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Abstract: The main aim of this paper is to construct quantum extension of the discrete Sturm–Liouville equation

consisting of second-order difference equation and boundary conditions that depend on a quadratic eigenvalue parameter.

We consider a boundary value problem (BVP) consisting of a second-order quantum difference equation and boundary

conditions that depend on the quadratic eigenvalue parameter. We present a condition that guarantees that this BVP

has a finite number of eigenvalues and spectral singularities with finite multiplicities.
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1. Introduction

Boundary value problems (BVPs) for difference equations have been intensively studied in the last decade. The

modelings of certain problems in engineering, economics, control theory, and other areas of study have led to

the rapid development of the theory and also spectral theory of difference equations. Some problems of spectral

theory for difference equations were treated by various authors [1, 9, 4, 8, 5]. Furthermore, quantum calculus

received a lot of attention, and most of the published work has been interested in some problems of q -difference

equations (see [2, 6, 3, 11, 10]). The spectral analysis of eigenparameter-dependent nonselfadjoint difference

equations and q -difference equation were studied in [7, 15, 6, 13]. A BVP for the discrete Sturm–Liouville

equation consisting of second-order difference equation and boundary conditions that depend on a quadratic

eigenvalue parameter was first studied by Koprubasi et al. [13]. We extended their results to the case of

quantum difference equations. In this paper, we let q > 1 and use the notation qN0 := {qn : n ∈ N0} , where N0

denotes the set of nonnegative integers. Let us consider the nonselfadjoint BVP consisting of the second-order

q -difference equation

qa(t)y(qt) + b(t)y(t) + a

(
t

q

)
y

(
t

q

)
= λy(t), t ∈ qN (1.1)

and the boundary conditions

(γ0 + γ1λ+ γ2λ
2)y(q) + (β0 + β1λ+ β2λ

2)y(1) = 0,

γ0β1 − γ1β0 ̸= 0, |γ2|+ |β2| ̸= 0, γ2 ̸= −β1

a(1) ,
(1.2)

where γi, βi ∈ C , i = 0, 1, 2, {a(t)}t∈qN0 and {b(t)}t∈qN are complex sequences, a(t) ̸= 0 for all t ∈ qN0 , and λ

is a spectral parameter. Differently from other studies in the literature, in this paper, which is one of the articles
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that have applications in mathematics and other disciplines such as medicine, economics, biology, and control

theory, we consider the existence of the spectral parameter not only in the q -difference equation but also in the

boundary condition for quadratic form. The organization of this paper is as follows: in Section 2, we give the

Jost solution, Jost function, Green function, and resolvent of the BVP (1.1)–(1.2). In Section 3, we investigate

the eigenvalues and the spectral singularities of this BVP, and we get some properties of the eigenvalues and

the spectral singularities of this BVP under the condition

sup
t∈qN

{
exp

[
ε

(
ln t

ln q

)δ
]
(|1− a(t)|+ |b(t)|)

}
< ∞, ε > 0,

1

2
≤ δ ≤ 1. (1.3)

Section 4 contains the main result, where we deal with condition (1.3) for δ = 1 and δ ̸= 1. For both cases,

we prove that the BVP (1.1)–(1.2) has a finite number of eigenvalues and spectral singularities with finite

multiplicities. Since the second case is weaker than the first, we have to use a different way for each to prove

the theorem.

2. Jost solution and Jost function

Assume (1.3). Then (1.1) has the solution

e(t, z) = α(t)
ei

ln t
ln q z√
µ(t)

