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Abstract: In this work, a new inequality by sharpening the well-known Hölder inequality by means of a theorem based

on abstract convexity is derived.
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1. Introduction

The applications of abstract convexity in different areas are known (see [2, 3, 4, 5, 6, 7, 8, 9]). One of them is the

application to inequality theory. For instance, for different function classes, Hermite–Hadamard type inequalities

were derived by different authors in [2, 3, 4, 8]. Another application of abstract convexity to inequality theory

is to sharpen known inequalities in [7] and [1]. In [1], the sharper versions for well-known inequalities among

the generalized arithmetic, geometric, and harmonic means is given by using abstract convexity, and it is shown

that the presented sharping scheme does not derive a sharper inequality for every inequality satisfying related

conditions, such as, for example, Cauchy–Schwarz and Minkowski inequalities.

In this paper, the Hölder inequality is studied and investigated in the frame of abstract convexity in light

of [1]. Sharper inequality for the Hölder inequality is derived, and also by using this result, we present sharper

inequality for the Cauchy–Schwarz inequality.

The structure of the paper is as follows: in the second section, certain concepts of abstract convexity,

an important theorem to be applied to optimization theory and the Hölder inequality, are given. In the third

section, the Hölder inequality is considered, results are presented as theorems, and, also by using this result,

sharper inequality is given for the Cauchy–Schwarz inequality.

We shall use the following notations:

R is the real line; R+∞ := R ∪ {+∞} ;R−∞ := R ∪ {−∞} ; R̄ := R ∪ {−∞,+∞} ;
Rn is an n -dimensional Euclidean space;

Rn
+ is the set of points with nonnegative coordinates;

Rn
++ is the set of points with strictly positive coordinates;

X is a Hilbert space with the inner product [.,.] and the norm ∥x∥ =
√

[x, x];

B(y, r) = {x ∈ X : ∥x− y∥ ≤ r} ;
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If f : Ω → R̄, then domf := {x ∈ Ω : −∞ < f(x) < +∞} ;
If f : Ω → R̄ and g : Ω → R̄, then f ≤ g means that f(x) ≤ g(x) for all x ∈ Ω.

2. Preliminaries

2.1. Abstract convexity, abstract concavity, and an application to optimization theory

Let Ω be a set and H be a set of functions h : Ω → R−∞ . A function f : Ω → R+∞ is called abstract convex

with respect to H (or H − convex) if there exists a set U ⊂ H such that

f(x) = sup
h∈U

h(x)

for all x ∈ Ω.

Let H be a set of functions h : Ω → R+∞. A function f : Ω → R−∞ is called abstract concave with

respect to H (or H − concave) if there exists a set U ⊂ H such that

f(x) = inf
h∈U

h(x)

for all x ∈ Ω.

The set H is called the set of elementary functions.

Let X be Hilbert space, and let Ω ⊂ Ω′ ⊂ X, f : Ω → R+∞ and x0 ∈ domf and L be a set of functions

l : Ω′ → R−∞. An element l ∈ L is called an L -subgradient of f at the point x0 if x0 ∈ doml and

f(x) ≥ f(x0) + l(x)− l(x0).

The set ∂Lf(x0) of all L -subgradients of f at x0 is referred to as the L-subdifferential of f at x0.

If f : Ω → R+∞ is a lower semicontinuous convex function and x ∈ domf , then ∂Lf(x) = ∂f(x), where

∂f(x) is the subdifferential in the sense of convex analysis.

Let H be the set of all quadratic functions h of the form

h(x) = a ∥x∥2 + [l, x] + c, x ∈ X

where a > 0, l ∈ X and c ∈ R. We say that a function f : Ω → R−∞ is majorized by H if there exists h ∈ H

such that h ≥ f.

Let Ω ⊂ X and let H be the set of quadratic functions. Then a function f : Ω → R−∞ is H − concave

if and only if f is majorized by H and f is upper semicontinuous (see [6]).

The following result holds (see [7]).

Proposition 1 Let Ω ⊂ X be a convex set and let f be a differentiable function defined on an open set

containing Ω . Assume that the mapping x 7→ ∇f(x) is Lipschitz continuous on Ω :

K := sup
x,y∈X,x ̸=y

∥∇f(x)−∇f(y)∥
∥x− y∥

< +∞.

