3.8 Let M , H1 , H2, · · · , Hn be Hv -modules. Then

M [H1 ×H2 ×H3 × · · · ×Hn] ∼=M [H1]×M [H2]×M [H3]× · · · ×M [Hn].

4. Five short lemma in Hv -modules

Let f : A −→ B be a strong Hv -homomorphism of Hv -modules over an Hv -ring R . Then we have f(ωA) ⊆ ωB

and so ωA ⊆ Ker(f). Furthermore, Ker(f) = ωA if and only if f is weak-monic [8]. In this section, we

determine the heart of M [A] and the connection between equivalence relations ε∗M [A] and ε∗A . Moreover, we

check the exactness of M [−] and −[M ] functors. Finally, we investigate the five short lemma in Hv -modules.

Lemma 4.1 If ε∗M [A](f) = ε∗M [A](g) , then ε∗A(f(m)) = ε∗A(g(m)) , for every m ∈M ; i.e. if for some m ∈M ,

ε∗A(f(m)) ̸= ε∗A(g(m)) then ε∗M [A](f) ̸= ε∗M [A](g).

Proof Suppose that f ε∗M [A] g . Then there exist f0 = f, f1, · · · , fn = g in M [A] such that fi εM [A]

fi+1 for i = 0, 1, . . . , n − 1. Therefore, {fi, fi+1} ⊆
ni∑
j=1

g
′

ij , for i = 0, 1, . . . , n − 1, where g
′

ij = gij or

g
′

ij =
nij∑
k=1

(
lijk∏
l=1

rijkl)gij for gij ∈M [A] and rijkl ∈ R . Now, since

ni∑
j=1

g
′

ij = {h ∈M [N ] | h(m) ∈ g
′

i1(m) + g
′

i2(m) + · · ·+ g
′

ini
(m), ∀m ∈M},
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we have {fi(m), fi+1(m)} ⊆
ni∑
j=1

g
′

ij(m) for every m ∈ M and so there exist a0 = f0(m) = f(m), a1 =

f1(m), . . . , an = fn(m) = g(m) ∈ A such that ai εA ai+1 , for i = 0, 1, . . . , n− 1. Therefore, for every m ∈M,

we have f(m) ε∗A g(m). 2

In the following example we show that the converse of Lemma 4.1 is not true in general.

Example 2 Consider f, g ∈ M [M1 × M2] as in Example 1 and define f(a) = (2, 2̄) , f(b) = (1, 0̄) and

g(a) = (0, 1̄) , g(b) = (1, 2̄) . By Example 1 we have ε∗M1×M2
(f(a)) = ε∗M1×M2

(g(a)) and ε∗M1×M2
(f(b)) =

ε∗M1×M2
(g(b)) . Since for every r ∈ R and every m1 ∈ M1 , rm1 = {0} and, on the other hand, for every two

elements m2 and m
′

2 of M2 , m2 ∗M2 m
′

2 is a singleton, it follows that ε∗M [M1×M2]
(f) ̸= ε∗M [M1×M2]

(g) .

In the following lemma, we determine the heart of M [A] .

Lemma 4.2 Let M and A be two Hv -modules. Then ωM [A] =M [ωA] .

Proof Suppose that f ∈ ωM [A] . Then for every g ∈M [A] we have

ε∗M [A](g) = ε∗M [A](f)⊕ ε∗M [A](g)
(
= ε∗M [A](f + g)

)
.

Now by Lemma 4.1 for every m ∈M we obtain

ε∗A((f + g)(m)) = ε∗A(g(m)).

However, for every m ∈M we have (f + g)(m) = {l(m) | l ∈ f + g} = f(m) + g(m). Hence,

ε∗A((f + g)(m)) = ε∗A(f(m) + g(m)) = ε∗A(f(m))⊕ ε∗A(g(m)) = ε∗A(g(m)).

Therefore, for every m ∈M , we obtain ε∗A(f(m)) ∈ ωA and so f ∈M [ωA] .

Conversely, suppose that f ∈M [ωA] . Then for every g ∈M [A] and all m ∈M we have

ε∗A(f(m) + g(m)) = ε∗A(f(m))⊕ ε∗A(g(m)) = ε∗A(g(m)).

Therefore, for every g ∈M [A] and all m ∈M , we have f(m) + g(m) ∈ ε∗A(g(m)) and we obtain

ε∗M [A](f)⊕ ε∗M [A](g) = ε∗M [A](f + g) = ε∗M [A]({l | l(m) ∈ f(m) + g(m)}) = ε∗M [A](g)

and consequently f ∈ ωM [A]. 2

In the following, we want to investigate the exactness of −[M ] and M [−] functors.

