

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

The M[–] and –[M] functors and five short lemma in H_v -modules

Yaser VAZIRI*, Mansour GHADIRI, Bijan DAVVAZ

Department of Mathematics, Yazd University, Yazd, Iran

Received: 26.02.2015	•	Accepted/Published Online: 24.08.2015	•	Final Version: 10.02.2016

Abstract: The largest class of multivalued systems satisfying the module-like axioms are the H_v -modules. The main tools concerning the class of H_v -modules with the ordinary modules are the fundamental relations. Based on the relation ε^* , exact sequences in H_v -modules are defined. In this paper, we introduce the H_v -module M[A] and determine its heart and the connection between equivalence relations $\varepsilon^*_{M[A]}$ and ε^*_A . Moreover, we define the M[-] and -[M] functors and investigate the exactness and some concepts related to them. Finally, we prove the five short lemma in H_v -modules.

Key words: H_v -module, exact sequence, five short lemma, weak equality, fundamental relation ε^*

1. Introduction

A hyperstructure (or hypergroupoid) is a nonempty set H together with a hyperoperation defined on H, that is, a mapping of $H \times H$ into the family of nonempty subsets of H. In 1934, Marty introduced the concept of a hypergroup [12] as a nonempty set H equipped with a hyperoperation $*: H \times H \longrightarrow \mathcal{P}^*(H)$ that satisfies the associative law: (x * y) * z = x * (y * z) for every $x, y, z \in H$ and the reproduction axiom is valid, i.e. x * H = H * x = H for every $x \in H$; it means that for any $x, y \in H$ there exist $u, v \in H$ such that $y \in x * u$ and $y \in v * x$. If A, B are nonempty subsets of H then A * B is given by $A * B = \bigcup_{a \in A, b \in B} a * b$. Moreover, a * A is used for $\{x\} * A$ and A * x for $A * \{x\}$. Several books have been written to date on hyperstructures [2, 3, 9, 15]. The concept of H_v -structures as a larger class than the well-known hyperstructures was introduced by Vougiouklis at the Fourth Congress of AHA (Algebraic Hyperstructures and Applications) [16], where the axioms are replaced by the weak ones, that is, instead of the equality on sets one has nonempty intersections. The basic definitions and results of H_v -structures can be found in [6, 9, 15]. This concept has been further investigated by many researchers. The largest class of multivalued systems satisfying the module-like axioms is the class of H_v -modules (or H_v -vector spaces) [1, 4, 5, 7, 10, 11, 13, 14, 17].

In 2001, Davvaz and Ghadiri defined exact sequences in H_v -modules and proved some results in this respect [8]. In Section 2, we recall some basic concepts for the sake of completeness and we present some examples for the definitions. In Section 3, we introduce the concepts of M[-] and -[M] functors and investigate some related concepts. In Section 4, we determine the heart of M[A] and the connection between equivalence relations $\varepsilon^*_{M[A]}$ and ε^*_A . Finally, we investigate the exactness of functors M[-] and -[M] and prove the five short lemma in H_v -modules.

^{*}Correspondence: forutan.vaziri@yahoo.com

²⁰¹⁰ AMS Mathematics Subject Classification: 16Y99, 16E05, 20N20.

2. Basic concepts

In this section we recall some basic concepts. Let H be a nonempty set and $\mathcal{P}^*(H)$ be the family of nonempty subsets of H. Every function $*: H \times H \to \mathcal{P}^*(H)$ is called a hyperoperation on H and (H, *) is called a hyperstructure. The hyperstructure (H, *) is called an H_v -group if

- (1) The * is weak associative, *i.e.* $x * (y * z) \cap (x * y) * z \neq \emptyset$,
- (2) The reproduction axiom holds, *i.e.* a * H = H * a = H for every $a \in H$.

We say H is weak commutative if for every $x, y \in H$, $x * y \cap y * x \neq \emptyset$.

A multivalued system $(R, +, \cdot)$ is called an H_v -ring if the following axioms hold

- (1) (R, +) is a weak commutative H_v -group,
- (2) (R, \cdot) is a weak associative, *i.e.* $x \cdot (y \cdot z) \cap (x \cdot y) \cdot z \neq \emptyset$ for every $x, y, z \in R$,
- (3) The \cdot hyperoperation is weak distributive with respect to +, *i.e.* for every $x, y, z \in R$, we have $x \cdot (y+z) \cap (x \cdot y + x \cdot z) \neq \emptyset$, $(x+y) \cdot z \cap (x \cdot z + y \cdot z) \neq \emptyset$.

For example, if (H, +) is an H_v -group, then for every hyperoperation \cdot such that $\{x, y\} \subseteq x \cdot y$ for every $x, y \in H$, the hyperstructure $(H, +, \cdot)$ is an H_v -ring. Therefore, we can construct some H_v -rings by a given H_v -group [15].

Let M be a nonempty set. Then M is called a left H_v -module over an H_v -ring R if (M, +) is a weak commutative H_v -group and there exists a map $\cdot : R \times M \to \mathcal{P}^*(M)$ denoted by $(r, m) \mapsto rm$ such that for every $r_1, r_2 \in R$ and every $m_1, m_2 \in M$, we have

- (1) $r_1(m_1 + m_2) \cap (r_1m_1 + r_1m_2) \neq \emptyset$,
- (2) $(r_1 + r_2)m_1 \cap (r_1m_1 + r_2m_1) \neq \emptyset$,
- (3) $(r_1r_2)m_1 \cap r_1(r_2m_1) \neq \emptyset$.

Let M_1 and M_2 be two H_v -modules over an H_v -ring R. A mapping $f: M_1 \longrightarrow M_2$ is called a strong H_v -homomorphism if for every $x, y \in M_1$ and every $r \in R$, we have f(x+y) = f(x) + f(y) and f(rx) = rf(x).

The H_v -modules M_1 and M_2 are called isomorphic if the H_v -homomorphism f is one to one and onto. It is denoted by $M_1 \cong M_2$.

By using a certain type of equivalence relations, we can connect hyperstructures to usual structures. The smallest of these relations are called fundamental relations and denoted by $\beta^*, \gamma^*, \varepsilon^*$, so that if H is an H_v -group (H_v -ring, H_v -module over an H_v -ring R) then H/β^* is a group (H/γ^* is a ring, H/ε^* is an R/γ^* -module). The fundamental relation ε^* on an H_v -module M can be defined as follows:

Consider the left H_v -module M over an H_v -ring R. If ϑ denotes the set of all expressions consisting of finite hyperoperations of either on R and M or of the external hyperoperations applying on finite sets of elements of R and M, a relation ε can be defined on M whose transitive closure is the fundamental relation ε^* . The relation ε is defined as follows: for every $x, y \in M$, $x \in y$ if and only if $\{x, y\} \subseteq u$ for some $u \in \vartheta$; *i.e.*

$$x \varepsilon y \Leftrightarrow x, y \in \sum_{i=1}^{n} m'_i, \ m'_i = m_i \text{ or } m'_i = \sum_{j=1}^{n_i} (\prod_{k=1}^{k_{ij}} r_{ijk}) m_i,$$

where $m_i \in M$, $r_{ijk} \in R$.

