

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

On the finite *p*-groups with unique cyclic subgroup of given order

Libo ZHAO¹, Yangming LI¹, Lü GONG^{2,*}

¹Department of Mathematics, Guangdong University of Education, Guangzhou, P.R. China ²School of Sciences, Nantong University, Jiangsu, P.R. China

Received: 26.01.2015	•	Accepted/Published Online: 20.05.2015	•	Final Version: 10.02.2016

Abstract: In this paper, we prove that if G is nonabelian and $|G| > p^4$, then G has a unique cyclic subgroup of order p^m with $m \ge 3$ if and only if G has a unique abelian subgroup of order p^3 if and only if G is a 2-group of maximal class.

Key words: p-group of maximal class, extra-special p-group

1. Introduction

All groups considered in this paper are finite p-groups. The terminology and the notation in this paper are standard. The Frattini subgroup, the commutator subgroup, and the center of a group G will be denoted by $\Phi(G)$, G', and Z(G) respectively. We use c(G) and G_i to denote the nilpotent class and the *i*th term of the lower central series of G, respectively. The number of subgroups of order p^m , abelian subgroups of order p^m , and cyclic subgroups of order p^m are denoted by $s_m(G)$, $a_m(G)$, and $c_m(G)$, respectively. For a subgroup Hin G, the centralizer of H in G is denoted by $C_G(H)$.

There is much interest in investigating the structure of a group whenever the number of some kind of subgroups is given. For example, finite *p*-groups with exactly one minimal nonabelian subgroup of given structure of order p^3 are classified by [5]. In [3], finite *p*-groups with exactly one minimal nonabelian subgroup of index *p* are investigated. In this paper, we are interested in the finite *p*-groups with unique cyclic subgroup of given order.

In [1] and [2], the authors proved that

Theorem 1 ([1]) Suppose that a 2-group G is neither cyclic nor of maximal class. If n > 1, then $c_n(G)$ is even.

Theorem 2 ([2]) Let G be a noncyclic p-group, p > 2, and n > 0. If n > 1, then p divides $c_n(G)$.

By the above two theorems, we see that finite p-groups with unique cyclic subgroup of order p^m are cyclic groups or 2-groups of maximal class. In this paper, we give a direct elementary proof. Moreover, we proved the following theorem:

^{*}Correspondence: lieningzai1917@126.com

This research was supported by the National Natural Science Foundation of China (11426067, 11271085, 11526114), the Early Pre-research Project, Nantong University (14ZY008), and the Appropriative Researching Fund for Doctors, Guangdong University of Education(2013ARF07).

²⁰⁰⁰ AMS Mathematics Subject Classification: 20D15.

Theorem 3 Let G be a nonabelian p-group and $|G| > p^4$. Then $c_m(G) = 1$ if and only if $a_3(G) = 1$ if and only if G is 2-group of maximal class, where $m \ge 3$.

2. Preliminaries

We gathered all the results used in what follows.

- **Lemma 4** ([4] Theorem 2.2.13) Let G be a finite p-group with unique subgroup of order p. Then
 - (i) G is cyclic if p > 2;
 - (ii) G is a cyclic group or generalized quaternion group when p = 2.

Lemma 5 ([4] Exercise 2.2.3) Let G be a nonabelian p-group. Then the number of abelian maximal subgroups of G is 0, 1, or 1 + p.

Lemma 6 ([4] Theorem 2.7.1) Let G be a p-group with $|G| = p^n$ and 1 < m < n. If $s_m(G) = 1$, then G is cyclic.

Lemma 7 ([4] Theorem 2.7.2) Let G be a p-group with $|G| = p^n$ and $1 < m \le n$. If $s_m(G) = c_m(G)$, then

- (1) G is cyclic if $p^m \neq 4$;
- (2) G is a cyclic group or generalized quaternion group if $p^m = 4$.

Lemma 8 ([4] Theorem 2.5.2) Let G be a p-group of maximal class with |G| = pⁿ. Then
(1) G_i is the unique normal subgroup of order pⁿ⁻ⁱ;
(2) If p > 2 and n > 3, then G does not have a cyclic normal subgroup of order p².