Let a ≥ K. For each t ∈ Ω , consider the function

ft(x) = f(t) + [∇f, x− t] + a∥x− t∥2, x ∈ X.

Then f(x) = min
t∈Ω

ft(x), x ∈ Ω.
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From [7], consider the global minimization of a function f over a convex set that can be represented

as the infimum of a family (ft)t∈T of convex functions and derive necessary and sufficient (or only sufficient)

conditions for the global minimum.

In the simplest case of the unconstrained minimization of a function f : X → R such that ∥∇f(x)−∇f(y)∥ ≤
a ∥x− y∥ for all x, y ∈ X, the following result is obtained: if a point x∗ is a global minimizer of f over X,

then

f(x)− f(x∗) ≥ 1

4a
∥∇f(x)∥2 (1)

for all x ∈ X.

The following theorem, which gives the more general case of inequality (1), is proved in [7].

Theorem 1 Consider an n-dimensional space Rn with norms ∥.∥ and ∥.∥◦ . Let Ω ⊂ Rn be a set with int

Ω ̸= ∅ and let f ∈ C1 (Ω) . Assume that the mapping x 7−→ ∇f(x) is Lipschitz on Ω :

K := sup
x,y∈Ω
x̸=y

∥∇f(x)−∇f(y)∥
∥x− y∥

< ∞.

Let x∗ ∈ int Ω be a global minimizer of f over Ω. Consider the ball

B◦(x
∗, r) = {x : ∥x− x∗∥◦ ≤ r} ⊂ intΩ

and let
M := max {∥∇f(x)∥◦ : x ∈ B◦(x

∗, r)} .

Let q > 0 be a number such that B◦(x
∗, r + q) ⊂ Ω and let a ≥ max

(
K,

M

2q

)
. Then

1

4a
∥∇f(x)∥2 ≤ f(x)− f(x∗), x ∈ B◦(x

∗, r).

2.1.1. Hölder mean

Let x1, x2, ...xn and y1, y2, ..., yn be positive numbers and p, q > 1 be such that 1
p + 1

q = 1. Then

n∑
i=1

xiyi ≤

(
n∑

i=1

xp
i

) 1
p
(

n∑
i=1

yqi

) 1
q

.

Equality occurs if and only if
xp
1

yq1
=

xp
2

yq2
= · · · = xp

n

yqn
.

3. Main results

Many inequalities can be represented in the form f(x) ≥ 0, where f is a certain function. We say that the

inequality f(x) ≥ u(x) with u(x) ≥ 0 is sharper than the inequality f(x) ≥ 0 if there exists x with u(x) > 0.

Certain conditions for the global minimum can be used for sharpening some special inequalities. Using

the optimality conditions that were obtained with the help of abstract convexity in the previous section, we will

study the Hölder inequality in terms of sharpening.
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Theorem 2 Let λ > r > 0, y ∈ Rn
++, y =y

q
p= (y

q
p

1 , y
q
p

2 , · · · , y
q
p
n ) ∈ Rn

++ and

aλ′,r = min
r<d<λ′

max


(

n∑
i=1

yqi

) 1
q
(

n∑
i=1

s2i

) 1
2

,
M0

2(d− r)


where

si =
p(λy

q
p

i + d)p−2

q

(
n∑

k=1

(λy
q
p

k − d)q
)1+ 1

q

×


 n∑

k=1
k ̸=i

(λy
q
p

k + d)p


2

+ (λy
q
p

i + d)2
n∑

k=1
k ̸=i

(λy
q
p

k + d)2p−2


1
2

,

M0 = max
1≤i≤n


∣∣∣∣∣∣∣∣∣


n∑
i=1

yqi

n∑
i=1

(λy
q
p

i − r)p


1
q

(λy
q
p

i + r)p−1 − yi

∣∣∣∣∣∣∣∣∣

 , λ′ = min
i∈{1,2,...,n}

{
λy

q
p

i

}
.