Suppose that $\gamma^*(r)$ is the equivalence class containing $r \in R$ and $\varepsilon^*(x)$ is the equivalence class containing $x \in M$. On M/ε^* the \oplus and the external product \odot using the γ^* classes in R are defined as follows:

For every $x, y \in M$, and for every $r \in R$,

 $\varepsilon^*(x)\oplus\varepsilon^*(y)=\varepsilon^*(c), \text{ for every } c\in\varepsilon^*(x)+\varepsilon^*(y),$

$$\gamma^*(r) \odot \varepsilon^*(x) = \varepsilon^*(d)$$
, for every $d \in \gamma^*(r) \cdot \varepsilon^*(x)$.

The kernel of canonical map $\phi: M \longrightarrow M/\varepsilon_M^*$ is called the heart of M and it is denoted by ω_M , *i.e.* $\omega_M = \{x \in M \mid \phi(x) = 0\}$, where 0 is the unit element of the group $(M/\varepsilon^*, \oplus)$. One can prove that the unit element of the group $(M/\varepsilon^*, \oplus)$ is equal to ω_M . By the definition of ω_M , we have

$$\omega_{\omega_M} = Ker(\phi: \omega_M \longrightarrow \omega_M / \varepsilon^*_{\omega_M} = 0) = \omega_M.$$

The kernel of a strong H_v -homomorphism $f: A \longrightarrow B$ is defined as follows:

$$Ker(f) = \{a \in A \mid f(a) \in \omega_B\}$$

Let M_1 and M_2 be two H_v -modules over an H_v -ring R and let $\varepsilon_{M_1}^*$, $\varepsilon_{M_2}^*$, and $\varepsilon_{M_1 \times M_2}^*$ be the fundamental relations on M_1 , M_2 , and $M_1 \times M_2$ respectively; then

$$(x_1, x_2) \varepsilon^*_{M_1 \times M_2}(y_1, y_2) \Leftrightarrow x_1 \varepsilon^*_{M_1} y_1 \text{ and } x_2 \varepsilon^*_{M_2} y_2; \text{ for all } (x_1, x_2), (y_1, y_2) \in M_1 \times M_2$$

and it is easy to see that $(M_1 \times M_2)/\varepsilon^*_{M_1 \times M_2} \cong M_1/\varepsilon^*_{M_1} \times M_2/\varepsilon^*_{M_2}$ [14, 15].

Definition 2.1 [8] Let M be an H_v -module and X, Y be nonempty subsets of M. We say X is weak equal to Y and write $X \stackrel{w}{=} Y$ if and only if for every $x \in X$ there exists $y \in Y$ such that $\varepsilon_M^*(x) = \varepsilon_M^*(y)$ and for every $y \in Y$ there exists $x \in X$ such that $\varepsilon_M^*(x) = \varepsilon_M^*(y)$.

Definition 2.2 [8] Let $M_0 \xrightarrow{f_1} M_1 \xrightarrow{f_2} M_2 \longrightarrow \cdots \longrightarrow M_{n-1} \xrightarrow{f_n} M_n$ be a sequence of H_v -modules and strong H_v -homomorphisms. We say this sequence is exact if for every $2 \le i \le n$, $Im(f_{i-1}) \stackrel{w}{=} Ker(f_i)$.

Definition 2.3 [8] A function $f: M_1 \longrightarrow M_2$ is called weak-monic if for every $m_1, m'_1 \in M_1$, $f(m_1) = f(m'_1)$ implies $\varepsilon^*_{M_1}(m_1) = \varepsilon^*_{M_1}(m'_1)$ and f is called weak-epic if for every $m_2 \in M_2$ there exists $m_1 \in M_1$ such that $\varepsilon^*_{M_2}(m_2) = \varepsilon^*_{M_1}(f(m_1))$. Finally f is called weak-isomorphism if f is weak-monic and weak-epic.

We present the following example for the above definitions.

Example 1 Let R be an H_v -ring. Consider the following H_v -modules on R.

(1) $M = \{a, b\}$ together with the following hyperoperations:

$$\begin{array}{c|ccc} *_{M} & a & b \\ \hline a & a & b \\ b & b & a \end{array} \text{ and } \cdot_{M} : R \times M \to \mathcal{P}^{*}(M)$$

VAZIRI et al./Turk J Math

(2) $M_1 = \{0, 1, 2\}$ together with the following hyperoperations:

(3) $M_2 = \{ \bar{\theta}, \bar{I}, \bar{Z} \}$ together with the following hyperoperations:

Since $\{0,2\} \subseteq 1 *_{M_1} 1$, $r \cdot m_1 = 0$ for every $r \in R$ and every $m_1 \in M_1$ and $0 *_{M_1} 0 = 0$, we obtain $M_1/\varepsilon_{M_1}^* = \{\varepsilon_{M_1}^*(0) = \varepsilon_{M_1}^*(2) = \{0,2\}, \varepsilon_{M_1}^*(1) = \{1\}\}$. Moreover, since $\varepsilon_{M_1}^*(0) + \varepsilon_{M_1}^*(1) = \varepsilon_{M_1}^*(1)$, it follows that $\omega_{M_1} = \varepsilon_{M_1}^*(0) = \{0,2\}$. Since $r \cdot M_2 m_2 = M_2$ for every $r \in R$ and every $m_2 \in M_2$, we obtain $M_2/\varepsilon_{M_2}^* = \{\{\bar{0}, \bar{1}, \bar{2}\}\}$ and $\omega_{M_2} = \varepsilon_{M_2}^*(\bar{0}) = \varepsilon_{M_2}^*(\bar{1}) = \varepsilon_{M_2}^*(\bar{2}) = M_2$.

Since $(M_1 \times M_2) / \varepsilon^*_{M_1 \times M_2} \cong M_1 / \varepsilon^*_{M_1} \times M_2 / \varepsilon^*_{M_2}$, it follows that

$$M_1 \times M_2 / \varepsilon^*_{M_1 \times M_2} = \{\{(0,\bar{\theta}), (0,\bar{I}), (0,\bar{z}), (2,\bar{\theta}), (2,\bar{I}), (2,\bar{z})\}, \{(1,\bar{\theta}), (1,\bar{I}), (1,\bar{z})\}\}$$

Note that $\omega_{M_1 \times M_2} = \omega_{M_1} \times \omega_{M_2}$. The subsets $X = \{(2, \bar{I}), (2, \bar{2}), (1, \bar{I}), (1, \bar{2})\}$ and $Y = \{(0, \bar{2}), ((1, \bar{0})\}\}$ of $M_1 \times M_2$ are weakly equal. Now consider $f \in M[M_1 \times M_2]$, where $f(a) = (2, \bar{2}), f(b) = (1, \bar{0})$ and $g \in M_1[M_1 \times M_2]$, where $g(0) = (1, \bar{I}), g(1) = (2, \bar{2}), g(2) = (1, \bar{I})$. Then f is weak-epic and g is weak-monic.

