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Abstract: In this paper, we prove that if G is nonabelian and |G| > p4 , then G has a unique cyclic subgroup of order

pm with m ≥ 3 if and only if G has a unique abelian subgroup of order p3 if and only if G is a 2-group of maximal

class.
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1. Introduction

All groups considered in this paper are finite p-groups. The terminology and the notation in this paper are

standard. The Frattini subgroup, the commutator subgroup, and the center of a group G will be denoted by

Φ(G), G′ , and Z(G) respectively. We use c(G) and Gi to denote the nilpotent class and the ith term of the

lower central series of G , respectively. The number of subgroups of order pm , abelian subgroups of order pm ,

and cyclic subgroups of order pm are denoted by sm(G), am(G), and cm(G), respectively. For a subgroup H

in G , the centralizer of H in G is denoted by CG(H).

There is much interest in investigating the structure of a group whenever the number of some kind

of subgroups is given. For example, finite p-groups with exactly one minimal nonabelian subgroup of given

structure of order p3 are classified by [5]. In [3], finite p -groups with exactly one minimal nonabelian subgroup

of index p are investigated. In this paper, we are interested in the finite p -groups with unique cyclic subgroup

of given order.

In [1] and [2], the authors proved that

Theorem 1 ([1]) Suppose that a 2-group G is neither cyclic nor of maximal class. If n > 1 , then cn(G) is
even.

Theorem 2 ([2]) Let G be a noncyclic p-group, p > 2 , and n > 0 . If n > 1 , then p divides cn(G) .

By the above two theorems, we see that finite p-groups with unique cyclic subgroup of order pm are

cyclic groups or 2-groups of maximal class. In this paper, we give a direct elementary proof. Moreover, we

proved the following theorem:
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Theorem 3 Let G be a nonabelian p-group and |G| > p4 . Then cm(G) = 1 if and only if a3(G) = 1 if and

only if G is 2-group of maximal class, where m ≥ 3 .

2. Preliminaries

We gathered all the results used in what follows.

Lemma 4 ([4] Theorem 2.2.13) Let G be a finite p-group with unique subgroup of order p . Then

(i) G is cyclic if p > 2 ;

(ii) G is a cyclic group or generalized quaternion group when p = 2 .

Lemma 5 ([4] Exercise 2.2.3) Let G be a nonabelian p-group. Then the number of abelian maximal subgroups

of G is 0, 1 , or 1 + p .

Lemma 6 ([4] Theorem 2.7.1) Let G be a p-group with |G| = pn and 1 < m < n . If sm(G) = 1 , then G is

cyclic.

Lemma 7 ([4] Theorem 2.7.2) Let G be a p-group with |G| = pn and 1 < m ≤ n . If sm(G) = cm(G) , then

(1) G is cyclic if pm ̸= 4 ;

(2) G is a cyclic group or generalized quaternion group if pm = 4 .

Lemma 8 ([4] Theorem 2.5.2) Let G be a p-group of maximal class with |G| = pn . Then

(1) Gi is the unique normal subgroup of order pn−i ;

(2) If p > 2 and n > 3 , then G does not have a cyclic normal subgroup of order p2 .

Lemma 9 ([4] Theorem 2.5.5) G is a 2-group of maximal class if and only if |G : G′| = 4 .

Lemma 10 ([4] Theorem 2.5.6) Let G be a nonabelian p-group with p > 2 . If G has an abelian maximal

subgroup, then G is of maximal class if and only if |G : G′| = p2 .

Lemma 11 ([4] Theorem 2.5.7) Let G be a nonabelian p-group. If G has a subgroup A of order p2 such that

CG(A) = A , then G is of maximal class.

Lemma 12 ([4] Theorem 7.1.6) Let G be an extra-special p-group. Then |G| = p2m+1 for some integer m .

3. Finite p-groups with cm(G) = 1

Firstly, we have the following Lemmas.

Lemma 13 Let G be a metacyclic p-group with p > 2 and H ≤ G . Then H is abelian if |H| ≤ |G/G′| and
H is nonabelian if |H| > |G/G′| .