Then for all x ∈ Rn
++ such that ∥x− λy∥∞ ≤ r it holds that:

n∑
i=1

xiyi +
1

4aλ′,r

n∑
i=1




n∑
i=1

yqi

n∑
i=1

xp
i


1
q

xp−1
i − yi


2

≤

(
n∑

i=1

xp
i

) 1
p
(

n∑
i=1

yqi

) 1
q

.

Proof Let y ∈ Rn
++ and

fy(x) =

(
n∑

i=1

xp
i

) 1
p
(

n∑
i=1

yqi

) 1
q

−
n∑

i=1

xiyi

where p, q > 0, 1
p +

1
q = 1 and x = (x1, x2, ..., xn) ∈ Rn

++. Then fy(x) ≥ 0 and fy(x) = 0 if and only if x = λy

where y =(y
q
p

1 , y
q
p

2 , · · · , y
q
p
n ), λ > 0. Thus, the vectors λy are global minimizers of f over Rn

++. We will sharpen

the Hölder inequality, applying Theorem 1 to the inequality fy(x) ≥ 0. Necessary calculations show that

∇fy(x) =




n∑
i=1

yqi

n∑
i=1

xp
i


1
q

xp−1
1 − y1,


n∑

i=1

yqi

n∑
i=1

xp
i


1
q

xp−1
2 − y2, · · · ,


n∑

i=1

yqi

n∑
i=1

xp
i


1
q

xp−1
n − yn

 .

Hence:

∥∇f(x)∥2 =

n∑
i=1




n∑
i=1

yqi

n∑
i=1

xp
i


1
q

xp−1
i − yi


2

.

Later we will use not only the norm ∥.∥ = ∥.∥2 but also the norm ∥.∥∞ . Let us consider the ball

Vλ,d = B∞(λy,d) = {x ∈ Rn : ∥x− λy∥∞ ≤ d}

=
{
x ∈ Rn : λy

q
p

i − d ≤ xi ≤ λy
q
p

i + d, i = 1, ..., n
}
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where λ′ = min
i

{
λy

q
p

i

}
> d > 0. Since d < λy

q
p

i , it follows that Vλ′,d ⊂ Rn
++. Let ρi(x) =

xp−1
i(

n∑
i=1

xp
i

) 1
q
. We need

to estimate ∥∇ρi(x)∥ for x ∈ Vλ′,d. We have

∣∣∣∣∂ρi∂xi
(x)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
pxp−2

i

n∑
k=1
k ̸=i

xp
k

q

(
n∑

k=1

xp
k

)1+ 1
q

∣∣∣∣∣∣∣∣∣∣
≤

p(λy
q
p

i + d)p−2
n∑

k=1
k ̸=i

(λy
q
p

k + d)p

q

(
n∑

k=1

(λy
q
p

k − d)q
)1+ 1

q

∣∣∣∣ ∂ρi∂xj
(x)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
p(xixj)

p−1

q

(
n∑

k=1

xp
k

)1+ 1
q

∣∣∣∣∣∣∣∣∣ ≤
p(λy

q
p

i + d)p−1(λy
q
p

j + d)p−1

q

(
n∑

k=1

(λy
q
p

k − d)q
)1+ 1

q

and so

∥∇ρi(x)∥ ≤ p(λy
q
p

i + d)p−2

q

(
n∑

k=1

(λy
q
p

k − d)q
)1+ 1

q

×


 n∑

k=1
k ̸=i

(λy
q
p

k + d)p


2

+ (λy
q
p

i + d)2
n∑

k=1
k ̸=i

(λy
q
p

k + d)2p−2


1
2

= si. (2)

Let x, z ∈ Vλ′,d . Applying the mean value theorem and Cauchy–Schwarz inequality, we conclude that there

exist numbers θi ∈ (0, 1), i = 1, ..., n such that

∥∇fy(x)−∇fy(z)∥ =

(
n∑

i=1

yqi

) 1
q

∥[ρ1(x)− ρ1(z)] , [ρ2(x)− ρ2(z)] , ..., [ρn(z)− ρn(z)]∥

=

(
n∑

i=1

yqi

) 1
q
(

n∑
i=1

[ρi(x)− ρi(z)]
2

) 1
2

=

(
n∑

i=1

yqi

) 1
q
(

n∑
i=1

[∇ρi(x+ θi(z − x))(x− z)]
2

) 1
2

≤

(
n∑

i=1

yqi

) 1
q
(

n∑
i=1

∥∇ρi(x+ θi(z − x))∥2 ∥x− z∥2
) 1

2

≤

(
n∑

i=1

yqi

) 1
q
(

n∑
i=1

s2i

) 1
2

∥(z − x)∥ .

