Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тüвітак
Research Article
Turk J Math
(2016) 40: $244-249$
(C) TÜBİTAK
doi:10.3906/mat-1501-70

On the finite p-groups with unique cyclic subgroup of given order

Libo ZHAO 1, Yangming LI 1, Lü GONG ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Guangdong University of Education, Guangzhou, P.R. China
${ }^{2}$ School of Sciences, Nantong University, Jiangsu, P.R. China

Received: 26.01.2015	Accepted/Published Online: 20.05 .2015	\bullet	Final Version: 10.02 .2016

Abstract: In this paper, we prove that if G is nonabelian and $|G|>p^{4}$, then G has a unique cyclic subgroup of order p^{m} with $m \geq 3$ if and only if G has a unique abelian subgroup of order p^{3} if and only if G is a 2 -group of maximal class.

Key words: p-group of maximal class, extra-special p-group

1. Introduction

All groups considered in this paper are finite p-groups. The terminology and the notation in this paper are standard. The Frattini subgroup, the commutator subgroup, and the center of a group G will be denoted by $\Phi(G), G^{\prime}$, and $Z(G)$ respectively. We use $c(G)$ and G_{i} to denote the nilpotent class and the i th term of the lower central series of G, respectively. The number of subgroups of order p^{m}, abelian subgroups of order p^{m}, and cyclic subgroups of order p^{m} are denoted by $s_{m}(G), a_{m}(G)$, and $c_{m}(G)$, respectively. For a subgroup H in G, the centralizer of H in G is denoted by $C_{G}(H)$.

There is much interest in investigating the structure of a group whenever the number of some kind of subgroups is given. For example, finite p-groups with exactly one minimal nonabelian subgroup of given structure of order p^{3} are classified by [5]. In [3], finite p-groups with exactly one minimal nonabelian subgroup of index p are investigated. In this paper, we are interested in the finite p-groups with unique cyclic subgroup of given order.

> In [1] and [2], the authors proved that

Theorem 1 ([1]) Suppose that a 2-group G is neither cyclic nor of maximal class. If $n>1$, then $c_{n}(G)$ is even.

Theorem 2 ([2]) Let G be a noncyclic p-group, $p>2$, and $n>0$. If $n>1$, then p divides $c_{n}(G)$.
By the above two theorems, we see that finite p-groups with unique cyclic subgroup of order p^{m} are cyclic groups or 2 -groups of maximal class. In this paper, we give a direct elementary proof. Moreover, we proved the following theorem:

[^0]Theorem 3 Let G be a nonabelian p-group and $|G|>p^{4}$. Then $c_{m}(G)=1$ if and only if $a_{3}(G)=1$ if and only if G is 2-group of maximal class, where $m \geq 3$.

2. Preliminaries

We gathered all the results used in what follows.
Lemma 4 ([4] Theorem 2.2.13) Let G be a finite p-group with unique subgroup of order p. Then
(i) G is cyclic if $p>2$;
(ii) G is a cyclic group or generalized quaternion group when $p=2$.

Lemma 5 ([4] Exercise 2.2.3) Let G be a nonabelian p-group. Then the number of abelian maximal subgroups of G is 0,1 , or $1+p$.

Lemma 6 ([4] Theorem 2.7.1) Let G be a p-group with $|G|=p^{n}$ and $1<m<n$. If $s_{m}(G)=1$, then G is cyclic.

Lemma 7 ([4] Theorem 2.7.2) Let G be a p-group with $|G|=p^{n}$ and $1<m \leq n$. If $s_{m}(G)=c_{m}(G)$, then
(1) G is cyclic if $p^{m} \neq 4$;
(2) G is a cyclic group or generalized quaternion group if $p^{m}=4$.

Lemma 8 ([4] Theorem 2.5.2) Let G be a p-group of maximal class with $|G|=p^{n}$. Then
(1) G_{i} is the unique normal subgroup of order p^{n-i};
(2) If $p>2$ and $n>3$, then G does not have a cyclic normal subgroup of order p^{2}.

Lemma 9 ([4] Theorem 2.5.5) G is a 2-group of maximal class if and only if $\left|G: G^{\prime}\right|=4$.
Lemma 10 ([4] Theorem 2.5.6) Let G be a nonabelian p-group with $p>2$. If G has an abelian maximal subgroup, then G is of maximal class if and only if $\left|G: G^{\prime}\right|=p^{2}$.