1 +
∑
r∈qN

A(t, r)ei
ln r
ln q z

 , t ∈ qN0 , (2.1)

for λ = 2
√
q cos z , where z ∈ C+ := {z ∈ C : Im z ≥ 0} , µ(t) = (q − 1)t for all t ∈ qN0 and α(t), A(t, r) are

given in terms of {a(t)} and {b(t)} [2]. Moreover, A(t, r) satisfies

|A(t, r)| ≤ C
∑

s∈
[
tq

⌊ ln r
2 ln q

⌋
,∞

)
∩qN

(|1− a(s)|+ |b(s)|) , (2.2)

where C > 0 is a constant and ⌊ ln r
2 ln q ⌋ is the integer part of ln r

2 ln q . Therefore, e(·, z) is analytic with respect to

z in C+ := {z ∈ C : Im z > 0} and continuous in C+ . Using (2.1) and the boundary condition (1.2), we define

the function f by

f(z) = (γ0 + 2
√
qγ1 cos z + 4qγ2 cos

2 z)e(q, z)
+(β0 + 2

√
qβ1 cos z + β2 cos

2 z)e(1, z).
(2.3)

The function f is analytic in C+ , f(z) = f(z + 2π), and continuous in C+ . Similar to the Sturm–Liouville

differential equation, the solution e(·, z) and the function f are called the Jost solution and Jost function

of (1.1)–(1.2), respectively [14]. Let φ(λ) = {φ(t, λ)} t ∈ qN0 be the solution of (1.1) subject to the initial

conditions

φ(1, λ) = −(γ0 + γ1λ+ γ2λ
2), φ(q, λ) = (β0 + β1λ+ β2λ

2).

If we characterize ϕ(t, z) = φ(2
√
q cos z) = {φ(t, 2√q cos z)}t∈qN0 , then ϕ is an entire function and ϕ(z) =

ϕ(z +2π). Let us take the semistrips P0 = {z ∈ C+ : 0 ≤ Re z ≤ 2π} and P = P0 ∪ [0, 2π] . For all z ∈ P with
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f(z) ̸= 0, we define

Gt,z(z) :=


−ϕ(r,z)e(t,z)

qa(1)f(z) , r = tq−k, k ∈ N0

− e(r,z)ϕ(t,z)
qa(1)f(z) , r = tqk, k ∈ N. (2.4)

The function Gt,z is called the Green function of the BVP (1.1)–(1.2). It is clear that

(Rh)(t) :=
∑
r∈qN

G(t, r)h(r), h ∈ ℓ2(q
N) (2.5)

is the resolvent of the BVP (1.1)–(1.2), where ℓ2(q
N) is the Hilbert space of complex-valued functions with the

inner product

⟨f, g⟩q :=
∑
t∈qN

µ(t)f(t)g(t) f, g : qN → C.

3. Eigenvalues and spectral singularities

We will denote the set of all eigenvalues and spectral singularities of BVP (1.1)–(1.2) by σd and σss , respectively.

By using (2.4), (2.5), and the definition of the eigenvalues and the spectral singularities, we have [14]:

σd =
{
λ ∈ C : λ = 2

√
q cos z, z ∈ P0, f(z) = 0

}
,

σss =
{
λ ∈ C : λ = 2

√
q cos z, z ∈ [0, 2π] , f(z) = 0

}
\{0}. (3.1)

From (2.1) and (2.3), we get

f(z) =
q√
q − 1

α(1)β2e
−2iz +

√
q

q − 1
[α(q)γ2 + α(1)β1] e

−iz

+
1√
q − 1

[α(1)β0 + 2qα(1)β2 + α(q)γ1]

+
1√

q(q − 1)
[α(q)γ0 + 2α(q)γ2 + qα(1)β1] e

iz

+
1√
q − 1

[α(q)γ1 + qα(1)β2] e
2iz + α(q)γ2

√
q

q − 1
e3iz

+
∑
r∈qN

α(1)
q√
q − 1

β2A(1, r)e
i( ln r

ln q−2)z

+
∑
r∈qN

√
q

q − 1
[α(1)β1A(1, r) + α(q)γ2A(q, r)] e

i( ln r
ln q−1)z

+
∑
r∈qN

1√
(q − 1)

[α(q)γ1A(q, r) + α(1)β0A(1, r) + α(1)2qβ2A(1, r)] e
i ln r
ln q z

+
∑
r∈qN

√
q

q − 1

[
α(q)2γ2A(q, r) + α(1)β1A(1, r) +

γ0
q
A(q, r)

]
ei(

ln r
ln q+1)z
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+
∑
r∈qN

1√
q − 1

[α(q)γ1A(q, r) + qα(1)β2A(1, r)] e
i( ln r

ln q+2)z

+
∑
r∈qN

√
q

q − 1
α(q)γ2A(q, r)e

i( ln r
ln q+3)z.