3. M[–] and –[M] functors

Let $f: A \longrightarrow B$ be a strong H_v -homomorphism of H_v -modules over an H_v -ring R. Then $F: A/\varepsilon_A^* \longrightarrow B/\varepsilon_B^*$, where $F(\varepsilon_A^*(a)) = \varepsilon_B^*(f(a))$ is an R/γ^* -homomorphism of R/γ^* -modules. Let R be a weak-commutative H_v ring and \mathbf{H} be the set of all H_v -modules and all strong R-homomorphisms. One can show that \mathbf{H} is a category. Furthermore, set \mathbf{H}^* the category of R/γ^* -modules and R/γ^* -homomorphisms. Then $T: \mathbf{H} \longrightarrow \mathbf{H}^*$, defined by $T(A) = A/\varepsilon_A^*$ and $T(f: A \longrightarrow B) = F: A/\varepsilon^* \longrightarrow B/\varepsilon_B^*$, where $F(\varepsilon_A^*(a)) = \varepsilon_B^*(f(a))$ is a covariant functor [8]. Now we want to introduce M[-] and -[M] functors and investigate some related concepts.

Suppose that M and N are two H_v -modules and M[N] is the set of all functions on M with values in N. First we equip M[N] to appropriate hyperoperations to be an H_v -module. Then we introduce the functors M[-] and -[M] and investigate some related concepts. Throughout this paper, the hyperoperations in M, N and M[N] will be shown with the same symbols.

Theorem 3.1 The M[N] with the following hyperoperations is an H_v -module.

$$\begin{aligned} f+g &= \{h \in M[N] \mid h(x) \in f(x) + g(x), \ \forall x \in M\},\\ r \cdot f &= \{k \in M[N] \mid k(x) \in r \cdot f(x), \ \forall x \in M\}. \end{aligned}$$

VAZIRI et al./Turk J Math

Proof The hyperoperations + and \cdot in M[N] are well defined and for + and \cdot in N are well defined. Let $f, g, h \in M[N]$. We have

$$\begin{array}{ll} (f+g)+h &= \{l \in M[N] \mid l(x) \in f(x) + g(x), \; \forall x \in M\} + h = \bigcup_{l \in f+g} l + h \\ &= \{L \in M[N] \mid L(x) \in l(x) + h(x), \; \forall x \in M, \; l(x) \in f(x) + g(x)\} \end{array}$$

and

$$\begin{array}{ll} f + (g + h) &= f + \{k \in M[N] \mid k(x) \in g(x) + h(x), \; \forall x \in M\} = \bigcup_{k \in g + h} f + k \\ &= \{K \in M[N] \mid K(x) \in f(x) + k(x), \; \forall x \in M, \; k(x) \in g(x) + h(x)\}. \end{array}$$

Since N is an H_v -group, for all $x \in M$ there exists $n_x \in [(f(x) + g(x)) + h(x)] \cap [f(x) + (g(x) + h(x))]$. We define $u \in M[N]$ by $u(x) = n_x$, according to the choice axiom. Then $u \in [(f+g) + h] \cap [f + (g+h)]$ and associativity is satisfied.

For the reproduction axiom let $f, g \in M[A]$. Then for all $x \in M$, $f(x), g(x) \in N$ and so there exists $y_x \in N$ such that $f(x) \in g(x) + y_x$. We define $h \in M[N]$ by $h(x) = y_x$; then $f \in g + h$. Similarly, there exists $h' \in M[N]$ such that $f \in h' + g$. Since N is an H_v -module, the conditions of H_v -modules are satisfied in M[N]. We check only one of the H_v -module conditions. Let $r_1, r_2 \in R$ and $f \in M[N]$. Since N is an H_v -module, it follows that for every $x \in M$ there exists $n_x \in [(r_1 + r_2)f(x)] \cap [r_1f(x) + r_2f(x)]$. We define $h \in M[N]$ by $h(x) = n_x$. Obviously, $h \in [(r_1 + r_2)f] \cap [(r_1f + r_2f)] \neq \emptyset$.

Lemma 3.2 Let $f: A \longrightarrow B$ be a strong H_v -homomorphism and M be an H_v -module. Then

(1) The map $\overline{f}: M[A] \longrightarrow M[B]$ defined by $\overline{f}(\phi) = f \circ \phi$ is a strong H_v -homomorphism.

(2) The map $\overline{f}: B[M] \longrightarrow A[M]$ defined by $\overline{f}(\phi) = \phi \circ f$ is a strong H_v -homomorphism. **Proof** (1) Let $\phi_1, \phi_2 \in M[A]$. Then

$$\overline{f} (\phi_1 + \phi_2) = \{ f \circ h \mid h \in M[A], \ h(m) \in \phi_1(m) + \phi_2(m), \ \forall m \in M \},$$

$$\overline{f} (\phi_1) + \overline{f} (\phi_2) = f \circ \phi_1 + f \circ \phi_2 = \{ h' \in M[B] \mid h'(m) \in f \circ \phi_1(m) + f \circ \phi_2(m) \}.$$

Suppose that $f \circ h \in \overline{f}(\phi_1 + \phi_2)$, where $h \in M[A]$ and $h(m) \in \phi_1(m) + \phi_2(m)$ for every $m \in M$. Then $f(h(m)) \in f(\phi_1(m) + \phi_2(m)) = f(\phi_1(m)) + f(\phi_2(m))$. Therefore, $\overline{f}(\phi_1 + \phi_2) \subseteq \overline{f}(\phi_1) + \overline{f}(\phi_2)$.

Conversely, suppose that $h' \in \overline{f}(\phi_1) + \overline{f}(\phi_2)$. We need to find an $h \in M[A]$ such that h' = foh and $h(m) \in \phi_1(m) + \phi_2(m)$. By hypothesis for $m \in M$, we have

$$h'(m) = b_m \in f \circ \phi_1(m) + f \circ \phi_2(m) = f(\phi_1(m) + \phi_2(m)) \subseteq Im(f).$$

Therefore, $b_m \in f(\phi_1(m) + \phi_2(m))$. Now, according to the choice axiom, we can select $a \in f^{-1}(b_m)$ such that $a \in \phi_1(m) + \phi_2(m)$ and define h(m) = a.