Lemma 11 ([4] Theorem 2.5.7) Let G be a nonabelian p-group. If G has a subgroup A of order p^{2} such that $C_{G}(A)=A$, then G is of maximal class.

Lemma 12 ([4] Theorem 7.1.6) Let G be an extra-special p-group. Then $|G|=p^{2 m+1}$ for some integer m.
3. Finite p-groups with $c_{m}(G)=1$

Firstly, we have the following Lemmas.
Lemma 13 Let G be a metacyclic p-group with $p>2$ and $H \leq G$. Then H is abelian if $|H| \leq\left|G / G^{\prime}\right|$ and H is nonabelian if $|H|>\left|G / G^{\prime}\right|$.
Proof Suppose $G=\langle a\rangle\langle b\rangle$ and $G /\langle a\rangle \cong\langle\bar{b}\rangle$. For any subgroup H of G, assume that $H / H \cap\langle a\rangle \cong H\langle a\rangle /\langle a\rangle=$ $\left\langle\bar{b} p^{p^{j}}\right\rangle$ and $H \cap\langle a\rangle=\left\langle a^{p^{i}}\right\rangle$. Thus, $|H|=|G| / p^{i+j}$ and $H=\left\langle a^{p^{i}}, b^{p^{j}}\right\rangle$. Since $p>2$, we see that $\left[a^{p^{i}}, b^{p^{j}}\right]=1$ if and only if $[a, b]^{p^{i+j}}=1$. Hence, $H^{\prime}=1$ if and only if $p^{i+j} \geq\left|G^{\prime}\right|$. By $|H|=|G| / p^{i+j}$, we see $p^{i+j}=|G| /|H|$. Then H is abelian if and only if $|H| \leq\left|G / G^{\prime}\right|$.

Lemma 14 Let G be a p-group with $|G| \geq p^{4}$. Then G has an abelian normal subgroup of order p^{3}.
Proof Take a subgroup N of order p^{2} that is normal in G. Since $" N / C ", G / C_{G}(N) \lesssim$ Aut (N). Thus, $\left|G / C_{G}(N) \| p,\left|C_{G}(N)\right| \geq p^{3}\right.$. By $C_{G}(N) \unlhd G$, we see that there exists a normal subgroup M such that $N \leq M \leq C_{G}(N)$ and $|M|=p^{3}$. Then $M=\langle N, c\rangle$, where $c \in C_{G}(N)$. Thus, M is abelian. Therefore, M is desired.

Proposition 15 Let G be a finite p-group and $n>3$. If $c_{n}(G)=1$, then $c_{3}(G)=1$.
Proof Suppose, by way of contradiction, that $C_{p^{n}} \cong\langle a\rangle \leq G, C_{p^{3}} \cong\langle x\rangle \leq G$, and $x \notin\langle a\rangle$. Since $\left\langle a^{p}\right\rangle \operatorname{char}\langle a\rangle \unlhd G,\left\langle a^{p}\right\rangle \unlhd\langle a\rangle\langle x\rangle$. By $\langle a\rangle /\left\langle a^{p}\right\rangle \unlhd\langle a, x\rangle /\left\langle a^{p}\right\rangle$ and $o\left(\langle a\rangle /\left\langle a^{p}\right\rangle\right)=p$, we see $[a, x] \in\left\langle a^{p}\right\rangle$. Thus, we may assume $[a, x]=a^{i p}$. If $p>2$, then

$$
\left(a x^{-1}\right)^{p^{3}}=a^{p^{3}}[a, x]^{\binom{p^{3}}{2}}[a, x, x]^{\binom{p^{3}}{3}} \ldots x^{-p^{3}}=a^{v p^{3}}
$$

with $(v, p)=1$. Hence, $C_{p^{n}} \cong\left\langle a x^{-1}\right\rangle \neq\langle a\rangle$, a contradiction. Now, assume $p=2$. If $x^{2} \notin\langle a\rangle$, then it is easy to see $C_{2^{n}} \cong\left\langle a x^{-2}\right\rangle \neq\langle a\rangle$. When $2 \mid i$, there exists $\left\langle a x^{-1}\right\rangle$ such that $C_{2^{n}} \cong\left\langle a x^{-1}\right\rangle \neq\langle a\rangle$. For $x^{2} \in\langle a\rangle$ and $(2, i)=1$, setting $x^{2}=a^{j 2^{n-2}}$ with $(j, 2)=1,1=\left[a^{j 2^{n-2}}, x\right]=[a, x]^{j 2^{n-2}}=a^{i j 2^{n-1}}$. Thus, $a^{2^{n-1}}=1$, a contradiction. The proof is complete.