Let us define

F (z) := f(z)e2iz, (3.2)

and then the function F is analytic in C+ , continuous in C+ ,

F (z) =
q√
q − 1

α(1)β2 +

√
q

q − 1
[α(q)γ2 + α(1)β1] e

iz

+
1√
q − 1

[α(1)β0 + 2qα(1)β2 + α(q)γ1] e
2iz

+
1√

q(q − 1)
[α(q)γ0 + 2α(q)γ2 + qα(1)β1] e

3iz

+
1√
q − 1

[α(q)γ1 + qα(1)β2] e
4iz +

√
q

q − 1
α(q)γ2e

5iz

+
∑
r∈qN

q√
q − 1

α(1)β2A(1, r)e
i ln r
ln q z

+
∑
r∈qN

√
q

q − 1
[α(1)β1A(1, r) + α(q)γ2A(q, r)] ei(

ln r
ln q+1)z

+
∑
r∈qN

1√
q − 1

[α(q)γ1A(q, r) + α(1)β0A(1, r) + 2qα(1)β2A(1, r)] ei(
ln r
ln q+2)z

+
∑
r∈qN

√
q

q − 1

[
2α(q)γ2A(q, r) + α(1)β1A(1, r) +

α(q)

q
√
q − 1

γ0A(q, r)

]
ei(

ln r
ln q+3)z

+
∑
r∈qN

1√
q − 1

[α(q)γ1A(q, r) + qα(1)β2A(1, r)] e
i( ln r

ln q+4)z

+
∑
r∈qN

√
q

q − 1
[α(q)γ2A(q, r)] e

i( ln r
ln q+5)z,

and F (z) = F (z + 2π). It follows from (3.1) and (3.2) that

σd =
{
λ ∈ C : λ = 2

√
q cos z, z ∈ P0, F (z) = 0

}
,

σss =
{
λ ∈ C : λ = 2

√
q cos z, z ∈ [0, 2π] , F (z) = 0

}
\{0}. (3.3)

Definition 3.1 The multiplicity of a zero of F in P is called the multiplicity of the corresponding eigenvalue

or spectral singularity of BVP (1.1)–(1.2).

By using (3.3), we obtain that, in order to investigate the quantitative properties of the sets σd and σss ,

we need to discuss the quantitative properties of the zeros of F in P . Let us define

M1 := {z ∈ P0 : F (z) = 0} , M2 := {z ∈ [0, 2π] : F (z) = 0} . (3.4)
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We also denote the set of all limit points of M1 by M3 and the set of all zeros of F with infinite multiplicity

in P by M4 . From (3.3) and (3.4), we find that

σd =
{
λ ∈ C : λ = 2

√
q cos z, z ∈ M1

}
,

σss =
{
λ ∈ C : λ = 2

√
q cos z, z ∈ M2

}
\{0}. (3.5)

Theorem 3.2 Assume (1.3). Then:

i) the set M1 is bounded and countable;

ii) M1 ∩M3 = ∅ , M1 ∩M4 = ∅ ;

iii) the set M2 is compact and the Lebesgue measure of M2 in the real axis is zero;

iv) M3 ⊂ M2 , M4 ⊂ M2 , the Lebesgue measure of M3 and M4 is also zero;

v) M3 ⊂ M4 .

Proof From (2.2) and the definition of F , for all z ∈ P , we have

F (z) =
q√
q − 1

α(1)β2 +O(e− Im z), β2 ̸= 0, Im z → ∞,

and

F (z) =

√
q

q − 1
[α(q)γ2 + α(1)β1] e

iz +O(e−2 Im z), β2 = 0, Im z → ∞.