Similarly, one can show that $\overline{f}(r\phi) = r \overline{f}(\phi)$. (2) Let $\phi_1, \phi_2 \in B[M]$. Then

$$\begin{aligned} f & (\phi_1 + \phi_2) = \{h \circ f \mid h \in B[M], h(b) \in \phi_1(b) + \phi_2(b)\}, \\ \bar{f} & (\phi_1) + \bar{f} & (\phi_2) = \phi_1 \circ f + \phi_2 \circ f = \{h^{'} \in A[M] \mid h^{'}(a) \in \phi_1 \circ f(a) + \phi_2 \circ f(a)\} \end{aligned}$$

Suppose that $h \circ f \in f(\phi_1 + \phi_2)$, where $h \in B[M]$ and $h(b) \in \phi_1(b) + \phi_2(b)$ for every $b \in B$. Since $Im(f) \subseteq B$, we have $h(f(a)) \in \phi_1(f(a)) + \phi_2(f(a))$ for every $a \in A$. Therefore, $\overline{f}(\phi_1 + \phi_2) \subseteq \overline{f}(\phi_1) + \overline{f}(\phi_2)$.

Conversely, suppose that $h' \in \overline{f}(\phi_1) + \overline{f}(\phi_2)$. We need to find an $h \in B[M]$ such that $h' = h \circ f$ and $h(b) \in \phi_1(b) + \phi_2(b)$. For every $b \in Im(f) \subseteq B$ we define h(b) = h'(a), where f(a) = b and for every $b \in B \setminus Im(f)$ according to the choice axiom we select an m_b in $\phi_1(b) + \phi_2(b) \subseteq M$ and define $h(b) = m_b$. Then h satisfies the requirement conditions.

Similarly, one can show that $f(r\phi) = r f(\phi)$.

Lemma 3.3 Let M be an H_v -module and $f: A \longrightarrow B$ be a morphism in the category **H**. Then

- (1) $M[-]: \mathbf{H} \longrightarrow \mathbf{H}$ defined by M[-](A) = M[A] and $M[-](f) = \overline{f}: M[A] \longrightarrow M[B]$, where $\overline{f}(\phi) = f \circ \phi$ is a covariant functor.
- (2) $-[M]: \mathbf{H} \longrightarrow \mathbf{H}$ defined by -[M](A) = A[M] and $-[M](f) = \overline{f}: B[M] \longrightarrow A[M]$, where $\overline{f}(\phi) = \phi \circ f$ is a contravariant functor.

Proof (1) By Theorem 3.1 if A is an H_v -module, then M[-](A) = M[A] is an H_v -module. By Lemma 3.2 if $f: A \longrightarrow B$ is a strong H_v -homomorphism, then $M[-](f) = \overline{f}$ is a strong H_v -homomorphism. Now let $A \xrightarrow{f} B \xrightarrow{g} C$ be a strong H_v -homomorphism in **H**. Then

$$M[-](g \circ f)(\phi) = g \circ f \circ \phi = g(f \circ \phi) = M[-](g)(f \circ \phi) = M[-](g) \circ M[-](f)(\phi)$$

and for every $A \in obj \mathbf{H}$ we have $M[-](1_A)(\phi) = 1_A \circ \phi = \phi$. Then $M[-](1_A) = 1_{M[-](A)}$ and so M[-] is a covariant functor.

(2) By Theorem 3.1 if A is an H_v -module, then -[M](A) = A[M] is an H_v -module. By Lemma 3.2 if $f: A \longrightarrow B$ is a strong H_v -homomorphism, then $-[M](f) = \overline{f}$ is a strong H_v -homomorphism. Now let $A \xrightarrow{f} B \xrightarrow{g} C$ be a strong H_v -homomorphism in **H**. Then

$$-[M](g \circ f)(\phi) = \phi \circ g \circ f = (\phi \circ g)f = -[M](f)(\phi \circ g) = -[M](f) \circ -[M](g)(\phi),$$

and for every $A \in obj \mathbf{H}$ we have $-[M](1_A)(\phi) = \phi \circ 1_A = \phi$. Then, $-[M](1_A) = 1_{-[M](A)}$ and so -[M] is a contravariant functor.

Lemma 3.4 Let

be a commutative diagram of H_v -modules and strong H_v -homomorphisms. Then the following diagrams are commutative.

Proof We have $T(A) = A/\varepsilon_A^*$ and $T(f: A \longrightarrow B) = F: A/\varepsilon^* \longrightarrow B/\varepsilon_B^*$, where $F(\varepsilon_A^*(a)) = \varepsilon_B^*(f(a))$. Therefore,

$$K \circ F = T(k) \circ T(f) = T(k \circ f) = T(g \circ h) = T(g) \circ T(h) = G \circ H.$$

We have $M[-](A) = M[A], M[-](f : A \longrightarrow B) = \overline{f}: M[A] \longrightarrow M[B]$, where $\overline{f}(\phi) = f \circ \phi$. Therefore,

$$\begin{split} \bar{k} \circ f &= M[-](k) \circ M[-](f) = M[-](k \circ f) = M[-](g \circ h) \\ &= M[-](g) \circ M[-](h) = \bar{g} \circ \bar{h} \; . \end{split}$$

We know that the combination of two covariant functors is a covariant functor. Therefore, the map $S = T \circ M[-]: \mathbf{H} \longrightarrow \mathbf{H}^*$ is a covariant functor, where

$$S(A) = M[A]/\varepsilon^*_{M[A]} \text{ and } S(f:A \longrightarrow B) = F: M[A]/\varepsilon^*_{M[A]} \longrightarrow M[B]/\varepsilon^*_{M[B]},$$

where $\overline{F}(\varepsilon^*_{M[A]}(\phi)) = \varepsilon^*_{M[B]}(f \circ \phi)$.

Lemma 3.5 For every $A \in obj \mathbf{H}$, $\tau_A : T(A) \longrightarrow S(A)$ defined by $\tau_A(\varepsilon_A^*(a)) = \varepsilon_{M[A]}^*(\phi_a)$ is a R/γ^* -homomorphism, where $\phi_a : M \longrightarrow A$ defined by $\phi_a(m) = a$ for every $m \in M$. Then the family $\tau = (\tau_A : T(A) \longrightarrow S(A))_{A \in obj \mathbf{H}}$ is a natural transformation from T to S.