Proposition 16 Let G be a nonabelian p-group with $|G| \geq p^{4}$. If $c_{3}(G)=1$, then $a_{3}(G)=1$.
Proof Assume the contrary; there exists a subgroup N such that $N \cong C_{p^{2}} \times C_{p}$ or $C_{p} \times C_{p} \times C_{p}$. Suppose the unique cyclic subgroup of order p^{3} is $M=\langle a\rangle$. Now we divide our analysis into two cases: (1) $N \cong C_{p^{2}} \times C_{p}$ and (2) $\quad N \cong C_{p} \times C_{p} \times C_{p}$.

Case 1: $C_{p^{2}} \times C_{p} \cong N=\langle x\rangle \times\langle y\rangle$.
Since $\left\langle a^{p}\right\rangle \operatorname{char}\langle a\rangle \unlhd G$, we may assume that $[a, x]=a^{i p}$ and $[a, y]=a^{j p}$ for some integers i and j.
(1.1) $x \in\langle a\rangle$. We see $y \notin\langle a\rangle$ from $y \notin\langle x\rangle$. If $p \mid j$, then $\left(a y^{-1}\right)^{p}=a^{p}[a, y]^{\binom{p}{2}} y^{-p}=a^{p v}$ with $(v, p)=1$. Thus, $C_{p^{3}} \cong\left\langle a y^{-1}\right\rangle \neq\langle a\rangle$. Therefore, $(p, j)=1$. By $x \in\langle a\rangle$, we may assume $x=a^{r p}$ with $(r, p)=1$. Then

$$
1=[x, y]=\left[a^{p r}, y\right]=[a, y]^{p r}=a^{p^{2} j r} \neq 1
$$

a contradiction.
(1.2) Let $x \notin\langle a\rangle$. Since $N=\langle x\rangle \times\langle y\rangle=\left\langle x^{-1} y\right\rangle \times\langle y\rangle$, we may assume that $x^{-1} y \notin\langle a\rangle$ by (1.1). If $x^{p} \notin\langle a\rangle$, then $C_{p^{3}} \cong\left\langle a y^{-p}\right\rangle \neq\langle a\rangle$. Therefore, $x^{p}=a^{k p^{2}}$ with $(k, p)=1$. It is easy to see $(i j, p)=1$ from $c_{3}(G)=1$. If $p>2$, then

$$
1=\left[a, x^{p}\right]=[a, x]^{p}[a, x, x]^{\binom{p}{2}}=a^{i p^{2}},
$$

which contradicts $o(a)=p^{3}$. When $p=2$,

$$
\left(a x^{-1} y\right)^{2}=a^{2}[a, x y] x^{2}=a^{2}[a, y][a, x][a, x, y] x^{2}=a^{2} a^{2(i+j)} a^{4 i j} a^{4 k}=a^{2 v}
$$

with $(v, 2)=1$. Thus, $C_{p^{3}} \cong\left\langle a x^{-1} y\right\rangle \neq\langle a\rangle$, a contradiction.

Case 2: $C_{p} \times C_{p} \times C_{p} \cong N=\langle x\rangle \times\langle y\rangle \times\langle z\rangle$.
Since $|M \cap N| \leq p$, we may assume that $y, z \notin\langle a\rangle$ and $y z \notin\langle a\rangle$. By $\left\langle a^{p}\right\rangle \unlhd M N,[a, y]=a^{j p}$ and $[a, z]=a^{k p}$. It is easy to see that $(j k, p)=1$. If $p>2$, then $C_{p^{3}} \cong\left\langle a y^{-1}\right\rangle \neq\langle a\rangle$. Therefore, $p=2$. However, there exists $a y z$ such that $(a y z)^{2}=a^{2}[a, y z]=a^{2} a^{2(k+j)} a^{4 k j}$. Hence, $\langle a y z\rangle \cong\langle a\rangle$, a contradiction.

Proposition 17 Let G be a p-group with $|G| \geq p^{4}$. Then $a_{3}(G)=1$ and $c_{3}(G)=1$ if and only if G is a cyclic group or 2-group of maximal class.

Proof If G is abelian, then G is cyclic from Lemma 6. Now assume G is nonabelian. If there exists a subgroup $A \cong C_{p} \times C_{p}$, then $C_{G}(A)=A$ from $a_{3}(G)=1$ and $c_{3}(G)=1$. Thus, we see G is a p-group of maximal class by Lemma 11. If all the subgroups of order p^{2} are cyclic, then it follows from Lemma 7 that G is a generalized quaternion group, which is also of maximal class. Hence, G is a 2 -group of maximal class from Lemma 8.