Proof Suppose G = ⟨a⟩⟨b⟩ and G/⟨a⟩ ∼= ⟨b̄⟩ . For any subgroup H of G , assume that H/H∩⟨a⟩ ∼= H⟨a⟩/⟨a⟩ =

⟨b̄pj ⟩ and H ∩ ⟨a⟩ = ⟨api⟩ . Thus, |H| = |G|/pi+j and H = ⟨api

, bp
j ⟩ . Since p > 2, we see that [ap

i

, bp
j

] = 1 if

and only if [a, b]p
i+j

= 1. Hence, H ′ = 1 if and only if pi+j ≥ |G′| . By |H| = |G|/pi+j , we see pi+j = |G|/|H| .
Then H is abelian if and only if |H| ≤ |G/G′| . 2
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Lemma 14 Let G be a p-group with |G| ≥ p4 . Then G has an abelian normal subgroup of order p3 .

Proof Take a subgroup N of order p2 that is normal in G . Since ”N/C ”, G/CG(N) ≲ Aut (N). Thus,

|G/CG(N)||p , |CG(N)| ≥ p3 . By CG(N) � G , we see that there exists a normal subgroup M such that

N ≤ M ≤ CG(N) and |M | = p3 . Then M = ⟨N, c⟩ , where c ∈ CG(N). Thus, M is abelian. Therefore, M is

desired. 2

Proposition 15 Let G be a finite p-group and n > 3 . If cn(G) = 1 , then c3(G) = 1 .

Proof Suppose, by way of contradiction, that Cpn ∼= ⟨a⟩ ≤ G, Cp3 ∼= ⟨x⟩ ≤ G , and x /∈ ⟨a⟩ . Since

⟨ap⟩char⟨a⟩�G , ⟨ap⟩� ⟨a⟩⟨x⟩ . By ⟨a⟩/⟨ap⟩� ⟨a, x⟩/⟨ap⟩ and o(⟨a⟩/⟨ap⟩) = p , we see [a, x] ∈ ⟨ap⟩ . Thus, we
may assume [a, x] = aip . If p > 2, then

(ax−1)p
3

= ap
3

[a, x](
p3

2 )[a, x, x](
p3

3 )...x−p3

= avp
3

with (v, p) = 1. Hence, Cpn ∼= ⟨ax−1⟩ ̸= ⟨a⟩ , a contradiction. Now, assume p = 2. If x2 /∈ ⟨a⟩ , then it is

easy to see C2n
∼= ⟨ax−2⟩ ̸= ⟨a⟩ . When 2|i , there exists ⟨ax−1⟩ such that C2n

∼= ⟨ax−1⟩ ̸= ⟨a⟩ . For x2 ∈ ⟨a⟩

and (2, i) = 1, setting x2 = aj2
n−2

with (j, 2) = 1, 1 = [aj2
n−2

, x] = [a, x]j2
n−2

= aij2
n−1

. Thus, a2
n−1

= 1, a

contradiction. The proof is complete. 2

Proposition 16 Let G be a nonabelian p-group with |G| ≥ p4 . If c3(G) = 1 , then a3(G) = 1 .

Proof Assume the contrary; there exists a subgroup N such that N ∼= Cp2 ×Cp or Cp×Cp×Cp . Suppose the

unique cyclic subgroup of order p3 is M = ⟨a⟩ . Now we divide our analysis into two cases: (1) N ∼= Cp2 × Cp

and (2) N ∼= Cp × Cp × Cp .

Case 1: Cp2 × Cp
∼= N = ⟨x⟩ × ⟨y⟩ .

Since ⟨ap⟩ char ⟨a⟩�G , we may assume that [a, x] = aip and [a, y] = ajp for some integers i and j .

(1.1) x ∈ ⟨a⟩ . We see y /∈ ⟨a⟩ from y /∈ ⟨x⟩ . If p|j , then (ay−1)p = ap[a, y](
p
2)y−p = apv with (v, p) = 1.

Thus, Cp3 ∼= ⟨ay−1⟩ ̸= ⟨a⟩ . Therefore, (p, j) = 1. By x ∈ ⟨a⟩ , we may assume x = arp with (r, p) = 1. Then

1 = [x, y] = [apr, y] = [a, y]pr = ap
2jr ̸= 1,

a contradiction.