Lemma 9 ([4] Theorem 2.5.5) G is a 2-group of maximal class if and only if |G:G'| = 4.

Lemma 10 ([4] Theorem 2.5.6) Let G be a nonabelian p-group with p > 2. If G has an abelian maximal subgroup, then G is of maximal class if and only if $|G:G'| = p^2$.

Lemma 11 ([4] Theorem 2.5.7) Let G be a nonabelian p-group. If G has a subgroup A of order p^2 such that $C_G(A) = A$, then G is of maximal class.

Lemma 12 ([4] Theorem 7.1.6) Let G be an extra-special p-group. Then $|G| = p^{2m+1}$ for some integer m.

3. Finite *p*-groups with $c_m(G) = 1$

Firstly, we have the following Lemmas.

Lemma 13 Let G be a metacyclic p-group with p > 2 and $H \le G$. Then H is abelian if $|H| \le |G/G'|$ and H is nonabelian if |H| > |G/G'|.

Proof Suppose $G = \langle a \rangle \langle b \rangle$ and $G/\langle a \rangle \cong \langle \overline{b} \rangle$. For any subgroup H of G, assume that $H/H \cap \langle a \rangle \cong H\langle a \rangle / \langle a \rangle = \langle \overline{b}^{p^{j}} \rangle$ and $H \cap \langle a \rangle = \langle a^{p^{i}} \rangle$. Thus, $|H| = |G|/p^{i+j}$ and $H = \langle a^{p^{i}}, b^{p^{j}} \rangle$. Since p > 2, we see that $[a^{p^{i}}, b^{p^{j}}] = 1$ if and only if $[a, b]^{p^{i+j}} = 1$. Hence, H' = 1 if and only if $p^{i+j} \ge |G'|$. By $|H| = |G|/p^{i+j}$, we see $p^{i+j} = |G|/|H|$. Then H is abelian if and only if $|H| \le |G/G'|$.

ZHAO et al./Turk J Math

Lemma 14 Let G be a p-group with $|G| \ge p^4$. Then G has an abelian normal subgroup of order p^3 .

Proof Take a subgroup N of order p^2 that is normal in G. Since "N/C", $G/C_G(N) \leq \operatorname{Aut}(N)$. Thus, $|G/C_G(N)||p, |C_G(N)| \geq p^3$. By $C_G(N) \leq G$, we see that there exists a normal subgroup M such that $N \leq M \leq C_G(N)$ and $|M| = p^3$. Then $M = \langle N, c \rangle$, where $c \in C_G(N)$. Thus, M is abelian. Therefore, M is desired.

Proposition 15 Let G be a finite p-group and n > 3. If $c_n(G) = 1$, then $c_3(G) = 1$.

Proof Suppose, by way of contradiction, that $C_{p^n} \cong \langle a \rangle \leq G$, $C_{p^3} \cong \langle x \rangle \leq G$, and $x \notin \langle a \rangle$. Since $\langle a^p \rangle char \langle a \rangle \trianglelefteq G$, $\langle a^p \rangle \trianglelefteq \langle a \rangle \langle x \rangle$. By $\langle a \rangle / \langle a^p \rangle \trianglelefteq \langle a, x \rangle / \langle a^p \rangle$ and $o(\langle a \rangle / \langle a^p \rangle) = p$, we see $[a, x] \in \langle a^p \rangle$. Thus, we may assume $[a, x] = a^{ip}$. If p > 2, then

$$(ax^{-1})^{p^3} = a^{p^3}[a,x]^{\binom{p^3}{2}}[a,x,x]^{\binom{p^3}{3}}...x^{-p^3} = a^{vp^3}$$

with (v,p) = 1. Hence, $C_{p^n} \cong \langle ax^{-1} \rangle \neq \langle a \rangle$, a contradiction. Now, assume p = 2. If $x^2 \notin \langle a \rangle$, then it is easy to see $C_{2^n} \cong \langle ax^{-2} \rangle \neq \langle a \rangle$. When 2|i, there exists $\langle ax^{-1} \rangle$ such that $C_{2^n} \cong \langle ax^{-1} \rangle \neq \langle a \rangle$. For $x^2 \in \langle a \rangle$ and (2,i) = 1, setting $x^2 = a^{j2^{n-2}}$ with (j,2) = 1, $1 = [a^{j2^{n-2}}, x] = [a,x]^{j2^{n-2}} = a^{ij2^{n-1}}$. Thus, $a^{2^{n-1}} = 1$, a contradiction. The proof is complete.

