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1. Introduction

The concept of the generalized Drazin inverse (GD-inverse) in a Banach algebra was introduced by Koliha [21].

Let B be a complex unital Banach algebra. An element a of B is generalized Drazin invertible in the case that

there is an element b ∈ B satisfying

ab = ba, bab = b, and a− a2b is quasinilpotent.

Such b , if it exists, is unique; it is called a generalized Drazin inverse of a and will be denoted by ad . Then the

spectral idempotent aπ of a corresponding to 0 is given by aπ = 1− aad .

The GD-inverse was extensively investigated for matrices over complex Banach algebras and matrices

of bounded linear operators over complex Banach spaces. The GD-inverse of the operator matrix has various

applications in singular differential equations and singular difference equations, Markov chains and iterative

methods, and so on (see [1, 2, 3, 4, 8, 10, 14, 16, 26, 27, 28]).

The generalized Drazin inverse is a generalization of Drazin inverses and group inverses. The study

of representations for the Drazin inverse of block matrices essentially originated from finding the general

expressions for the solutions to singular systems of differential equations [4, 5, 6]. Until now, there have

been many formulae for the Drazin inverse of general 2× 2 block matrices under some restrictive assumptions

(see [12, 14, 15, 17, 18, 20, 19, 23, 24]).

Some results of the Drazin inverse have been developed in the GD-inverse of operator matrices over

Banach spaces (see [7, 11, 13, 14, 17]). Assume that both X and Y are complex Banach spaces. Denote by

B(X,Y ) the set of all bounded linear operators from X to Y , and write B(X,X) = B(X). Let an operator

matrix M =

(
A B
C D

)
, where A ∈ B(X), D ∈ B(Y ), B ∈ B(Y,X), C ∈ B(X,Y ).
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Castro-González [7] derived explicit expressions of the GD-inverse of M under certain conditions, which

extended some results of [13, 14]. Cvetković [11] also extended some results of [13, 14]. Recently, Mosić [25]

gave the new formulae for the GD-inverse of 2× 2 matrices in a Banach algebra.

In this paper, we derive new formulae for the GD-inverse of a (2,2,0) operator matrix N under certain

circumstances. Furthermore, we apply Nd to give representations of Md under weaker restrictions, which

generalizes and unifies several results of [7, 11, 13, 14, 17, 25].

Since (ad)n = (an)d for any a ∈ B we adopt the convention that adn = (ad)n and a0 = 1 and
∑k

i=0 ∗ = 0

in the case of k < 0. Moreover, we define

(
a b
c d

)⊤

=

(
a c
b d

)
for a, b, c, d ∈ B.

2. Generalized Drazin inverse of a (2,2,0) operator matrix

Let B be a complex unital Banach algebra. An element a ∈ B is called quasinilpotent if limn→∞ ∥an∥ 1
n = 0.

Let M2(B) be the 2× 2 matrix algebra over B . Given an idempotent e in B , we consider the set M2(B, e) =(
eBe eB(1− e)

(1− e)Be (1− e)B(1− e)

)
⊂ M2(B). Then M2(B, e) is a unital Banach algebra with respect to the norm

∥∥∥∥(a11 a12
a21 a22

)∥∥∥∥ = ∥a11 + a12 + a21 + a22∥.

Lemma 2.1 Let e be an idempotent of B . For any a ∈ B let

σ(a) =

(
eae ea(1− e)

(1− e)ae (1− e)a(1− e)

)
∈ M2(B, e).

Then the mapping σ is an isometric Banach algebra isomorphism from B to M2(B, e) such that:

1. (σ(a))d = σ(ad) ;

2. if (σ(a))d =

(
α β
γ δ

)
, then ad = α+ β + γ + δ .

Proof By [9, Lemma 2.1] we have that the mapping σ is an isometric Banach algebra isomorphism from B
to M2(B, e). The rest of the proof is obvious. 2

Lemma 2.2 ([14]) Let x =

(
a b
0 d

)
and let y =

(
d 0
b a

)
for a, b, d ∈ B . Then

xd =

(
ad X
0 dd

)
, yd =

(
dd 0
X ad

)
,

where

X = aπ
∞∑
i=0

aibdd(i+2) +
∞∑
i=0

ad(i+2)bdidπ − adbdd.
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Lemma 2.3 Let e be an idempotent of B and let a ∈ B be generalized Drazin invertible such that ea(1−e) = 0 .