(1.2) Let x /∈ ⟨a⟩ . Since N = ⟨x⟩ × ⟨y⟩ = ⟨x−1y⟩ × ⟨y⟩ , we may assume that x−1y /∈ ⟨a⟩ by (1.1). If

xp /∈ ⟨a⟩ , then Cp3 ∼= ⟨ay−p⟩ ̸= ⟨a⟩ . Therefore, xp = akp
2

with (k, p) = 1. It is easy to see (ij, p) = 1 from

c3(G) = 1. If p > 2, then

1 = [a, xp] = [a, x]p[a, x, x](
p
2) = aip

2

,

which contradicts o(a) = p3 . When p = 2,

(ax−1y)2 = a2[a, xy]x2 = a2[a, y][a, x][a, x, y]x2 = a2a2(i+j)a4ija4k = a2v

with (v, 2) = 1. Thus, Cp3 ∼= ⟨ax−1y⟩ ̸= ⟨a⟩ , a contradiction.
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Case 2: Cp × Cp × Cp
∼= N = ⟨x⟩ × ⟨y⟩ × ⟨z⟩ .

Since |M ∩ N | ≤ p , we may assume that y, z /∈ ⟨a⟩ and yz /∈ ⟨a⟩ . By ⟨ap⟩ � MN , [a, y] = ajp

and [a, z] = akp . It is easy to see that (jk, p) = 1. If p > 2, then Cp3 ∼= ⟨ay−1⟩ ≠ ⟨a⟩ . Therefore, p = 2.

However, there exists ayz such that (ayz)2 = a2[a, yz] = a2a2(k+j)a4kj . Hence, ⟨ayz⟩ ∼= ⟨a⟩ , a contradiction. 2

Proposition 17 Let G be a p-group with |G| ≥ p4 . Then a3(G) = 1 and c3(G) = 1 if and only if G is a

cyclic group or 2-group of maximal class.

Proof If G is abelian, then G is cyclic from Lemma 6. Now assume G is nonabelian. If there exists a

subgroup A ∼= Cp × Cp , then CG(A) = A from a3(G) = 1 and c3(G) = 1. Thus, we see G is a p -group of

maximal class by Lemma 11. If all the subgroups of order p2 are cyclic, then it follows from Lemma 7 that G

is a generalized quaternion group, which is also of maximal class. Hence, G is a 2-group of maximal class from

Lemma 8.

Since G is a 2-group of maximal class, it is easy to check that c3(G) = 1 and a3(G) = 1. 2

Proposition 18 Let G be a p-group with |G| ≥ p4 . Then a3(G) = 1 and c3(G) = 0 if and only if G is of

maximal class of order p4 with p > 2 .

Proof If G is of maximal class of order p4 , then d(G) = 2. Therefore, the number of maximal subgroups

is 1 + p . By Lemma 14, we see that a3(G) ≥ 1. It follows that a3(G) = 1 or 1 + p from Lemma 5. If

a3(G) = 1 + p , then G is minimal nonabelian and c(G) = 2, a contradiction. Therefore, a3(G) = 1 and then

c3(G) = 0 or 1. If c3(G) = 1, then there exists a cyclic normal subgroup of order p2 , which contradicts Lemma

8. Thus, c3(G) = 0.

Conversely, we see that G is nonabelian by Lemma 6. First we prove that the groups of order p4

satisfying a3(G) = 1 and c3(G) = 0 are p -groups of maximal class with p > 2. In this case |Z(G)| = p . If

not, |Z(G)| = p2 . We see G/Z(G) ∼= Cp ×Cp from G is nonabelian. Then the number of abelian subgroups of

order p3 containing Z(G) is 1+ p , a contradiction. By Lemmas 9 and 10, we need to prove |G′| = p2 . Assume

that |G′| = p . If d(G) = 2, then G is a minimal nonabelian p -group. Hence, |Z(G)| = p2 , which is impossible.

Therefore, d(G) = 3 and G′ = Φ(G); therefore, G is an extra-special p-group. Again, we have a contradiction,

Lemma 12, because |G| = p4 . Thus, |G′| = p2 and G is of maximal class. Now, if G is a 2-group of maximal

class, then the abelian subgroup of order p3 is cyclic. Therefore, p > 2.

Next, noting that the property is inherited by subgroups, we only need to prove that any group of order

p5 (p > 2) does not satisfy a3(G) = 1 and c3(G) = 0. If there exists a group G of order p5 that satisfies

the property, then for each maximal subgroup M of G , M has an abelian subgroup of order p3 by Lemma

14. Thus, M satisfies a3(G) = 1 and c3(G) = 0. Thus, M is of class 3 by the above paragraph. Therefore,

c(G) = 3 or 4.