By using these equations, we get that the set M1 is bounded. Since F is analytic in C+ and is a 2π -periodic

function, we also get that M1 has at most a countable number of elements. ii)–iv) can be obtained from the

boundary uniqueness theorem of analytic functions [12]. We can also easily get v) using the continuity of all

derivatives of F on [0, 2π] . 2

Now we can give the following theorem as a result of Theorem 3.2 and (3.5).

Theorem 3.3 Assume (1.3). Then:

i) the set σd is bounded and has at most a countable number of elements, and its limit points can lie only

in [−2
√
q, 2

√
q] ;

ii) σss ⊂ [−2
√
q, 2

√
q] and the Lebesgue measure of the set σss in the real axis is zero.

4. Main result

Let us suppose that the complex sequences {a(t)}t∈qN0 and {b(t)}t∈qN satisfy

sup
t∈qN

{
exp

(
ε
ln t

ln q

)
(|1− a(t)|+ |b(t)|)

}
< ∞, ε > 0. (4.1)

It is clear that (1.3) reduces to (4.1) for δ = 1.
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Theorem 4.1 The BVP (1.1)–(1.2) has a finite number of eigenvalues and spectral singularities, and each of

them is of finite multiplicity under condition (4.1).

Proof It follows from (2.2) and (4.1) that

|A(t, r)| ≤ C exp

(
−ε

4

ln r

ln q

)
, t ∈ {1, q}, r ∈ qN. (4.2)

Using (4.2), we obtain that the function F has an analytic continuation to the half-plane Im z > − ε
4 . Since

F is a 2π periodic function, the limit points of its zeros in P cannot lie in [0, 2π] . From Theorem 3.2, we get

that the bounded sets M1 and M2 have no limit points, i.e. the sets M1 and M2 have a finite number of

elements. From the analyticity of F in Im z > − ε
4 , we find that all zeros of F in P have finite multiplicity.

Consequently, we get the finiteness of the eigenvalues and the spectral singularities of the BVP (1.1)–(1.2). 2

In the following, we will assume that

sup
t∈qN

{
exp

[
ε

(
ln t

ln q

)δ
]
(|1− a(t)|+ |b(t)|)

}
< ∞, ε > 0,

1

2
≤ δ < 1, (4.3)

which is weaker than (4.1). It is seen that condition (4.1) guarantees the analytic continuation of F from the

real axis to the lower half-plane. Thus, we get the finiteness of the eigenvalues and the spectral singularities of

BVP (1.1)–(1.2) as a result of this analytic continuation. It is evident that the function F is analytic in C+

and infinitely differentiable on the real axis under condition (4.3), but F does not have an analytic continuation

from the real axis to the lower half-plane. Therefore, under condition (4.3), the finiteness of the eigenvalues and

the spectral singularities of the BVP (1.1)–(1.2) cannot be proved by the same technique used in Theorem 4.1.

We will use the following uniqueness theorem for analytic functions in order to prove the next theorem.

Theorem 4.2 (See[9, Lemma 4.4]) Assume that the 2π -periodic function g is analytic in C+ , all of its

derivatives are continuous in C+ , and

sup
z∈P

|g(k)(z)| ≤ ηk, k ∈ N0.

If the set G ⊂ [0, 2π] with Lebesgue measure zero is the set of all zeros of the function g with infinity multiplicity

in P , and if ∫ w

0

ln t(s)dµ(Gs) = −∞,

where t(s) = infk∈N0

ηks
k

k! and µ(Gs) is the Lebesgue measure of the s-neighborhood of G , and w > 0 is an

arbitrary constant, then g ≡ 0 in C+ .

