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Abstract: In this paper, we prove that if G is nonabelian and |G| > p*, then G has a unique cyclic subgroup of order

p™ with m > 3 if and only if G has a unique abelian subgroup of order p® if and only if G is a 2-group of maximal

class.
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1. Introduction

All groups considered in this paper are finite p-groups. The terminology and the notation in this paper are
standard. The Frattini subgroup, the commutator subgroup, and the center of a group G will be denoted by
®(G), G', and Z(G) respectively. We use ¢(G) and G; to denote the nilpotent class and the ith term of the
lower central series of G, respectively. The number of subgroups of order p™, abelian subgroups of order p™,
and cyclic subgroups of order p™ are denoted by $,,(G), am(G), and ¢,,,(G), respectively. For a subgroup H
in G, the centralizer of H in G is denoted by Cg(H).

There is much interest in investigating the structure of a group whenever the number of some kind
of subgroups is given. For example, finite p-groups with exactly one minimal nonabelian subgroup of given
structure of order p? are classified by [5]. In [3], finite p-groups with exactly one minimal nonabelian subgroup
of index p are investigated. In this paper, we are interested in the finite p-groups with unique cyclic subgroup
of given order.

In [1] and [2], the authors proved that

Theorem 1 ([1]) Suppose that a 2-group G is neither cyclic nor of mazimal class. If n > 1, then ¢,(G) is
even.

Theorem 2 ([2]) Let G be a noncyclic p-group, p > 2, and n>0. If n > 1, then p divides ¢, (G).

By the above two theorems, we see that finite p-groups with unique cyclic subgroup of order p™ are
cyclic groups or 2-groups of maximal class. In this paper, we give a direct elementary proof. Moreover, we

proved the following theorem:
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Theorem 3 Let G be a nonabelian p-group and |G| > p*. Then c,,(G) =1 if and only if a3(G) = 1 if and

only if G is 2-group of maximal class, where m > 3.

2. Preliminaries

We gathered all the results used in what follows.

Lemma 4 ([4] Theorem 2.2.13) Let G be a finite p-group with unique subgroup of order p. Then
(i) G is cyclic if p > 2;

(ii) G is a cyclic group or generalized quaternion group when p = 2.

Lemma 5 ([4] Exercise 2.2.3) Let G be a nonabelian p-group. Then the number of abelian maximal subgroups
of G is0, 1, or 1+p.

Lemma 6 ([1] Theorem 2.7.1) Let G be a p-group with |G| = p™ and 1 <m <n. If $,(G) =1, then G is

cyclic.

Lemma 7 ([1] Theorem 2.7.2) Let G be a p-group with |G| =p"™ and 1 <m <n. If $;,(G) = cn(G), then
(1) G is cyclic if p™ # 4;

(2) G is a cyclic group or generalized quaternion group if p™ = 4.

Lemma 8 ([1] Theorem 2.5.2) Let G be a p-group of mazimal class with |G| = p™. Then

(1) G; is the unique normal subgroup of order p™~*;

(2) If p>2 and n > 3, then G does not have a cyclic normal subgroup of order p?.
Lemma 9 ([4] Theorem 2.5.5) G is a 2-group of maximal class if and only if |G : G'| = 4.

Lemma 10 ([1] Theorem 2.5.6) Let G be a nonabelian p-group with p > 2. If G has an abelian mazimal
subgroup, then G is of mazimal class if and only if |G : G'| = p?.

Lemma 11 ([4] Theorem 2.5.7) Let G' be a nonabelian p-group. If G has a subgroup A of order p* such that
Ce(A) = A, then G is of mazimal class.

Lemma 12 ([4] Theorem 7.1.6) Let G' be an extra-special p-group. Then |G| = p*™*t for some integer m.

3. Finite p-groups with ¢,,(G) =1

Firstly, we have the following Lemmas.

Lemma 13 Let G be a metacyclic p-group with p > 2 and H < G. Then H is abelian if |H| < |G/G’| and
H is nonabelian if |H| > |G/G'|.

Proof Suppose G = {(a)(b) and G/(a) = (b). For any subgroup H of G, assume that H/HN{a) = H{a)/{a) =
(l_)pj> and HN{(a) = <api>. Thus, |H| = |G|/p"*’ and H = <api,bpj>. Since p > 2, we see that [api,bpj] =1if
and only if [a,b]?" = 1. Hence, H' = 1 if and only if p'™7 > |G/|. By |H| = |G|/p'™ , we see p™i = |G|/|H].
Then H is abelian if and only if |H| < |G/G’|. O
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Lemma 14 Let G be a p-group with |G| > p*. Then G has an abelian normal subgroup of order p>.