Case (i) c(G) = 3. If Z(G) ≥ p2 , then there exists A such that |A| = p2 and A ≤ Z(G). By

the hypothesis, G/A has the unique subgroup of order p , and p > 2. Thus, G/A is cyclic since Lemma 4.

Therefore, G is abelian, a contradiction, and so |Z(G)| = p , |G3| = p . By Lemma 14, we see d(G) = 2. Write

Ḡ = G/G3 . Then |(Ḡ)′| = p or p2 . If |(Ḡ)′| = p2 , then Ḡ is of maximal class by Lemma 10, which contradicts
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c(G) = 3. Thus, |(Ḡ)′| = p . If Ḡ is metacyclic, then G is metacyclic. We may get a contradiction from Lemma

13 and a3(G) = 1. Therefore,

Ḡ ∼= Mp(2, 1, 1) = ⟨ā, b̄, c̄|āp
2

= b̄p = c̄p = 1, [ā, b̄] = c̄⟩.

Assume G3 = ⟨x⟩ ∼= Cp . Since c3(G) = 0, ap
2

= 1. Thus, ⟨a, x⟩ ∼= Cp2 × Cp . By Z(G) = G3 , we see

ap /∈ Z(G). Since [ap, c] = [a, c]p[a, c, a](
p
2) = 1, [ap, b] = cp ̸= 1. Thus, ⟨c, ap⟩ ∼= Cp2 × Cp . However,

⟨c, ap⟩ ̸= ⟨a, x⟩ , a contradiction.

Case (ii) c(G) = 4. We see G3
∼= Cp × Cp from Lemma 8. Assume that G4 = ⟨z⟩ and G3 = ⟨z⟩ × ⟨y⟩ .

It is easy to see that G/G3 = ⟨ā, b̄, c̄|āp = b̄p = c̄p = 1, [ā, b̄] = c̄⟩ , and G = ⟨a, b⟩ . G′ = ⟨c, z, y⟩ is the unique

abelian subgroup of order p3 . Since [⟨a, b⟩, ⟨z, y⟩] = G4 , we have [a, y] = zi, [b, y] = zj and at least one of

i and j cannot be divided exactly by p . Then ⟨a−jbi, y, z⟩ is another abelian subgroup of order p3 of G , a

contradiction. The proof is complete. 2

By the above propositions, we easily get the following theorem.

Theorem 19 Let G be a nonabelian p-group with |G| > p4 . Then the following conclusions are equivalent:

(1) cm(G) = 1 where m ≥ 3

(2) a3(G) = 1

(3) G is a 2-group of maximal class.

Proof If (1), then (2) by Propositions 15 and 16. When (2) holds, we see (3) by Propositions 17 and 18. If G

is a 2-group of maximal class, then G is isomorphic to one of the following three types of groups by Theorem

2.5.3 in [4]:

(a) ⟨a, b|a2n−1

= b2 = 1, ab = a−1⟩, n ≥ 3;

(b) ⟨a, b|a2n−1

= 1, b2 = a2
n−2

, ab = a−1⟩, n ≥ 3;

(c) ⟨a, b|a2n−1

= b2 = 1, ab = a−1+2n−2⟩, n ≥ 4.

By calculation, we see that cyclic subgroups of order ≥ 23 are in ⟨a⟩ . Therefore, cm(G) = 1 where

m ≥ 3. 2

Theorem 20 Let G be a finite p-group. Then c2(G) = 1 if and only if G is a cyclic group or dihedral group.

Proof If G is abelian, then G is cyclic. Assume that G is nonabelian and M is the unique cyclic subgroup of

order p2 . If CG(M) = M , then G is of maximal class by Lemma 11. For CG(M) > M , we see CG(M) is cyclic

from Lemma 6. Since any cyclic subgroup of order p3 contains M and lies in CG(M), we have a3(G) = 1.

Therefore, G is of maximal class. By Lemma 8, G is a 2-group. It is easy to check that only the dihedral

group in 2-groups of maximal class satisfies c2(G) = 1. Conversely, the conclusion is obvious. 2
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