Then ea and a(1− e) are both generalized Drazin invertible, and

(ea)d = ead, (a(1− e))d = ad(1− e), (ea)n = ean

for any positive integer n .

Proof Since ea(1 − e) = 0, combining Lemma 2.1 and Lemma 2.2, we have ead(1 − e) = 0. Then

eaead = eaad = eadea and eadeaead = ead . Furthermore,

lim
n→∞

∥(ea− (ea)2ead)n∥ 1
n = lim

n→∞
∥(eaaπ)n∥ 1

n

= lim
n→∞

∥eanaπ∥ 1
n ≤ lim

n→∞
∥e∥ 1

n ∥anaπ∥ 1
n = 0.

Hence, ea is generalized Drazin invertible and (ea)d = ead . Similarly, we can prove that a(1− e) is generalized

Drazin invertible and (a(1− e))d = ad(1− e). Using ea(1− e) = 0 we easily get (ea)n = ean for any positive

integer n . 2

Lemma 2.4 ([22])(Cline’s Formula) For a, b ∈ B , ab is generalized Drazin invertible if and only if so is ba .

Furthermore, if ab is generalized Drazin invertible, then

(ba)d = b(ab)2da.

The following lemma is an immediate corollary of [17, Corollary 3.3.7].

Lemma 2.5 Let x =

(
a b
c d

)
∈ M2(B) with a and d generalized Drazin invertible. If abc = 0, bd = 0, (bc)d =

0 , then x is generalized Drazin invertible, and

xd =

(
ϕ1a ϕ1b

τa+ ψ1 dd + τb

)
,

where

ϕn = Σ∞
j=0(bc)

jad(2j+2n),

ψn = Σ∞
j=0d

d(2j+2n)(cb)jc,

τ = Σ∞
i=0(cb+ d2)icad(2i+3) +Σ∞

i=0d
πd2i+1cϕi+2

−Σ∞
i=0d

2(cb+ d2)iψ1a
d(2i+3) +Σ∞

i=0ψi+2a
2i+1aπ

+Σ∞
i=0d

d(2i+3)c(a2 + bc)iaπ − Σ∞
i=0d

d(2i+1)c(bc)iϕ1 − ψ1a
d.

Now we can give our first main result. Recall that adn = (ad)n and

(
a b
c d

)⊤

=

(
a c
b d

)
for a, b, c, d ∈ B.
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Theorem 2.6 Let N =

(
E I
F 0

)
be an operator matrix with E and F generalized Drazin invertible. If

F dEFπ = 0 and FπFE = 0 , then N is generalized Drazin invertible, and

Nd =
∞∑
i=0

(
E2i+1EπFπEF d 0

E2iEπ(Fπ − EFπEF d)EF d 0

)⊤ (
0 F d

I −EF d

)2i+1

+

(
EdFπ +

∑∞
i=0E

d(2i+3)FπF i+1 FF d

F d − EdFπEF d +
∑∞

i=0E
d(2i+2)FπF i −FF dEF d

)⊤

.

Proof We adopt the convention that F e = FF d . Let e =

(
F e 0
0 I

)
, σ as in Lemma 2.1, and σ(N) =

(
a b
c d

)
.

Since F dEFπ = 0, we have

a =

(
F eE F e

FF e 0

)
, b =

(
0 0

FFπ 0

)
, c =

(
FπEF e Fπ

0 0

)
, d =

(
EFπ 0
0 0

)
.

Note that a has the group inverse

a♯ =

(
0 F d

F e −F eEF d

)
(2.1)

and so aaπ = 0. Using Lemma 2.3 we have (EFπ)d = EdFπ, and

(a♯)n =

((
F e 0
0 F e

)(
0 F d

I −EF d

))n

=

(
F e 0
0 F e

)(
0 F d

I −EF d

)n

for any positive integer n . Hence,

dd =

(
EdFπ 0

0 0

)
. (2.2)

Note that (FπF )d = 0, and so

bc =

(
0 0

FπFE FπF

)
and cb =

(
FπF 0
0 0

)
. (2.3)

Using Lemma 2.2 we get (bc)d = (cb)d = 0. Since F dEi+1Fπ = F d(EFπ)i+1 = 0 for any nonnegative integer

i , we have

ab = 0, bd = 0, bca = 0.