Proof We have

$$\tau_A(\varepsilon_A^*(a) \oplus \varepsilon_A^*(b)) = \tau_A(\varepsilon_A^*(a+b)) = \varepsilon_{M[A]}^*(\phi_t),$$

where $t \in a + b$. On the other hand, we obtain

$$\tau_{A}(\varepsilon_{A}^{*}(a)) \oplus \tau_{A}(\varepsilon_{A}^{*}(b)) = \varepsilon_{M[A]}^{*}(\phi_{a}) \oplus \varepsilon_{M[A]}^{*}(\phi_{b}) = \varepsilon_{M[A]}^{*}(\phi_{a} + \phi_{b})$$

$$= \varepsilon_{M[A]}^{*}(\{\phi \in M[A] \mid \phi(m) \in \phi_{a}(m) + \phi_{b}(m), \forall m \in M\})$$

$$= \varepsilon_{M[A]}^{*}(\{\phi \in M[A] \mid \phi(m) \in a + b, \forall m \in M\})$$

$$= \varepsilon_{M[A]}^{*}(\phi_{t}),$$

where $t \in a + b$. Therefore, $\tau_A(\varepsilon_A^*(a) \oplus \varepsilon_A^*(b)) = \tau_A(\varepsilon_A^*(a)) \oplus \tau_A(\varepsilon_A^*(b))$. Similarly, we have

$$\tau_A(\gamma^*(r) \odot \varepsilon_A^*(a)) = \tau_A(\varepsilon_A^*(d)), \text{ for some } d \in \gamma^*(r) \cdot \varepsilon_A^*(a)$$
$$= \varepsilon_{M[A]}^*(\phi_d), \text{ for some } d \in r \cdot a$$

and

$$\gamma^*(r) \odot \tau_A(\varepsilon_A^*(a)) = \gamma^*(r) \odot \varepsilon_{M[A]}^*(\phi_a) = \varepsilon_{M[A]}^*(h) \text{ for some } h \in r \cdot \phi_a = \varepsilon_{M[A]}^*(h),$$

where for every $m \in M$, $h(m) \in r \cdot \phi_a(m) = r \cdot a$. Therefore,

$$\tau_A(\gamma^*(r) \odot \varepsilon_A^*(a)) = \gamma^*(r) \odot \tau_A(\varepsilon_A^*(a))$$

Now let $f: A \longrightarrow B$ be a morphism in H and consider the following diagram.

We have

$$S(f) \circ \tau_A(\varepsilon_A^*(a)) = S(f)(\varepsilon_{M[A]}^*(\phi_a)) = \varepsilon_{M[B]}^*(f \circ \phi_a),$$

$$\tau_B \circ T(f)(\varepsilon_A^*(a)) = \tau_B(\varepsilon_B^*(f(a))) = \varepsilon_{M[B]}^*(\phi_{f(a)}).$$

Obviously, $f \circ \phi_a = \phi_{f(a)}$ and so $S(f) \circ \tau_A = \tau_B \circ T(f)$ and $\tau : T \longrightarrow S$ is a natural transformation.

Lemma 3.6 Let H_1 and H_2 be two H_v -modules. Then $H_1 \times H_2$ is a product object in H category. **Proof** The proof is straightforward.

Note that Lemma 3.6 can be generalized to the cartesian product of n arbitrary H_v -modules.

Theorem 3.7 Let M be an H_v -module. Then $M[H_1 \times H_2] \cong M[H_1] \times M[H_2]$. **Proof** It is easy to see that the map $\phi : M[H_1] \times M[H_2] \longrightarrow M[H_1 \times H_2]$ defined by $\phi(f_1, f_2) = f : M \longrightarrow H_1 \times H_2$, where $f(m) = (f_1(m), f_2(m))$ is well defined. Now we have

$$\phi((f_1, g_1) + (f_2, g_2)) = \phi(\{(f, g) \mid f \in f_1 + f_2, g \in g_1 + g_2\})$$

= $\{h \mid h(m) = (f(m), g(m)), f(m) \in f_1(m) + f_2(m), g(m) \in g_1(m) + g_2(m)\}.$

404

On the other hand, we have

$$\phi((f_1, g_1)) = h \in M[H_1 \times H_2] \text{ such that } h(m) = (f_1(m), g_1(m)), \\ \phi((f_2, g_2)) = k \in M[H_1 \times H_2] \text{ such that } k(m) = (f_2(m), g_2(m)).$$

And

$$h + k = \{l \mid l(m) \in h(m) + k(m) = (f_1(m), g_1(m)) + (f_2(m), g_2(m))\}$$

= $\{l \mid l(m) = (f(m), g(m)), f(m) \in f_1(m) + f_2(m), g(m) \in g_1(m) + g_2(m)\}$

Therefore, $\phi((f_1, g_1) + (f_2, g_2)) = \phi((f_1, g_1)) + \phi((f_2, g_2)).$

Similarly, one can show that $\phi(r(f,g)) = r\phi((f,g))$.

Now let $f \in M[H_1 \times H_2]$, where $f(m) = (h_{1m}, h_{2m})$. We define $f_1 \in M[H_1]$ by $f(m) = h_{1m}$ and $f_2 \in M[H_2]$ by $f(m) = h_{2m}$. Obviously, $\phi((f_1, f_2)) = f$.

Finally, suppose that $\phi((f_1, f_2)) = \phi((g_1, g_2))$. Then, for every $m \in M$, we obtain $(f_1(m), f_2(m)) = (g_1(m), g_2(m))$ and so $(f_1, f_2) = (g_1, g_2)$.

Note that in finite mode in Theorem 3.7 we have

$$|M[H_1] \times M[H_2]| = |M[H_1]| \times |M[H_2]| = |H_1|^{|M|} \times |H_2|^{|M|} = |H_1 \times H_2|^{|M|} = |M[H_1 \times H_2]|.$$

Therefore, it is sufficient to show that ϕ is one to one or onto.

Corollary 3.8 Let M, H_1 , H_2 , \cdots , H_n be H_v -modules. Then

$$M[H_1 \times H_2 \times H_3 \times \dots \times H_n] \cong M[H_1] \times M[H_2] \times M[H_3] \times \dots \times M[H_n].$$

4. Five short lemma in H_v -modules

Let $f: A \longrightarrow B$ be a strong H_v -homomorphism of H_v -modules over an H_v -ring R. Then we have $f(\omega_A) \subseteq \omega_B$ and so $\omega_A \subseteq Ker(f)$. Furthermore, $Ker(f) = \omega_A$ if and only if f is weak-monic [8]. In this section, we determine the heart of M[A] and the connection between equivalence relations $\varepsilon_{M[A]}^*$ and ε_A^* . Moreover, we check the exactness of M[-] and -[M] functors. Finally, we investigate the five short lemma in H_v -modules.

Lemma 4.1 If $\varepsilon_{M[A]}^*(f) = \varepsilon_{M[A]}^*(g)$, then $\varepsilon_A^*(f(m)) = \varepsilon_A^*(g(m))$, for every $m \in M$; i.e. if for some $m \in M$, $\varepsilon_A^*(f(m)) \neq \varepsilon_A^*(g(m))$ then $\varepsilon_{M[A]}^*(f) \neq \varepsilon_{M[A]}^*(g)$.