Let A
f−→ B

g−→ C be an exact sequence. Then for every a ∈ A we have f(a) ∈ Im(f)
w
= Ker(g) and

so ε∗B(f(a)) = ε∗B(b) for some b ∈ Ker(g). Now we obtain

ε∗C(g(f(a))) = G(ε∗B(f(a))) = G(ε∗B(b)) = ε∗C(g(b)) = ωC .

Therefore, for every a ∈ A we have g(f(a)) ∈ ωC .
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Now, by considering −[M ] functor on the exact sequence A
f−→ B

g−→ C , we obtain

C[M ]
−
g−→ B[M ]

−
f−→ A[M ].

We want to check the exactness of this sequence. We have

Im(
−
g) = {

−
g (ϕ) | ϕ ∈ C[M ]} = {ϕ ◦ g | ϕ ∈ C[M ]},

Ker(
−
f ) = {ψ ∈ B[M ] |

−
f (ψ) = ψ ◦ f ∈ ωA[M ] = A[ωM ]}.

Let ϕ be a function in C[M ] such that ϕ(ωC) ∩ ωM = ∅ (note that it is necessary for ωM ̸= M ). Then for

every a ∈ A , since g ◦ f(a) ∈ ωC and ϕ(ωC) ∩ ωM = ∅ , we obtain ε∗M (ϕ(g(f(a)))) ̸= ωM . On the other hand,

for every ψ ∈ Ker(
−
f ) and every a ∈ A , ε∗M (ψ(f(a))) = ωM . Thus, by Lemma 4.1 for ϕ ◦ g ∈ Im(

−
g) there is

no member of Ker(
−
g) such that its class is equal to the class of ϕ ◦ g . Therefore, in general the −[M ] functor

is not exact. The same discussion is established for the M [−] functor.

Example 3 Consider the Hv -modules M , M1 , and M2 as Example 1 and the sequence M
f−→ M1

i−→ M1 ,

where f(a) = 0 , f(b) = 2 , and i is identity. It is easy to see that the sequence M
f−→ M1

i−→ M1 is exact.

However, the sequence

M1[M1 ×M2]
−
i−→M1[M1 ×M2]

−
f−→M [M1 ×M2]

is not exact, because for ϕ ∈ M1[M1 ×M2] defined by ϕ(0) = (1, 1̄) , ϕ(1) = (2, 1̄) , and ϕ(2) = (1, 2̄) there is

no member of Ker(
−
f ) such that its class is equal to the class of ϕ .

In the following theorem we show that if the converse of Lemma 4.1 is established, then the functors

M [−] and −[M ] are exact.

Theorem 4.3 Let A
f−→ B

g−→ C be an exact sequence of Hv -modules and strong Hv -homomorphisms. If

the converse of Lemma 4.1 is established, then the sequences

C[M ]
−
g−→ B[M ]

−
f−→ A[M ] (1)

M [A]

−
f−→M [B]

−
g−→M [C] (2)

are exact sequences.

Proof We prove (2). The proof of (1) is similar. Suppose that h ∈ Im(
−
f ). Then there exists ϕ ∈M [A] such

that h =
−
f (ϕ) = f ◦ ϕ ∈ M [B] . For every m ∈ M , f ◦ ϕ(m) ∈ Im(f) and so there exists bm ∈ Ker(g) such

that ε∗B(f ◦ ϕ(m)) = ε∗B(bm). Now we define k ∈ M [B] by k(m) = bm . Since
−
g (k) = gok ∈ M [ωC ] = ωM [C] ,

we obtain k ∈ Ker
−
g . Finally, by the converse of Lemma 4.1 we have ε∗M [B](h) = ε∗M [B](k).
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Conversely, let k ∈ Ker(
−
g); then

−
g (k) = g ◦ k ∈ ωM [C] = M [ωC ] . Therefore, for all m ∈ M ,

g ◦ k(m) ∈ ωC and k(m) ∈ Ker(g). Then there exists bm = f(a) ∈ Im(f) for some a ∈ A such that

ε∗B(bm) = ε∗B(k(m)). We define ψ ∈ M [A] by ψ(m) = a and set ϕ = f ◦ ψ =
−
f (ψ) ∈ Im(

−
f ). Now by the

converse of Lemma 4.1 we obtain ε∗M [B](k) = ε∗M [B](ϕ). 2

Lemma 4.4 Let A , B , and C be Hv -modules. Then

(1) ωA
i−→ A

f−→ B is exact if and only if f is weak-monic.

(2) B
g−→ C

j−→ ωC is exact if and only if g is weak-epic.