Since G is a 2 -group of maximal class, it is easy to check that $c_{3}(G)=1$ and $a_{3}(G)=1$.

Proposition 18 Let G be a p-group with $|G| \geq p^{4}$. Then $a_{3}(G)=1$ and $c_{3}(G)=0$ if and only if G is of maximal class of order p^{4} with $p>2$.

Proof If G is of maximal class of order p^{4}, then $d(G)=2$. Therefore, the number of maximal subgroups is $1+p$. By Lemma 14, we see that $a_{3}(G) \geq 1$. It follows that $a_{3}(G)=1$ or $1+p$ from Lemma 5 . If $a_{3}(G)=1+p$, then G is minimal nonabelian and $c(G)=2$, a contradiction. Therefore, $a_{3}(G)=1$ and then $c_{3}(G)=0$ or 1 . If $c_{3}(G)=1$, then there exists a cyclic normal subgroup of order p^{2}, which contradicts Lemma 8. Thus, $c_{3}(G)=0$.

Conversely, we see that G is nonabelian by Lemma 6 . First we prove that the groups of order p^{4} satisfying $a_{3}(G)=1$ and $c_{3}(G)=0$ are p-groups of maximal class with $p>2$. In this case $|Z(G)|=p$. If not, $|Z(G)|=p^{2}$. We see $G / Z(G) \cong C_{p} \times C_{p}$ from G is nonabelian. Then the number of abelian subgroups of order p^{3} containing $Z(G)$ is $1+p$, a contradiction. By Lemmas 9 and 10 , we need to prove $\left|G^{\prime}\right|=p^{2}$. Assume that $\left|G^{\prime}\right|=p$. If $d(G)=2$, then G is a minimal nonabelian p-group. Hence, $|Z(G)|=p^{2}$, which is impossible. Therefore, $d(G)=3$ and $G^{\prime}=\Phi(G)$; therefore, G is an extra-special p-group. Again, we have a contradiction, Lemma 12, because $|G|=p^{4}$. Thus, $\left|G^{\prime}\right|=p^{2}$ and G is of maximal class. Now, if G is a 2 -group of maximal class, then the abelian subgroup of order p^{3} is cyclic. Therefore, $p>2$.

Next, noting that the property is inherited by subgroups, we only need to prove that any group of order $p^{5}(p>2)$ does not satisfy $a_{3}(G)=1$ and $c_{3}(G)=0$. If there exists a group G of order p^{5} that satisfies the property, then for each maximal subgroup M of G, M has an abelian subgroup of order p^{3} by Lemma 14. Thus, M satisfies $a_{3}(G)=1$ and $c_{3}(G)=0$. Thus, M is of class 3 by the above paragraph. Therefore, $c(G)=3$ or 4 .

Case (i) $c(G)=3$. If $Z(G) \geq p^{2}$, then there exists A such that $|A|=p^{2}$ and $A \leq Z(G)$. By the hypothesis, G / A has the unique subgroup of order p, and $p>2$. Thus, G / A is cyclic since Lemma 4. Therefore, G is abelian, a contradiction, and so $|Z(G)|=p,\left|G_{3}\right|=p$. By Lemma 14, we see $d(G)=2$. Write $\bar{G}=G / G_{3}$. Then $\left|(\bar{G})^{\prime}\right|=p$ or p^{2}. If $\left|(\bar{G})^{\prime}\right|=p^{2}$, then \bar{G} is of maximal class by Lemma 10 , which contradicts
$c(G)=3$. Thus, $\left|(\bar{G})^{\prime}\right|=p$. If \bar{G} is metacyclic, then G is metacyclic. We may get a contradiction from Lemma 13 and $a_{3}(G)=1$. Therefore,

$$
\bar{G} \cong M_{p}(2,1,1)=\left\langle\bar{a}, \bar{b}, \bar{c} \mid \bar{a}^{p^{2}}=\bar{b}^{p}=\bar{c}^{p}=1,[\bar{a}, \bar{b}]=\bar{c}\right\rangle .
$$

Assume $G_{3}=\langle x\rangle \cong C_{p}$. Since $c_{3}(G)=0, a^{p^{2}}=1$. Thus, $\langle a, x\rangle \cong C_{p^{2}} \times C_{p}$. By $Z(G)=G_{3}$, we see $a^{p} \notin Z(G)$. Since $\left[a^{p}, c\right]=[a, c]^{p}[a, c, a]^{\binom{p}{2}}=1, \quad\left[a^{p}, b\right]=c^{p} \neq 1$. Thus, $\left\langle c, a^{p}\right\rangle \cong C_{p^{2}} \times C_{p}$. However, $\left\langle c, a^{p}\right\rangle \neq\langle a, x\rangle$, a contradiction.