By Lemma 2.5 we have

(σ(N))d =

(
ad 0
Σ0 dd + Λ

)
, (2.4)

where

Λ =
∑∞

i=0 d
d(2i+3)c(bc)ib,

Σ0 =
∑∞

i=0 d
2icad(2i+2) +

∑∞
i=0 d

πd2i+1cad(2i+3) −
∑∞

i=0 d
2i+1ddcad(2i+2)

+
∑∞

i=0 d
d(2i+2)(cb)ic− ddcad − d2dcada.

Substituting (2.1), (2.2), and (2.3) into (2.4) and using Lemma 2.1 will give the expression of Nd that we

wanted. 2

431



ZHANG/Turk J Math

Corollary 2.7 Let N =

(
E I
F 0

)
be an operator matrix with E and F generalized Drazin invertible. If

F dEFπ = 0 and FπFE = 0 , then N is generalized Drazin invertible, and

Ndn =
∞∑
i=0

(
E2i+1EπFπEF d 0

E2iEπ(Fπ − EFπEF d)EF d 0

)⊤ (
0 F d

I −EF d

)2i+n

+

n∑
j=1

(
EdjFπ +

∑∞
i=0E

d(2i+j+2)F i+1Fπ 0
Edj(

∑∞
i=0E

d(2i+1)F iFπ − FπEF d) 0

)⊤ (
0 F d

FF d −FF dEF d

)n−j

+

(
0 F d

FF d −FF dEF d

)n

for any positive integer n .

Proof Let Nd = P +Q+R by Theorem 2.6, where

P =
∞∑
i=0

(
E2i+1EπFπEF d 0

E2iEπ(Fπ − EFπEF d)EF d 0

)⊤ (
0 F d

I −EF d

)2i+1

,

Q =

(
EdFπ +

∑∞
i=0E

d(2i+3)FπF i+1 0
−EdFπEF d +

∑∞
i=0E

d(2i+2)FπF i 0

)⊤

,

R =

(
0 F d

FF d −FF dEF d

)
.

Since F dEi+1Fπ = F d(EFπ)i+1 = 0 for any nonnegative integer i , and since FπFE = 0, we have P 2 =

0, RP = 0, RQ = 0, PQ = QP = 0, and

Qn =

n∑
j=1

(
EdnFπ +

∑∞
i=0E

d(2i+n+2)F i+1Fπ 0
Edn(

∑∞
i=0E

d(2i+1)F iFπ − FπEF d) 0

)⊤

for any positive integer n . Then Ndn = Qn + Rn + PRn−1 +
∑n−1

j=1 Q
jRn−j , and by a routine computation,

we get the expression of Ndn as shown in Corollary 2.7. 2

The following theorem, which is a dual version of Theorem 2.6, can be proved similarly.

Theorem 2.8 Let N =

(
E I
F 0

)
be an operator matrix with E and F generalized Drazin invertible. If

FπEF d = 0 and EFFπ = 0 , then N is generalized Drazin invertible, and

Nd =
∞∑
i=0

(
0 F d

FF d −EF d

)2i+2 (
F dEFπE2i+2Eπ F dEFπE2i+1Eπ

GE G

)

+

 ∞∑
i=0

F iFπEd(2i+1) + F dEFπEπ
∞∑
i=0

F iFπEd(2i+2) + F d − F dEFπEd

H + FF d − EF dEFπ HEd + EF dEFπEd − EF d


such that

G = (FF dEFπ − EF dEFπE)E2iEπ,
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and

H =
∞∑
i=1

F i+1FπEd(2i+2) − FF dEFπEd.

Proof We adopt the convention that F e = FF d . Let e =

(
Fπ 0
0 0

)
. Using Lemma 2.3 we have

(EFπ)d = EdFπ. The proof is similar in spirit to that of Theorem 2.6. Since FπEF d = 0, we have

a =

(
FπE 0
0 0

)
, b =

(
0 Fπ

0 0

)
, c =

(
F eEFπ 0
FFπ 0

)
, d =

(
EF e F e

FF e 0

)
.