Proposition 16 Let G be a nonabelian p-group with $|G| \ge p^4$. If $c_3(G) = 1$, then $a_3(G) = 1$.

Proof Assume the contrary; there exists a subgroup N such that $N \cong C_{p^2} \times C_p$ or $C_p \times C_p \times C_p$. Suppose the unique cyclic subgroup of order p^3 is $M = \langle a \rangle$. Now we divide our analysis into two cases: (1) $N \cong C_{p^2} \times C_p$ and (2) $N \cong C_p \times C_p \times C_p$.

 $\text{Case 1: } C_{p^2} \times C_p \cong N = \langle x \rangle \times \langle y \rangle.$

Since $\langle a^p \rangle$ char $\langle a \rangle \leq G$, we may assume that $[a, x] = a^{ip}$ and $[a, y] = a^{jp}$ for some integers *i* and *j*.

(1.1) $x \in \langle a \rangle$. We see $y \notin \langle a \rangle$ from $y \notin \langle x \rangle$. If p|j, then $(ay^{-1})^p = a^p[a, y]^{\binom{p}{2}}y^{-p} = a^{pv}$ with (v, p) = 1. Thus, $C_{p^3} \cong \langle ay^{-1} \rangle \neq \langle a \rangle$. Therefore, (p, j) = 1. By $x \in \langle a \rangle$, we may assume $x = a^{rp}$ with (r, p) = 1. Then

$$1 = [x, y] = [a^{pr}, y] = [a, y]^{pr} = a^{p^2 jr} \neq 1,$$

a contradiction.

(1.2) Let $x \notin \langle a \rangle$. Since $N = \langle x \rangle \times \langle y \rangle = \langle x^{-1}y \rangle \times \langle y \rangle$, we may assume that $x^{-1}y \notin \langle a \rangle$ by (1.1). If $x^p \notin \langle a \rangle$, then $C_{p^3} \cong \langle ay^{-p} \rangle \neq \langle a \rangle$. Therefore, $x^p = a^{kp^2}$ with (k, p) = 1. It is easy to see (ij, p) = 1 from $c_3(G) = 1$. If p > 2, then

$$1 = [a, x^{p}] = [a, x]^{p} [a, x, x]^{\binom{p}{2}} = a^{ip^{2}},$$

which contradicts $o(a) = p^3$. When p = 2,

$$(ax^{-1}y)^2 = a^2[a, xy]x^2 = a^2[a, y][a, x][a, x, y]x^2 = a^2a^{2(i+j)}a^{4ij}a^{4k} = a^{2v}a^{4ij}a^{4k} = a^{2v}a^{4i}a^{4i}a^{4k} = a^{2v}a^{4i}a$$

with (v,2) = 1. Thus, $C_{p^3} \cong \langle ax^{-1}y \rangle \neq \langle a \rangle$, a contradiction.

Case 2: $C_p \times C_p \times C_p \cong N = \langle x \rangle \times \langle y \rangle \times \langle z \rangle.$

Since $|M \cap N| \leq p$, we may assume that $y, z \notin \langle a \rangle$ and $yz \notin \langle a \rangle$. By $\langle a^p \rangle \leq MN$, $[a, y] = a^{jp}$ and $[a, z] = a^{kp}$. It is easy to see that (jk, p) = 1. If p > 2, then $C_{p^3} \cong \langle ay^{-1} \rangle \neq \langle a \rangle$. Therefore, p = 2. However, there exists ayz such that $(ayz)^2 = a^2[a, yz] = a^2a^{2(k+j)}a^{4kj}$. Hence, $\langle ayz \rangle \cong \langle a \rangle$, a contradiction. \Box

Proposition 17 Let G be a p-group with $|G| \ge p^4$. Then $a_3(G) = 1$ and $c_3(G) = 1$ if and only if G is a cyclic group or 2-group of maximal class.