Proof Take a subgroup N of order p? that is normal in G. Since ” N/C”, G/Cg(N) < Aut (N). Thus,
|G/Ca(N)|lp, |Ca(N)| > p*. By Cg(N) <G, we see that there exists a normal subgroup M such that
N <M < Cg(N) and |[M| =p®. Then M = (N,c), where ¢ € Cq(N). Thus, M is abelian. Therefore, M is
desired. O

Proposition 15 Let G be a finite p-group and n > 3. If ¢,(G) =1, then c3(G) =1.
Proof Suppose, by way of contradiction, that Cpn = (a) < G, Cps = (x) < G, and = ¢ (a). Since
(aPYchar{a) < G, (aP) < {a)(z). By (a)/{aP) < {a,z)/{aP) and o({a)/{aP)) =p, we see [a,z] € (aP). Thus, we

may assume [a,z] = a’?. If p > 2, then

3 3

(axil)ps =a?’ [a, a:](pz)[a,a;7x](2 I A

with (v,p) = 1. Hence, Cpn = (az™1) # (a), a contradiction. Now, assume p = 2. If 2% ¢ (a), then it is
easy to see Con = (az™2) # (a). When 2|i, there exists (az™!) such that Con = (az™!) # (a). For 2% € (a)
and (2,4) = 1, setting 22 = a?2" "~ with (j,2) =1, 1 = [a2" ", 2] = [a,2]2" " = a¥2" ", Thus, " =1, a

contradiction. The proof is complete. O

Proposition 16 Let G be a nonabelian p-group with |G| > p*. If c3(G) =1, then a3(G) = 1.
Proof Assume the contrary; there exists a subgroup N such that N = Cj2 x C), or C), x C}, x C},. Suppose the
unique cyclic subgroup of order p? is M = (a). Now we divide our analysis into two cases: (1) N = Cp2 x Cp
and (2) N=C, xC, xC,.
Case 1: Cp2 x Cp, = N = (x) X (y).
Since (aP) char {a) <G, we may assume that [a,z] = a®? and [a,y] = a’P for some integers i and j.
(1.1) = € (a). Wesee y ¢ (a) from y ¢ (z). If p|j, then (ay )P = ap[a,y](g)y*p = aP¥ with (v,p) =1.
Thus, Cps = (ay™') # (a). Therefore, (p,j) =1. By = € (a), we may assume = = a’? with (r,p) = 1. Then

1= [,y = [a”,y] = [a,y]"" = aP I" # 1,

a contradiction.
(1.2) Let = ¢ (a). Since N = (z) x (y) = (z71y) x (y), we may assume that 271y ¢ (a) by (1.1). If
z? ¢ (a), then Cps = (ay~P) # (a). Therefore, a? = ab?”* with (k,p) = 1. It is easy to see (ij,p) = 1 from
c3(G) =1. If p> 2, then
1=a,2"] = [a,x]p[a,x7x](g) = a7,
which contradicts o(a) = p®. When p = 2,
2(i+5) g 4id g4k — ;20

(ax_ly)2 = az[a, xy]a:2 =a? [a,y]]a, x][a, z, y]x2 =a’a a

with (v,2) = 1. Thus, Cps = (az™'y) # (a), a contradiction.
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Case 2: Cp x Cp, x Cp, 2= N = (z) x (y) x (2).
Since |M N N| < p, we may assume that y,z ¢ (a) and yz ¢ {(a). By (a?) < MN, [a,y] = a/P
and [a,z] = afP. It is easy to see that (jk,p) = 1. If p > 2, then Cps = (ay™') # (a). Therefore, p = 2.

However, there exists ayz such that (ayz)? = a?[a,yz] = a?a?>*+)a*J . Hence, (ayz) = (a), a contradiction. O

Proposition 17 Let G be a p-group with |G| > p*. Then a3(G) = 1 and c3(G) = 1 if and only if G is a
cyclic group or 2-group of mazximal class.

Proof If G is abelian, then G is cyclic from Lemma 6. Now assume G is nonabelian. If there exists a
subgroup A = C), x C,, then Cg(A) = A from a3(G) =1 and ¢3(G) = 1. Thus, we see G is a p-group of
maximal class by Lemma 11. If all the subgroups of order p? are cyclic, then it follows from Lemma 7 that G
is a generalized quaternion group, which is also of maximal class. Hence, G is a 2-group of maximal class from

Lemma 8.
Since G is a 2-group of maximal class, it is easy to check that ¢3(G) =1 and a3(G) = 1. O

Proposition 18 Let G be a p-group with |G| > p*. Then a3(G) = 1 and c3(G) = 0 if and only if G is of

mazimal class of order p* with p > 2.

Proof If G is of maximal class of order p*, then d(G) = 2. Therefore, the number of maximal subgroups
is 1 +p. By Lemma 14, we see that a3(G) > 1. It follows that a3(G) = 1 or 1+ p from Lemma 5. If
a3(G) =1+ p, then G is minimal nonabelian and ¢(G) = 2, a contradiction. Therefore, a3(G) = 1 and then
c3(G) =0 or 1. If c3(G) = 1, then there exists a cyclic normal subgroup of order p?, which contradicts Lemma
8. Thus, ¢3(G) =0.