Case (ii) $c(G)=4$. We see $G_{3} \cong C_{p} \times C_{p}$ from Lemma 8. Assume that $G_{4}=\langle z\rangle$ and $G_{3}=\langle z\rangle \times\langle y\rangle$. It is easy to see that $G / G_{3}=\left\langle\bar{a}, \bar{b}, \bar{c} \mid \bar{a}^{p}=\bar{b}^{p}=\bar{c}^{p}=1,[\bar{a}, \bar{b}]=\bar{c}\right\rangle$, and $G=\langle a, b\rangle . G^{\prime}=\langle c, z, y\rangle$ is the unique abelian subgroup of order p^{3}. Since $[\langle a, b\rangle,\langle z, y\rangle]=G_{4}$, we have $[a, y]=z^{i},[b, y]=z^{j}$ and at least one of i and j cannot be divided exactly by p. Then $\left\langle a^{-j} b^{i}, y, z\right\rangle$ is another abelian subgroup of order p^{3} of G, a contradiction. The proof is complete.

By the above propositions, we easily get the following theorem.

Theorem 19 Let G be a nonabelian p-group with $|G|>p^{4}$. Then the following conclusions are equivalent:
(1) $c_{m}(G)=1$ where $m \geq 3$
(2) $a_{3}(G)=1$
(3) G is a 2-group of maximal class.

Proof If (1), then (2) by Propositions 15 and 16. When (2) holds, we see (3) by Propositions 17 and 18. If G is a 2 -group of maximal class, then G is isomorphic to one of the following three types of groups by Theorem 2.5.3 in [4]:
(a) $\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, a^{b}=a^{-1}\right\rangle, n \geq 3$;
(b) $\left\langle a, b \mid a^{2^{n-1}}=1, b^{2}=a^{2^{n-2}}, a^{b}=a^{-1}\right\rangle, n \geq 3$;
(c) $\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, a^{b}=a^{-1+2^{n-2}}\right\rangle, n \geq 4$.

By calculation, we see that cyclic subgroups of order $\geq 2^{3}$ are in $\langle a\rangle$. Therefore, $c_{m}(G)=1$ where $m \geq 3$.

Theorem 20 Let G be a finite p-group. Then $c_{2}(G)=1$ if and only if G is a cyclic group or dihedral group.
Proof If G is abelian, then G is cyclic. Assume that G is nonabelian and M is the unique cyclic subgroup of order p^{2}. If $C_{G}(M)=M$, then G is of maximal class by Lemma 11. For $C_{G}(M)>M$, we see $C_{G}(M)$ is cyclic from Lemma 6. Since any cyclic subgroup of order p^{3} contains M and lies in $C_{G}(M)$, we have $a_{3}(G)=1$. Therefore, G is of maximal class. By Lemma $8, G$ is a 2 -group. It is easy to check that only the dihedral group in 2-groups of maximal class satisfies $c_{2}(G)=1$. Conversely, the conclusion is obvious.

References

[1] Berkovich Y. On p-groups of finite order. Siberian Math Zh 1968; 9: 1284-1306 (in Russian).
[2] Miller GA. An extension of Sylow's theorem. Proc London Math Soc 1904; 2: 142-143.
[3] Qu H, Yang S, Xu M, An L. Finite p-groups with a minimal non-abelian subgroup of index p (I). J Algebra 2012; 358: 178-188.
[4] Xu M. Finite p-group. Beijing, BJ, China: Peking University Press, 2010 (in Chinese).
[5] Zhao L, Guo X. Finite p-groups with exactly one A_{1}-subgroup of given structure of order p^{3}. Acta Math Sinica 2013; 29: 2099-2110.

[^0]: *Correspondence: lieningzai1917@126.com
 This research was supported by the National Natural Science Foundation of China (11426067, 11271085, 11526114), the Early Pre-research Project, Nantong University (14ZY008), and the Appropriative Researching Fund for Doctors, Guangdong University of Education(2013ARF07).
 2000 AMS Mathematics Subject Classification: 20D15.