Since x, z ∈ Vλ′,d it follows that x+ θi(z − x) ∈ Vλ′,d for all i. Applying inequality (2), we conclude that

∥∇fy(x)−∇fy(z)∥ ≤ a1(λ, d) ∥x− z∥ , x, z ∈ Vλ′,d

where

a1(λ, d) =

(
n∑

i=1

yqi

) 1
q
(

n∑
i=1

s2i

) 1
2

.
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Hence, the mapping x → ∇f(x) is Lipschitz continuous on Vλ′,d with the Lipschitz constant K ≤ a1(λ
′, d).

We will apply Theorem 1 to a set Ω = Vλ′,d where d < λ′ = min
i

{
λy

q
p

i

}
and the global minimizer x∗ = λy of

the function f. Assume that the norm ∥.∥◦ that was used in Theorem 1 coincides with ∥.∥∞ . Let r ∈ (0, d)

and q = d− r . Let us estimate M = max
{
∥∇fy(x)∥∞ : x ∈ Vλ′,r

}
as follows:

M = max
x∈Vλ′,r

{∥∇f(x)∥∞} = max
x∈Vλ′,r

 max
1≤i≤n

∣∣∣∣∣∣∣∣∣


n∑
i=1

yqi

n∑
i=1

xp
i


1
q

xp−1
i − yi

∣∣∣∣∣∣∣∣∣



≤ max
1≤i≤n


∣∣∣∣∣∣∣∣∣


n∑
i=1

yqi

n∑
i=1

(λy
q
p

i − r)p


1
q

(λy
q
p

i + r)p−1 − yi

∣∣∣∣∣∣∣∣∣

 ≡ M0.

Let

a2(λ
′, d, r) =

M0

2(d− r)

and

a(λ′, d, r) = max {a1(λ′, d), a2(λ
′, d, r)} .

Note that lim
d→λ′−0

a(λ′, d, r) = lim
d→r+0

a(λ′, d, r) = +∞ so the function d 7−→ a(λ′, d, r) attends its minimum on

the segment (r, λ′) . Let aλ′,r = min
r<d<λ′

a(λ′, d, r). Applying Theorem 1 we conclude that

(
n∑

i=1

xp
i

) 1
p
(

n∑
i=1

yqi

) 1
q

≥
n∑

i=1

xiyi +
1

4aλ′,r

n∑
i=1




n∑
i=1

yqi

n∑
i=1

xp
i


1
q

xp−1
i − yi


2

for x ∈ Vλ′,r.

2

For p = q = 2 in the above theorem we can derive a sharp inequality for the Cauchy–Schwarz inequality:

Corollary 1 Let λ > r > 0, y ∈ Rn
++ and

aλ′,r = min
r<d<λ′

max


(

n∑
i=1

y2i

) 1
2
(

n∑
i=1

s2i

) 1
2

,
M0

2(d− r)


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where

si =
1(

n∑
k=1

(λyk − d)2
) 3

2

×


 n∑

k=1
k ̸=i

(λyk + d)2


2

+ (λyi + d)2
n∑

k=1
k ̸=i

(λyk + d)2


1
2

,

M0 = max
1≤i≤n


∣∣∣∣∣∣∣∣∣


n∑
i=1

y2i

n∑
i=1

(λy2i − r)2


1
2

(λyi + r)− yi

∣∣∣∣∣∣∣∣∣

 , λ′ = min
i∈{1,2,...,n}

{λyi} .

Then for all x ∈ Rn
++ such that ∥x− λy∥∞ ≤ r it holds that:

n∑
i=1

xiyi +
1

4aλ′,r

n∑
i=1




n∑
i=1

y2i

n∑
i=1

x2
i


1
2

xi − yi


2

≤

(
n∑

i=1

x2
i

) 1
2
(

n∑
i=1

y2i

) 1
2

.
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