Proof Suppose that $f \ \varepsilon_{M[A]}^* \ g$. Then there exist $f_0 = f, f_1, \dots, f_n = g$ in M[A] such that $f_i \ \varepsilon_{M[A]}$ f_{i+1} for $i = 0, 1, \dots, n-1$. Therefore, $\{f_i, f_{i+1}\} \subseteq \sum_{j=1}^{n_i} g'_{ij}$, for $i = 0, 1, \dots, n-1$, where $g'_{ij} = g_{ij}$ or $g'_{ij} = \sum_{k=1}^{n_{ij}} {l_{ijk} \choose l=1} r_{ijkl} g_{ij}$ for $g_{ij} \in M[A]$ and $r_{ijkl} \in R$. Now, since $\sum_{j=1}^{n_i} g'_{ij} = \{h \in M[N] \mid h(m) \in g'_{i1}(m) + g'_{i2}(m) + \dots + g'_{in_i}(m), \ \forall m \in M\},$ we have $\{f_i(m), f_{i+1}(m)\} \subseteq \sum_{j=1}^{n_i} g'_{ij}(m)$ for every $m \in M$ and so there exist $a_0 = f_0(m) = f(m), a_1 = f_1(m), \ldots, a_n = f_n(m) = g(m) \in A$ such that $a_i \in_A a_{i+1}$, for $i = 0, 1, \ldots, n-1$. Therefore, for every $m \in M$, we have $f(m) \in_A^* g(m)$.

In the following example we show that the converse of Lemma 4.1 is not true in general.

Example 2 Consider $f, g \in M[M_1 \times M_2]$ as in Example 1 and define $f(a) = (2, \bar{2})$, $f(b) = (1, \bar{0})$ and $g(a) = (0, \bar{1})$, $g(b) = (1, \bar{2})$. By Example 1 we have $\varepsilon^*_{M_1 \times M_2}(f(a)) = \varepsilon^*_{M_1 \times M_2}(g(a))$ and $\varepsilon^*_{M_1 \times M_2}(f(b)) = \varepsilon^*_{M_1 \times M_2}(g(b))$. Since for every $r \in R$ and every $m_1 \in M_1$, $rm_1 = \{0\}$ and, on the other hand, for every two elements m_2 and m'_2 of M_2 , $m_2 *_{M_2} m'_2$ is a singleton, it follows that $\varepsilon^*_{M[M_1 \times M_2]}(f) \neq \varepsilon^*_{M[M_1 \times M_2]}(g)$.

In the following lemma, we determine the heart of M[A].

Lemma 4.2 Let M and A be two H_v -modules. Then $\omega_{M[A]} = M[\omega_A]$. **Proof** Suppose that $f \in \omega_{M[A]}$. Then for every $g \in M[A]$ we have

$$\varepsilon_{M[A]}^*(g) = \varepsilon_{M[A]}^*(f) \oplus \varepsilon_{M[A]}^*(g) \Big(= \varepsilon_{M[A]}^*(f+g) \Big).$$

Now by Lemma 4.1 for every $m \in M$ we obtain

$$\varepsilon^*_A((f+g)(m)) = \varepsilon^*_A(g(m))$$

However, for every $m \in M$ we have $(f+g)(m) = \{l(m) \mid l \in f+g\} = f(m) + g(m)$. Hence,

$$\varepsilon_A^*((f+g)(m)) = \varepsilon_A^*(f(m) + g(m)) = \varepsilon_A^*(f(m)) \oplus \varepsilon_A^*(g(m)) = \varepsilon_A^*(g(m)).$$

Therefore, for every $m \in M$, we obtain $\varepsilon_A^*(f(m)) \in \omega_A$ and so $f \in M[\omega_A]$.

Conversely, suppose that $f \in M[\omega_A]$. Then for every $g \in M[A]$ and all $m \in M$ we have

$$\varepsilon_A^*(f(m) + g(m)) = \varepsilon_A^*(f(m)) \oplus \varepsilon_A^*(g(m)) = \varepsilon_A^*(g(m)).$$

Therefore, for every $g \in M[A]$ and all $m \in M$, we have $f(m) + g(m) \in \varepsilon_A^*(g(m))$ and we obtain

$$\varepsilon^*_{M[A]}(f) \oplus \varepsilon^*_{M[A]}(g) = \varepsilon^*_{M[A]}(f+g) = \varepsilon^*_{M[A]}(\{l \mid l(m) \in f(m) + g(m)\}) = \varepsilon^*_{M[A]}(g)$$

and consequently $f \in \omega_{M[A]}$.

In the following, we want to investigate the exactness of -[M] and M[-] functors.

Let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence. Then for every $a \in A$ we have $f(a) \in Im(f) \stackrel{w}{=} Ker(g)$ and so $\varepsilon_B^*(f(a)) = \varepsilon_B^*(b)$ for some $b \in Ker(g)$. Now we obtain

$$\varepsilon_C^*(g(f(a))) = G(\varepsilon_B^*(f(a))) = G(\varepsilon_B^*(b)) = \varepsilon_C^*(g(b)) = \omega_C.$$

Therefore, for every $a \in A$ we have $g(f(a)) \in \omega_C$.

406

Now, by considering -[M] functor on the exact sequence $A \xrightarrow{f} B \xrightarrow{g} C$, we obtain

$$C[M] \xrightarrow{\bar{g}} B[M] \xrightarrow{\bar{f}} A[M].$$

We want to check the exactness of this sequence. We have

$$Im(\overline{g}) = \{\overline{g} (\phi) \mid \phi \in C[M]\} = \{\phi \circ g \mid \phi \in C[M]\},\$$

$$Ker(\overline{f}) = \{\psi \in B[M] \mid \overline{f} (\psi) = \psi \circ f \in \omega_{A[M]} = A[\omega_M]\}$$

Let ϕ be a function in C[M] such that $\phi(\omega_C) \cap \omega_M = \emptyset$ (note that it is necessary for $\omega_M \neq M$). Then for every $a \in A$, since $g \circ f(a) \in \omega_C$ and $\phi(\omega_C) \cap \omega_M = \emptyset$, we obtain $\varepsilon_M^*(\phi(g(f(a)))) \neq \omega_M$. On the other hand, for every $\psi \in Ker(\overline{f})$ and every $a \in A$, $\varepsilon_M^*(\psi(f(a))) = \omega_M$. Thus, by Lemma 4.1 for $\phi \circ g \in Im(\overline{g})$ there is no member of $Ker(\overline{g})$ such that its class is equal to the class of $\phi \circ g$. Therefore, in general the -[M] functor is not exact. The same discussion is established for the M[-] functor.