Proof If G is abelian, then G is cyclic from Lemma 6. Now assume G is nonabelian. If there exists a subgroup $A \cong C_p \times C_p$, then $C_G(A) = A$ from $a_3(G) = 1$ and $c_3(G) = 1$. Thus, we see G is a p-group of maximal class by Lemma 11. If all the subgroups of order p^2 are cyclic, then it follows from Lemma 7 that G is a generalized quaternion group, which is also of maximal class. Hence, G is a 2-group of maximal class from Lemma 8.

Since G is a 2-group of maximal class, it is easy to check that $c_3(G) = 1$ and $a_3(G) = 1$.

Proposition 18 Let G be a p-group with $|G| \ge p^4$. Then $a_3(G) = 1$ and $c_3(G) = 0$ if and only if G is of maximal class of order p^4 with p > 2.

Proof If G is of maximal class of order p^4 , then d(G) = 2. Therefore, the number of maximal subgroups is 1 + p. By Lemma 14, we see that $a_3(G) \ge 1$. It follows that $a_3(G) = 1$ or 1 + p from Lemma 5. If $a_3(G) = 1 + p$, then G is minimal nonabelian and c(G) = 2, a contradiction. Therefore, $a_3(G) = 1$ and then $c_3(G) = 0$ or 1. If $c_3(G) = 1$, then there exists a cyclic normal subgroup of order p^2 , which contradicts Lemma 8. Thus, $c_3(G) = 0$.

Conversely, we see that G is nonabelian by Lemma 6. First we prove that the groups of order p^4 satisfying $a_3(G) = 1$ and $c_3(G) = 0$ are p-groups of maximal class with p > 2. In this case |Z(G)| = p. If not, $|Z(G)| = p^2$. We see $G/Z(G) \cong C_p \times C_p$ from G is nonabelian. Then the number of abelian subgroups of order p^3 containing Z(G) is 1+p, a contradiction. By Lemmas 9 and 10, we need to prove $|G'| = p^2$. Assume that |G'| = p. If d(G) = 2, then G is a minimal nonabelian p-group. Hence, $|Z(G)| = p^2$, which is impossible. Therefore, d(G) = 3 and $G' = \Phi(G)$; therefore, G is an extra-special p-group. Again, we have a contradiction, Lemma 12, because $|G| = p^4$. Thus, $|G'| = p^2$ and G is of maximal class. Now, if G is a 2-group of maximal class, then the abelian subgroup of order p^3 is cyclic. Therefore, p > 2.

Next, noting that the property is inherited by subgroups, we only need to prove that any group of order p^5 (p > 2) does not satisfy $a_3(G) = 1$ and $c_3(G) = 0$. If there exists a group G of order p^5 that satisfies the property, then for each maximal subgroup M of G, M has an abelian subgroup of order p^3 by Lemma 14. Thus, M satisfies $a_3(G) = 1$ and $c_3(G) = 0$. Thus, M is of class 3 by the above paragraph. Therefore, c(G) = 3 or 4.

Case (i) c(G) = 3. If $Z(G) \ge p^2$, then there exists A such that $|A| = p^2$ and $A \le Z(G)$. By the hypothesis, G/A has the unique subgroup of order p, and p > 2. Thus, G/A is cyclic since Lemma 4. Therefore, G is abelian, a contradiction, and so |Z(G)| = p, $|G_3| = p$. By Lemma 14, we see d(G) = 2. Write $\overline{G} = G/G_3$. Then $|(\overline{G})'| = p$ or p^2 . If $|(\overline{G})'| = p^2$, then \overline{G} is of maximal class by Lemma 10, which contradicts c(G) = 3. Thus, $|(\bar{G})'| = p$. If \bar{G} is metacyclic, then G is metacyclic. We may get a contradiction from Lemma 13 and $a_3(G) = 1$. Therefore,

$$\bar{G} \cong M_p(2,1,1) = \langle \bar{a}, \bar{b}, \bar{c} | \bar{a}^{p^2} = \bar{b}^p = \bar{c}^p = 1, [\bar{a}, \bar{b}] = \bar{c} \rangle.$$

Assume $G_3 = \langle x \rangle \cong C_p$. Since $c_3(G) = 0$, $a^{p^2} = 1$. Thus, $\langle a, x \rangle \cong C_{p^2} \times C_p$. By $Z(G) = G_3$, we see $a^p \notin Z(G)$. Since $[a^p, c] = [a, c]^p [a, c, a]^{\binom{p}{2}} = 1$, $[a^p, b] = c^p \neq 1$. Thus, $\langle c, a^p \rangle \cong C_{p^2} \times C_p$. However, $\langle c, a^p \rangle \neq \langle a, x \rangle$, a contradiction.