Then

(bc)d = 0 = (cb)d, d♯ =

(
0 F d

F e −EF d

)
and ddπ = 0. (2.5)

Since FπEi+1F d = (FπE)i+1F d = 0 for any nonnegative integer i , we have

abc = 0, bd = 0, dcbc = 0. (2.6)

Combining (2.5) and (2.6), in a way exactly similar to Theorem 2.6, we get the result. 2

3. Applications to a 2× 2 operator matrix

Lemma 3.1 [17, Theorem 3.2.2] Let x =

(
a b
c d

)
∈ M2(B) with a and d generalized Drazin invertible. If

cad = 0 and caib = 0 for any nonnegative integer i , then x is generalized Drazin invertible, and

xd =

(
ad + φ ϕ
ψ dd

)
,

where

ψ =
∑∞

i=0 d
d(i+2)cai,

ϕ = aπ
∑∞

i=0 a
ibdd(i+2) +

∑∞
i=0 a

d(i+2)bdidπ − adbdd,
φ = aπ

∑∞
i=0

∑∞
j=0 a

ibdd(i+j+3)caj −
∑∞

i=0

∑∞
j=0 a

d(i+1)bdidd(j+2)caj

+
∑∞

i=0

∑i
j=0 a

d(i+3)bdjcai−j .

Now, based on an observation of the matrix decomposition, we apply the representations of the generalized

Drazin inverse of the (2,2,0) operator matrix to give our another main result. Recall that ae = ada , adn = (ad)n ,

and

(
a b
c d

)⊤

=

(
a c
b d

)
for a, b, c, d ∈ B.

Theorem 3.2 Let M =

(
A B
C D

)
be an operator matrix with A and D generalized Drazin invertible. If

(BC)dA(BC)π = 0 , (BC)πBCA = 0 , BDd = 0 , and BDiC = 0 for any positive integer i , then M is
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generalized Drazin invertible, and

Md =

((
0

De +DΩ

)
+

(
A I
C 0

)
Φ

)((
0 Dd +Ω

)
+Ψ

(
I 0
0 B

))
+

((
0
DΨ

)
+

(
A I
C 0

)
∆d

)((
0 Φ

)
+∆d

(
I 0
0 B

))
,

where

Φ =
∞∑
k=0

∆d(k+2)

(
0

BDk+1

)
,

Ψ =
∞∑
k=0

(
DkDπC 0

)
∆d(k+2) +

∞∑
k=0

(
Dd(k+2)C 0

)
∆k∆π −

(
DdC 0

)
∆d,

Ω =
∞∑
k=0

∞∑
l=0

(
DkDπC 0

)
∆d(k+l+3)

(
0

BDl+1

)

−
∞∑
k=0

∞∑
l=0

(
Dd(k+1)C 0

)
∆k∆d(l+2)

(
0

BDl+1

)

+
∞∑
k=0

k∑
l=0

(
Dd(k+3)C 0

)
∆l

(
0

BDk−l+1

)
,

∆dn =
∞∑
i=0

(
A2i+1Aπ(BC)πA(BC)d 0

A2iAπ((BC)π −A(BC)πA(BC)d)A(BC)d 0

)⊤

×
(
0 (BC)d

I −A(BC)d
)2i+n

+
n∑

j=1

(
Adj(BC)π +

∑∞
i=0A

d(2i+j+2)(BC)i+1(BC)π 0∑∞
i=0A

d(2i+j+1)(BC)i(BC)π −Adj(BC)πA(BC)d 0

)⊤

×
(

0 (BC)d

BC(BC)d −BC(BC)dA(BC)d
)n−j

+

(
0 (BC)d

BC(BC)d −BC(BC)dA(BC)d
)n

for n ≥ 1 and ∆ =

(
A I
BC 0

)
.

Proof Note that

M =

(
0 A I
I C 0

)0 D
I 0
0 B

 . (3.1)
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Let us denote by P and Q the left matrix and the right matrix of the right-hand side in (3.1), respectively.