Example 3 Consider the H_v -modules M, M_1 , and M_2 as Example 1 and the sequence $M \xrightarrow{f} M_1 \xrightarrow{i} M_1$, where f(a) = 0, f(b) = 2, and i is identity. It is easy to see that the sequence $M \xrightarrow{f} M_1 \xrightarrow{i} M_1$ is exact. However, the sequence

$$M_1[M_1 \times M_2] \xrightarrow{\bar{i}} M_1[M_1 \times M_2] \xrightarrow{\bar{f}} M[M_1 \times M_2]$$

is not exact, because for $\phi \in M_1[M_1 \times M_2]$ defined by $\phi(0) = (1, \overline{1})$, $\phi(1) = (2, \overline{1})$, and $\phi(2) = (1, \overline{2})$ there is no member of $Ker(\overline{f})$ such that its class is equal to the class of ϕ .

In the following theorem we show that if the converse of Lemma 4.1 is established, then the functors M[-] and -[M] are exact.

Theorem 4.3 Let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence of H_v -modules and strong H_v -homomorphisms. If the converse of Lemma 4.1 is established, then the sequences

$$C[M] \xrightarrow{\bar{g}} B[M] \xrightarrow{\bar{f}} A[M]$$
 (1)

$$M[A] \xrightarrow{\bar{f}} M[B] \xrightarrow{\bar{g}} M[C]$$
 (2)

are exact sequences.

Proof We prove (2). The proof of (1) is similar. Suppose that $h \in Im(\overline{f})$. Then there exists $\phi \in M[A]$ such that $h = \overline{f}(\phi) = f \circ \phi \in M[B]$. For every $m \in M$, $f \circ \phi(m) \in Im(f)$ and so there exists $b_m \in Ker(g)$ such that $\varepsilon_B^*(f \circ \phi(m)) = \varepsilon_B^*(b_m)$. Now we define $k \in M[B]$ by $k(m) = b_m$. Since $\overline{g}(k) = gok \in M[\omega_C] = \omega_{M[C]}$, we obtain $k \in Ker \ \overline{g}$. Finally, by the converse of Lemma 4.1 we have $\varepsilon_{M[B]}^*(h) = \varepsilon_{M[B]}^*(k)$.

Conversely, let $k \in Ker(\bar{g})$; then $\bar{g}(k) = g \circ k \in \omega_{M[C]} = M[\omega_C]$. Therefore, for all $m \in M$, $g \circ k(m) \in \omega_C$ and $k(m) \in Ker(g)$. Then there exists $b_m = f(a) \in Im(f)$ for some $a \in A$ such that $\varepsilon_B^*(b_m) = \varepsilon_B^*(k(m))$. We define $\psi \in M[A]$ by $\psi(m) = a$ and set $\phi = f \circ \psi = \bar{f}(\psi) \in Im(\bar{f})$. Now by the converse of Lemma 4.1 we obtain $\varepsilon_{M[B]}^*(k) = \varepsilon_{M[B]}^*(\phi)$.

Lemma 4.4 Let A, B, and C be H_v -modules. Then

- (1) $\omega_A \xrightarrow{i} A \xrightarrow{f} B$ is exact if and only if f is weak-monic.
- (2) $B \xrightarrow{g} C \xrightarrow{j} \omega_C$ is exact if and only if g is weak-epic.
- (3) $\omega_A \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{j} \omega_C$ is exact if and only if f is weak-monic, g is weak-epic, and $Im(f) \stackrel{w}{=} Ker(g)$.

Proof (1) Suppose that the given sequence is exact. It is sufficient to show that $Ker(f) = \omega_A$. We always have $\omega_A \subseteq Ker(f)$. On the other hand, if $a \in Ker(f)$, then there exists $a_1 \in Im(i) = \omega_A$ such that $\varepsilon_A^*(a) = \varepsilon_A^*(a_1) = \omega_A$ and so $a \in \omega_A$. Therefore, $Ker(f) = \omega_A$ and f is weak-monic.

Conversely, suppose that f is weak-monic. Then, $Ker(f) = \omega_A = Im(i)$ and consequently $Ker(f) \stackrel{w}{=} Im(i)$.

(2) Suppose that the given sequence is exact. Then $Im(g) \stackrel{w}{=} Ker(j)$ and so for every $c \in Ker(j) \Big(= C$ since $\omega_{\omega_C} = \omega_C \Big)$ there exists $b \in B$ such that $\varepsilon_C^*(g(b)) = \varepsilon_C^*(c)$. Therefore, g is weak-epic.

Conversely, suppose that g is weak-epic. Then for every $c \in C(=Ker(j))$ there exists $b \in B$ such that $\varepsilon_C^*(g(b)) = \varepsilon_C^*(c)$. On the other hand, for all $g(b) \in Im(g) \subseteq C$ there exist some $t \in B$ such that $\varepsilon_C^*(g(b)) = \varepsilon_C^*(g(t))$, where $g(t) \in C = Ker(j)$ and consequently $Im(g) \stackrel{w}{=} Ker(j)$.

(3) It follows from (1), (2), and the definition of exactness.

Lemma 4.5 Let $f: A \longrightarrow B$ be a strong H_v -homomorphism of H_v -modules. Then f is weak-epic if and only if F is onto. Moreover, f is weak-monic if and only if F is one to one. Finally, f is a weak isomorphism if and only if F is an isomorphism.

Proof Suppose that f is weak-epic and $\varepsilon_B^*(b) \in B/\varepsilon_B^*$. Since f is weak-epic, there exists $a \in A$ such that $\varepsilon_B^*(f(a)) = \varepsilon_B^*(b)$. However, $\varepsilon_B^*(f(a)) = F(\varepsilon_A^*(a))$. Therefore, $F(\varepsilon_A^*(a)) = \varepsilon_B^*(b)$ and consequently F is onto.

Conversely, let F be onto. Then for every $b \in B$ there exists $\varepsilon_A^*(a) \in A/\varepsilon_A^*$ such that $F(\varepsilon_A^*(a)) = \varepsilon_B^*(b)$. However, $F(\varepsilon_A^*(a)) = \varepsilon_B^*(f(a))$. Therefore, there exists $a \in A$ such that $\varepsilon_B^*(f(a)) = \varepsilon_B^*(b)$ and consequently f is weak-epic. The second part is proved in [8]. The third part is an obvious result. \Box

Theorem 4.6 Let $\omega_A \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{j} \omega_C$ be an exact sequence of H_v -modules and strong H_v -homomorphisms over an H_v -ring R. Then

$$0 = \omega_A / \varepsilon_{\omega_A}^* \xrightarrow{I} A / \varepsilon_A^* \xrightarrow{F} B / \varepsilon_B^* \xrightarrow{G} C / \varepsilon_C^* \xrightarrow{J} \omega_c / \varepsilon_{\omega_c}^* = 0$$

is an exact sequence of R/γ^* -homomorphisms and R/γ^* -modules.