(3) ωA
i−→ A

f−→ B
g−→ C

j−→ ωC is exact if and only if f is weak-monic, g is weak-epic, and Im(f)
w
=

Ker(g) .

Proof (1) Suppose that the given sequence is exact. It is sufficient to show that Ker(f) = ωA . We always

have ωA ⊆ Ker(f). On the other hand, if a ∈ Ker(f), then there exists a1 ∈ Im(i) = ωA such that

ε∗A(a) = ε∗A(a1) = ωA and so a ∈ ωA . Therefore, Ker(f) = ωA and f is weak-monic.

Conversely, suppose that f is weak-monic. Then, Ker(f) = ωA = Im(i) and consequently Ker(f)
w
=

Im(i).

(2) Suppose that the given sequence is exact. Then Im(g)
w
= Ker(j) and so for every c ∈ Ker(j)

(
=

C since ωωC
= ωC

)
there exists b ∈ B such that ε∗C(g(b)) = ε∗C(c). Therefore, g is weak-epic.

Conversely, suppose that g is weak-epic. Then for every c ∈ C
(
= Ker(j)

)
there exists b ∈ B such

that ε∗C(g(b)) = ε∗C(c). On the other hand, for all g(b) ∈ Im(g) ⊆ C there exist some t ∈ B such that

ε∗C(g(b)) = ε∗C(g(t)), where g(t) ∈ C = Ker(j) and consequently Im(g)
w
= Ker(j).

(3) It follows from (1), (2), and the definition of exactness. 2

Lemma 4.5 Let f : A −→ B be a strong Hv -homomorphism of Hv -modules. Then f is weak-epic if and only

if F is onto. Moreover, f is weak-monic if and only if F is one to one. Finally, f is a weak isomorphism if

and only if F is an isomorphism.

Proof Suppose that f is weak-epic and ε∗B(b) ∈ B/ε∗B . Since f is weak-epic, there exists a ∈ A such that

ε∗B(f(a)) = ε∗B(b). However, ε∗B(f(a)) = F (ε∗A(a)). Therefore, F (ε
∗
A(a)) = ε∗B(b) and consequently F is onto.

Conversely, let F be onto. Then for every b ∈ B there exists ε∗A(a) ∈ A/ε∗A such that F (ε∗A(a)) = ε∗B(b).

However, F (ε∗A(a)) = ε∗B(f(a)). Therefore, there exists a ∈ A such that ε∗B(f(a)) = ε∗B(b) and consequently f

is weak-epic. The second part is proved in [8]. The third part is an obvious result. 2

Theorem 4.6 Let ωA
i−→ A

f−→ B
g−→ C

j−→ ωC be an exact sequence of Hv -modules and strong Hv -

homomorphisms over an Hv -ring R . Then

0 = ωA/ε
∗
ωA

I−→ A/ε∗A
F−→ B/ε∗B

G−→ C/ε∗C
J−→ ωc/ε

∗
ωc

= 0
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is an exact sequence of R/γ∗ -homomorphisms and R/γ∗ -modules.

Proof It follows from Lemma 4.4, Lemma 4.5, and Theorem 4.8 of [8] that say if A
f−→ B

g−→ C is an exact

sequence, then A/ε∗A
F−→ B/ε∗B

G−→ C/ε∗C is an exact sequence. 2

Theorem 4.7 (Five short lemma in Hv -modules) Let

ωA
// A

f //

h

��

B
g //

k

��

C //

l

��

ωC

ωA1
// A1

f1

// B1 g1
// C1

// ωC1

be a commutative diagram of Hv -modules and Hv -homomorphisms over an Hv -ring R with both rows exact.

Then

(1) If h and l are weak-monic, then k is weak-monic.

(2) If h and l are weak-epic, then k is weak-epic.

(3) If h and l are weak isomorphisms, then k is a weak isomorphism.

Proof (1) By Lemma 3.4 and Theorem 4.6 the following diagram of R/γ∗ -modules and R/γ∗ -homomorphisms

is commutative with both rows exact:

0 = ωA/ε
∗
ωA

// A/ε∗A
F //

H

��

B/ε∗B
G //

K

��

C/ε∗C
//

L

��

C/ε∗ωC
= 0

0 = ωA1/ε
∗
ωA1

// A1/ε
∗
A1 F1

// B1/ε
∗
B1 G1

// C1/ε
∗
C1

// ωC1/ε
∗
ωC1

= 0.

By Lemma 4.5, H and L are one to one R/γ∗ -homomorphisms. Then by the five short lemma in modules

K is a one to one R/γ∗ -homomorphism. Therefore, by Lemma 4.5, k is a weak-monic R -homomorphism.