Then QP =

(
α β
γ ∆

)
, where

α = D, β =
(
DC 0

)
, γ =

(
0
B

)
, and ∆ =

(
A I
BC 0

)
. (3.2)

Applying Corollary 2.7 to ∆ we obtain the expression of ∆dn for any n ≥ 1 as shown in Theorem 3.2. Since

BDd = 0 and BDiC = 0 for i = 1, 2, . . . , we have

αnβ =
(
Dn+1C 0

)
, αdnβ =

(
Dd(n+1)C 0

)
, and γαn =

(
0

BDn

)
. (3.3)

Moreover, γαd = 0 and γαiβ = 0 for i = 0, 1, 2, . . . . Substitute (3.2), (3.3), and ∆dn into Lemma 3.1 to

obtain (QP )d . By Lemma 2.4 Md = P (QP )2dQ and a routine computation we get the expression of Md as

shown in Theorem 3.2. 2

We now analyze some special cases of the preceding theorem, some of which give results of [7, 13, 14, 17,

25].

Corollary 3.3 Let M =

(
A B
C D

)
be an operator matrix with A and D generalized Drazin invertible. If

A(BC)π = 0 , (BC)πBCA = 0 , BD = 0 , then M is generalized Drazin invertible, and

Md =

(
0 0
0 Dd

)
+

(
0

DDd

)
Ψ

(
I 0
0 B

)
+

(
0
DΨ

)
∆d

(
I 0
0 B

)
+

(
A I
C 0

)
∆2d

(
I 0
0 B

)
,

where

Ψ =
∞∑
k=0

(
DkDπC 0

)
∆d(k+2) +

∞∑
k=0

(
Dd(k+2)C 0

)
∆k∆π −

(
DdC 0

)
∆d,

∆dn =
∞∑
i=0

(
0 (BC)πA(BC)d

0 0

)(
0 (BC)d

I −A(BC)d
)2i+n

+

(
0 (BC)d

BC(BC)d −BC(BC)dA(BC)d
)n

for n ≥ 1 and ∆ =

(
A I
BC 0

)
.

Proof The result can be deduced by routine computations. 2

The corollary above relaxes and removes Theorem 2.3 of [25], in which Mosić consider the conditions

BD = 0, A(BC)π = 0, C(BC)π = 0, and (BC)πB = 0.

In [7, 13, 14, 17], expressions of the GD-inverse of M are given under the following conditions:

1. BC = 0, BD = 0, and DC = 0 (see [14]);

2. BC = 0, BD = 0 (see [13]);

435



ZHANG/Turk J Math

3. BCA = 0, BD = 0, DC = 0 (see [7]);

4. BCA = 0, BD = 0, and BC is nilpotent (see [7]);

5. BDd = 0, BDiC = 0 for i = 0, 1, ..., n− 1 (see [17]).

Theorem 3.2 relaxes some conditions in each item of (1)–(5) and gives a unified generalization of [14, Theorem

5.3], [13, Theorem 2], [7, Theorem 4.4], [7, Theorem 4.2], and [17, Theorem 3.2.1]

We conclude this paper with some remarks. Using a way similar to Theorem 3.2 we can give an expression

of the generalized Drazin inverse Md under the following condition:

(BC)πA(BC)d = 0, ABC(BC)π = 0, BDd = 0, BDiC = 0 ∀i ≥ 1,

which gives a unified generalization of [14, Theorem 5.3], [13, Theorem 2], [11, Theorem 1], [17, Theorem 3.2.5],

and [25, Theorem 2.5].

Moreover, by using [17, Theorem 3.2.4] instead of Lemma 3.1 and by using the similar argument we can

give expressions of the generalized Drazin inverse Md under the following conditions, respectively:

1. (BC)dA(BC)π = 0, (BC)πBCA = 0, DdC = 0, and BDiC = 0 ∀i ≥ 1;

2. (BC)πA(BC)d = 0, ABC(BC)π = 0, DdC = 0, and BDiC = 0 ∀i ≥ 1.

These give a unified generalization of [14, Theorem 5.3], [13, Theorem 3], [7, Theorem 4.4, Theorem 4.5], [17,

Theorem 3.2.3, Theorem 3.2.6], [25, Theorem 2.4, Theorem 2.6], and [11, Theorem 1–3].
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[8] Castro-González N, Dopazo E, Robles J. Formulas for the Drazin inverse of special block matrices. Appl Math

Comput 2006; 174: 252–270.
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