Case (ii) c(G) = 4. We see $G_3 \cong C_p \times C_p$ from Lemma 8. Assume that $G_4 = \langle z \rangle$ and $G_3 = \langle z \rangle \times \langle y \rangle$. It is easy to see that $G/G_3 = \langle \bar{a}, \bar{b}, \bar{c} | \bar{a}^p = \bar{b}^p = \bar{c}^p = 1$, $[\bar{a}, \bar{b}] = \bar{c} \rangle$, and $G = \langle a, b \rangle$. $G' = \langle c, z, y \rangle$ is the unique abelian subgroup of order p^3 . Since $[\langle a, b \rangle, \langle z, y \rangle] = G_4$, we have $[a, y] = z^i$, $[b, y] = z^j$ and at least one of i and j cannot be divided exactly by p. Then $\langle a^{-j}b^i, y, z \rangle$ is another abelian subgroup of order p^3 of G, a contradiction. The proof is complete.

By the above propositions, we easily get the following theorem.

Theorem 19 Let G be a nonabelian p-group with $|G| > p^4$. Then the following conclusions are equivalent:

- (1) $c_m(G) = 1$ where $m \geq 3$
- (2) $a_3(G) = 1$
- (3) G is a 2-group of maximal class.

Proof If (1), then (2) by Propositions 15 and 16. When (2) holds, we see (3) by Propositions 17 and 18. If G is a 2-group of maximal class, then G is isomorphic to one of the following three types of groups by Theorem 2.5.3 in [4]:

- (a) $\langle a, b | a^{2^{n-1}} = b^2 = 1, a^b = a^{-1} \rangle, n \ge 3;$
- (b) $\langle a, b | a^{2^{n-1}} = 1, b^2 = a^{2^{n-2}}, a^b = a^{-1} \rangle, n \ge 3;$
- (c) $\langle a, b | a^{2^{n-1}} = b^2 = 1, a^b = a^{-1+2^{n-2}} \rangle, n \ge 4.$

By calculation, we see that cyclic subgroups of order $\geq 2^3$ are in $\langle a \rangle$. Therefore, $c_m(G) = 1$ where $m \geq 3$.

Theorem 20 Let G be a finite p-group. Then $c_2(G) = 1$ if and only if G is a cyclic group or dihedral group. **Proof** If G is abelian, then G is cyclic. Assume that G is nonabelian and M is the unique cyclic subgroup of order p^2 . If $C_G(M) = M$, then G is of maximal class by Lemma 11. For $C_G(M) > M$, we see $C_G(M)$ is cyclic from Lemma 6. Since any cyclic subgroup of order p^3 contains M and lies in $C_G(M)$, we have $a_3(G) = 1$. Therefore, G is of maximal class. By Lemma 8, G is a 2-group. It is easy to check that only the dihedral group in 2-groups of maximal class satisfies $c_2(G) = 1$. Conversely, the conclusion is obvious.

References

- [1] Berkovich Y. On p-groups of finite order. Siberian Math Zh 1968; 9: 1284-1306 (in Russian).
- [2] Miller GA. An extension of Sylow's theorem. Proc London Math Soc 1904; 2: 142-143.
- [3] Qu H, Yang S, Xu M, An L. Finite p-groups with a minimal non-abelian subgroup of index p (I). J Algebra 2012; 358: 178-188.
- [4] Xu M. Finite p-group. Beijing, BJ, China: Peking University Press, 2010 (in Chinese).
- [5] Zhao L, Guo X. Finite *p*-groups with exactly one A_1 -subgroup of given structure of order p^3 . Acta Math Sinica 2013; 29: 2099-2110.