Alternative Proof. It is sufficient to show that Ker(k) = ωB . We always have ωB ⊆ Ker(k). On the

other hand, suppose that b ∈ Ker(k). Then k(b) ∈ ωB1 and so g1(k(b)) ∈ g1(ωB1). Since g1(ωB1) ⊆ ωC1 ,

we have g1(k(b)) ∈ ωC1 . Since g1 ◦ k = l ◦ g and l is weak monic, we obtain g(b) ∈ Ker(l) = ωC . Then

b ∈ Ker(g)
w
= Im(f) and consequently

ε∗B(b) = ε∗B(f(a)) for some a ∈ A. (3)

Since k is a strong Hv -homomorphism, we have ε∗B1
(k(b)) = ε∗B1

(k(f(a))). Since k◦f = f1 ◦h and b ∈ Ker(k),

we obtain ε∗B1
(k(b)) = ε∗B1

(f1(h(a))) = ωB1 . Therefore, f1(h(a)) ∈ ωB1 . Since f1 is weak-monic we obtain

h(a) ∈ ωA1 and since h is weak-monic it follows that a ∈ ωA . Thus, f(a) ∈ f(ωA) ⊆ ωB and by Eq. (3) we

obtain ε∗B(b) = ε∗B(f(a)) = ωB . Therefore, b ∈ ωB and the proof is complete.

(2) It is similar to (1).

(3) It follows from (1) and (2). 2

409



VAZIRI et al./Turk J Math

References

[1] Alimohammady M, Roohi M. Minimal Hv -vector spaces. Ital J Pure Appl Math 2007; 22: 177–184.

[2] Corsini P. Prolegomena of Hypergroup Theory. Second edition, Udine, Tricesimo, Italy: Aviani, 1993.

[3] Corsini P, Leoreanu V. Applications of Hyperstructure Theory. Dordrecht, the Netherlands: Kluwer Academic

Publishers (Advances in Mathematics), 2003.

[4] Davvaz B. Remarks on weak hypermodules. Bull Korean Math Soc 1999; 36: 599–608.

[5] Davvaz B. Hv -module of fractions. Proc 8th Algebra Seminar of Iranian Math Soc; 17–18 December; University

of Tehran: 1996, pp. 37–46.

[6] Davvaz B. A brief survey of the theory of Hv -structures. Proc 8th International Congress on Algebraic Hyper-

structures and Applications; 1–9 September 2002; Samothraki, Greece; Spanidis Press, 2003, pp. 39–70.

[7] Davvaz B. Approximations in Hv -modules. Taiwanese J Math 2002; 6: 499–505.

[8] Davvaz B, Ghadiri M. Weak equality and exact sequences in Hv -modules. Southeast Asian Bull Math 2001; 25:

403–411.

[9] Davvaz B, Leoreanu-Fotea V. Hyperring Theory and Applications. USA: International Academic Press, 2007.

[10] Davvaz B, Vougiouklis T. n -ary Hv -modules with external n -ary P -hyperoperation. Politehn Univ Bucharest Sci

Bull Ser A Appl Math Phys 2014; 76: 141–150.

[11] Ghadiri M, Davvaz B. Direct system and direct limit of Hv -modules. Iran J Sci Technol Trans A Sci 2004; 28:

267–275.

[12] Marty F. Sur une generalization de la notion de groupe. In Proceedings of the 8th Congress des Mathematiciens;

Scandinavia, Stockholm, Sweden: 1934, pp. 45–49.

[13] Taghavi A, Vougiouklis T, Hosseinzadeh R. A note on operators on normed finite dimensional weak hypervector

spaces. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys 2012; 74: 103–108.

[14] Vougiouklis T. Hv -vector spaces. Proc 5th International Congress on Algebraic Hyperstructures and Applications;

4–10 July 1993; Iasi Romania. Palm Harbor, FL, USA: Hadronic Press, Inc, 1994, pp. 181–190.

[15] Vougiouklis T. Hyperstructures and Their Representations. Palm Harbor, FL, USA: Hadronic Press Inc, 1994.

[16] Vougiouklis T. The fundamental relation in hyperrings. The general hyperfield. Algebraic hyperstructures and

applications (Xanthi, 1990). Teaneck, NJ, USA: World Sci Publishing, 1991, pp. 203–211.

[17] Vougiouklis T. Hypermatrix representations of finite Hv -groups. European J Combin (part B) 2015; 44: 307–315.

410


	Introduction
	Basic concepts
	M[–] and –[M] functors
	Five short lemma in Hv-modules