Lemma 4.3 If (4.3) holds, then we have

|F (k)(z)| ≤ ηk, z ∈ P, k ∈ N0, (4.4)

where

ηk ≤ C5k +Ddkk!kk(
1
δ−1), (4.5)

and D and d are positive constants depending on C , ε , and δ .
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Proof Using (2.2) and (4.3), we get

|A(t, r)| ≤ C exp

(
−ε

4

(
ln r

ln q

)δ
)
, t ∈ {1, q}, r ∈ qN. (4.6)

It follows from the definition of F and (4.6) that

|F (k)(z)| ≤ C5k +Dk, z ∈ P, k ∈ N0,

where

Dk = C6k
∑
r∈qN

(
ln r

ln q

)k

e−
ε
4 (

ln r
ln q )

δ

, k ∈ qN0 .

Moreover, we get for Dk

Dk = C6k
∞∑

m=1

mke−
ε
4m

δ

= C6k
∫ n

0

tke−
ε
4 t

δ

dt ≤ C6k
∫ ∞

0

tke−
ε
4 t

δ

dt.

If we define y = ε
4 t

δ , then we obtain

Dk ≤ C6k
(
4

ε

) k+1
δ 1

δ

∫ ∞

0

y
k+1
δ −1e−ydy.

Using the gamma function and the inequalities
(
1 + 1

k

) k
δ < e

1
δ ,

(k + 1)
1
δ−1 < e

k
δ , and kk < k!ek , we have

Dk ≤ Ddkk!kk(
1
δ−1), k ∈ N,

where D and d are positive constants depending on ε and δ . 2

Lemma 4.4 Assume (4.3). Then M4 = ∅ .

Proof Using Theorem 4.2, we can write∫ w

0

ln t(s)dµ(M4, s) > −∞, (4.7)

where t(s) = infk∈N0

ηks
k

k! , µ(M4, s) is the Lebesgue measure of the s -neighborhood of M4 , and ηk is defined

by (4.5). Substituting (4.5) into the definition of t(s), we find

t(s) = D exp

{
−1− δ

δ
e−1(ds)

−δ
1−δ

}
. (4.8)
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It follows from (4.7) and (4.8) that ∫ w

0

s−
δ

1−δ dµ(M4, s) < ∞.

The last inequality holds for arbitrary s if and only if µ(M4, s) = 0, i.e. M4 = ∅ . This completes the proof. 2

Theorem 4.5 Assume (4.3). Then the BVP (1.1)–(1.2) has a finite number of eigenvalues and spectral

singularities, and each of them is of finite multiplicity.

Proof To be able to prove this, we have to show that the function F has a finite number of zeros with finite

multiplicities in P . Using Theorem 3.2 and Lemma 4.4, we obtain that M3 = ∅ . Thus, the bounded sets M1

and M2 have no limit points, i.e. the function F has only a finite number of zeros in P . Since M4 = ∅ , these
zeros are of finite multiplicity. 2

References

[1] Adıvar M, Bairamov E. Spectral properties of non-selfadjoint difference operators. J Math Anal Appl 2001; 261:

461–478.

[2] Adıvar M, Bohner M. Spectral analysis of q -difference equations with spectral singularities. Math Comput Model

2006; 43: 695–703.

[3] Adıvar M, Bohner M. Spectrum and principal vectors of second order q -difference equations. Indian J Math 2006;

48: 17–33.

[4] Agarwal RP. Difference Equations and Inequalities. Volume 228 of Monographs and Textbooks in Pure and Applied

Mathematics. New York, NY, USA: Marcel Dekker, 2000.

[5] Aygar Y, Bairamov E. Jost solution and the spectral properties of the matrix-valued difference operators. Appl

Math Comput 2012; 218: 9676–9681.

[6] Aygar Y, Bohner M. On the spectrum of eigenparameter-dependent quantum difference equations. Appl Math Inf

Sci 2015; 9: 1725–1729.

[7] Bairamov E, Aygar Y, Koprubasi T. The spectrum of eigenparameter-dependent discrete Sturm-L iouville equations.

J Comput Appl Math 2011; 235: 4519–4523.

[8] Bairamov E, Aygar Y, Olgun M. Jost solution and the spectrum of the discrete Dirac systems. Bound Value Probl

2010; 2010: 306571.
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