Proof It follows from Lemma 4.4, Lemma 4.5, and Theorem 4.8 of [8] that say if $A \xrightarrow{f} B \xrightarrow{g} C$ is an exact sequence, then $A/\varepsilon_A^* \xrightarrow{F} B/\varepsilon_B^* \xrightarrow{G} C/\varepsilon_C^*$ is an exact sequence.

Theorem 4.7 (Five short lemma in H_v -modules) Let

be a commutative diagram of H_v -modules and H_v -homomorphisms over an H_v -ring R with both rows exact. Then

- (1) If h and l are weak-monic, then k is weak-monic.
- (2) If h and l are weak-epic, then k is weak-epic.
- (3) If h and l are weak isomorphisms, then k is a weak isomorphism.

Proof (1) By Lemma 3.4 and Theorem 4.6 the following diagram of R/γ^* -modules and R/γ^* -homomorphisms is commutative with both rows exact:

$$0 = \omega_A / \varepsilon_{\omega_A}^* \longrightarrow A / \varepsilon_A^* \xrightarrow{F} B / \varepsilon_B^* \xrightarrow{G} C / \varepsilon_C^* \longrightarrow C / \varepsilon_{\omega_C}^* = 0$$

$$H \bigvee_{K} \bigvee_{L} \downarrow \qquad L \bigvee_{V}$$

$$0 = \omega_{A_1} / \varepsilon_{\omega_{A_1}}^* \longrightarrow A_1 / \varepsilon_{A_1}^* \xrightarrow{F_1} B_1 / \varepsilon_{B_1}^* \xrightarrow{G} C_1 / \varepsilon_{C_1}^* \longrightarrow \omega_{C_1} / \varepsilon_{\omega_{C_1}}^* = 0.$$

By Lemma 4.5, H and L are one to one R/γ^* -homomorphisms. Then by the five short lemma in modules K is a one to one R/γ^* -homomorphism. Therefore, by Lemma 4.5, k is a weak-monic R-homomorphism.

Alternative Proof. It is sufficient to show that $Ker(k) = \omega_B$. We always have $\omega_B \subseteq Ker(k)$. On the other hand, suppose that $b \in Ker(k)$. Then $k(b) \in \omega_{B_1}$ and so $g_1(k(b)) \in g_1(\omega_{B_1})$. Since $g_1(\omega_{B_1}) \subseteq \omega_{C_1}$, we have $g_1(k(b)) \in \omega_{C_1}$. Since $g_1 \circ k = l \circ g$ and l is weak monic, we obtain $g(b) \in Ker(l) = \omega_C$. Then $b \in Ker(g) \stackrel{w}{=} Im(f)$ and consequently

$$\varepsilon_B^*(b) = \varepsilon_B^*(f(a)) \text{ for some } a \in A.$$
 (3)

Since k is a strong H_v -homomorphism, we have $\varepsilon_{B_1}^*(k(b)) = \varepsilon_{B_1}^*(k(f(a)))$. Since $k \circ f = f_1 \circ h$ and $b \in Ker(k)$, we obtain $\varepsilon_{B_1}^*(k(b)) = \varepsilon_{B_1}^*(f_1(h(a))) = \omega_{B_1}$. Therefore, $f_1(h(a)) \in \omega_{B_1}$. Since f_1 is weak-monic we obtain $h(a) \in \omega_{A_1}$ and since h is weak-monic it follows that $a \in \omega_A$. Thus, $f(a) \in f(\omega_A) \subseteq \omega_B$ and by Eq. (3) we obtain $\varepsilon_B^*(b) = \varepsilon_B^*(f(a)) = \omega_B$. Therefore, $b \in \omega_B$ and the proof is complete.

- (2) It is similar to (1).
- (3) It follows from (1) and (2).

References

- [1] Alimohammady M, Roohi M. Minimal H_v-vector spaces. Ital J Pure Appl Math 2007; 22: 177–184.
- [2] Corsini P. Prolegomena of Hypergroup Theory. Second edition, Udine, Tricesimo, Italy: Aviani, 1993.
- [3] Corsini P, Leoreanu V. Applications of Hyperstructure Theory. Dordrecht, the Netherlands: Kluwer Academic Publishers (Advances in Mathematics), 2003.
- [4] Davvaz B. Remarks on weak hypermodules. Bull Korean Math Soc 1999; 36: 599–608.
- [5] Davvaz B. H_v-module of fractions. Proc 8th Algebra Seminar of Iranian Math Soc; 17–18 December; University of Tehran: 1996, pp. 37–46.
- [6] Davvaz B. A brief survey of the theory of H_v-structures. Proc 8th International Congress on Algebraic Hyperstructures and Applications; 1–9 September 2002; Samothraki, Greece; Spanidis Press, 2003, pp. 39–70.
- [7] Davvaz B. Approximations in H_v -modules. Taiwanese J Math 2002; 6: 499–505.
- [8] Davvaz B, Ghadiri M. Weak equality and exact sequences in H_v -modules. Southeast Asian Bull Math 2001; 25: 403–411.
- [9] Davvaz B, Leoreanu-Fotea V. Hyperring Theory and Applications. USA: International Academic Press, 2007.
- [10] Davvaz B, Vougiouklis T. n-ary H_v-modules with external n-ary P-hyperoperation. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys 2014; 76: 141–150.
- [11] Ghadiri M, Davvaz B. Direct system and direct limit of H_v-modules. Iran J Sci Technol Trans A Sci 2004; 28: 267–275.
- [12] Marty F. Sur une generalization de la notion de groupe. In Proceedings of the 8th Congress des Mathematiciens; Scandinavia, Stockholm, Sweden: 1934, pp. 45–49.
- [13] Taghavi A, Vougiouklis T, Hosseinzadeh R. A note on operators on normed finite dimensional weak hypervector spaces. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys 2012; 74: 103–108.
- [14] Vougiouklis T. H_v-vector spaces. Proc 5th International Congress on Algebraic Hyperstructures and Applications;
 4–10 July 1993; Iasi Romania. Palm Harbor, FL, USA: Hadronic Press, Inc, 1994, pp. 181–190.
- [15] Vougiouklis T. Hyperstructures and Their Representations. Palm Harbor, FL, USA: Hadronic Press Inc, 1994.
- [16] Vougiouklis T. The fundamental relation in hyperrings. The general hyperfield. Algebraic hyperstructures and applications (Xanthi, 1990). Teaneck, NJ, USA: World Sci Publishing, 1991, pp. 203–211.
- [17] Vougiouklis T. Hypermatrix representations of finite H_v -groups. European J Combin (part B) 2015; 44: 307–315.