Conversely, we see that G is nonabelian by Lemma 6. First we prove that the groups of order p*
satisfying a3(G) = 1 and c3(G) = 0 are p-groups of maximal class with p > 2. In this case |Z(G)| = p. If
not, |Z(G)| = p?. We see G/Z(G) = C, x C, from G is nonabelian. Then the number of abelian subgroups of
order p® containing Z(G) is 1+ p, a contradiction. By Lemmas 9 and 10, we need to prove |G’| = p?. Assume
that |G'| = p. If d(G) = 2, then G is a minimal nonabelian p-group. Hence, |Z(G)| = p?, which is impossible.
Therefore, d(G) = 3 and G’ = ®(G); therefore, G is an extra-special p-group. Again, we have a contradiction,
Lemma 12, because |G| = p*. Thus, |G’| = p? and G is of maximal class. Now, if G is a 2-group of maximal
class, then the abelian subgroup of order p? is cyclic. Therefore, p > 2.

Next, noting that the property is inherited by subgroups, we only need to prove that any group of order
p° (p > 2) does not satisfy a3(G) = 1 and c3(G) = 0. If there exists a group G of order p° that satisfies
the property, then for each maximal subgroup M of G', M has an abelian subgroup of order p? by Lemma
14. Thus, M satisfies a3(G) = 1 and ¢3(G) = 0. Thus, M is of class 3 by the above paragraph. Therefore,
¢(G) =3 or 4.

Case (i) ¢(G) = 3. If Z(G) > p?, then there exists A such that |A] = p? and A < Z(G). By
the hypothesis, G/A has the unique subgroup of order p, and p > 2. Thus, G/A is cyclic since Lemma 4.
Therefore, G is abelian, a contradiction, and so |Z(G)| = p, |G3| = p. By Lemma 14, we see d(G) = 2. Write
G = G/G3. Then |(G)'| = p or p. If |(G)'| = p?, then G is of maximal class by Lemma 10, which contradicts
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¢(G) = 3. Thus, |(G)'| = p. If G is metacyclic, then G is metacyclic. We may get a contradiction from Lemma
13 and a3(G) = 1. Therefore,

Assume G3 = (z) = C,. Since c3(G) = 0, a? = 1. Thus, (a,z) = Cp2 x Cp,. By Z(G) = G3, we see
a? ¢ Z(G). Since [aP,c] = [a,c?]a, c,a](g) =1, [a?,b] = ¢ # 1. Thus, (c,a?) = Cp2 x C,. However,
(c,aP) # (a,z), a contradiction.

Case (ii) ¢(G) = 4. We see G = C), x C), from Lemma 8. Assume that G4 = (z) and Gs = (z) x (y).
It is easy to see that G/G3 = (a,b,¢la? = b = & = 1,[a,b] = ¢), and G = (a,b). G' = (c,z,y) is the unique
abelian subgroup of order p3. Since [{a,b),(z,y)] = G4, we have [a,y] = 2, [b,y] = 2/ and at least one of

i and j cannot be divided exactly by p. Then (a=7b%,y, z) is another abelian subgroup of order p® of G, a

contradiction. The proof is complete. O

By the above propositions, we easily get the following theorem.

Theorem 19 Let G be a nonabelian p-group with |G| > p*. Then the following conclusions are equivalent:

(1) cm(G) =1 where m >3

(2) as(G) =1

(8) G is a 2-group of mazimal class.
Proof If (1), then (2) by Propositions 15 and 16. When (2) holds, we see (3) by Propositions 17 and 18. If G
is a 2-group of maximal class, then G is isomorphic to one of the following three types of groups by Theorem
2.5.3 in [1]:

(a) (a,bla® =b>=1,a"=0a"1), n>3;

(b) (a,bla® " =1,02=0a>"",ab =a"'),n >3;

(c) (a,bla®  =b2 =1, =a112"7) n > 4.

By calculation, we see that cyclic subgroups of order > 23 are in (a). Therefore, ¢,,(G) = 1 where
m > 3. O

Theorem 20 Let G be a finite p-group. Then co(G) =1 if and only if G is a cyclic group or dihedral group.
Proof If G is abelian, then G is cyclic. Assume that G is nonabelian and M is the unique cyclic subgroup of
order p?. If Cg(M) = M, then G is of maximal class by Lemma 11. For Cg(M) > M, we see Cq(M) is cyclic
from Lemma 6. Since any cyclic subgroup of order p* contains M and lies in Cg(M), we have a3(G) = 1.
Therefore, G is of maximal class. By Lemma 8, G is a 2-group. It is easy to check that only the dihedral

group in 2-groups of maximal class satisfies c2(G) = 1. Conversely, the conclusion is obvious. O
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