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Abstract: We present a generalization of g-frames related to an adjointable operator K on a Hilbert C*-module, which
we call K -g-frames. We obtain several characterizations of K -g-frames and we also give conditions under which the
removal of an element from a K -g-frame leaves again a K -g-frame. In addition, we define a concept of dual, and using
it we study the relation between a K -g-frame and a g-Bessel sequence with respect to different sequences of Hilbert

C* -modules.
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1. Introduction

Frames for Hilbert spaces were formally defined by Duffin and Schaeffer [4] in their work on nonharmonic Fourier
series, reintroduced and developed in 1986 by Daubechies et al. [3], and since then they have become the focus
of active research, both in theory and in applications, such as the characterization of function spaces, digital
signal processing, and scientific computations.

Sun [14] proposed the concept of g-frames as generalizations of Hilbert spaces frames and showed that
this includes many other cases of generalizations of the frame concept. On the other hand, frames and g-
frames were introduced in Hilbert C*-modules that are generalizations of Hilbert spaces [7,11]. It should be
remarked that, due to the complexity of the C*-algebras involved in the Hilbert C*-modules and the fact that
some useful techniques available in Hilbert spaces are either absent or unknown in Hilbert C*-modules, the
generalizations of frame theory from Hilbert spaces to Hilbert C*-modules are not trivial. The properties of
frames and g-frames in Hilbert C*-modules were further studied in [1,10,15].

Atomic systems for subspaces were first introduced by Feichtinger and Werther [6] based on examples
arising in sampling theory. In [8], Gavruta introduced atomic systems for operators in Hilbert spaces, and
frames for operators allowing the reconstruction of elements from the range of a linear and bounded operator.
Later, Asgari and Rahimi [2] applied the atomic systems theory to the situation of g-frames, thereby leading to
the notion of g-frames for operators.

Recently, Najati et al. [13] generalized the notion of frames for operators from Hilbert spaces to Hilbert
C*-modules and studied some of their properties. In this paper we give a generalization of g-frames for operators
in Hilbert C*-modules and we extend some results in [2] to Hilbert C*-modules.

The paper is organized in the following manner. In Section 2, we recall the definitions and basic properties.
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Section 3 is devoted to the introduction of g-frames for operators in Hilbert C*-modules. In this section we
characterize g-frames for operators in several aspects and we also study the erasure of g-frames for operators.

In Section 4, we investigate the duality of g-frames for operators in Hilbert C*-modules.

2. Preliminaries
In the following we briefly recall some definitions and basic properties of operators and g-frames in Hilbert

C*-modules.
Throughout this paper, the symbols J, C, and A refer, respectively, to a finite or countable index set,

the field of complex numbers, and a unital C*-algebra with identity 1.4.

Definition 2.1 (see [12]) A pre-Hilbert C* -module over A or, simply, a pre-Hilbert A-module, is a left A-
module A with a sesquilinear form (-,-) : H x H# — A, called an A-valued inner product, that possesses the
following properties:

(i) {f, f) >0 forall f € and (f, f) =0 if and only if f =0;

(ii) (f. g) = (g, )" for all f. g€ A

(i11) (af + g, h) = a(f, h) + (g, h) forall a € A, f, g, h € H;

() (Mf, g) = X[, g) whenever A€ C and f, g € .

1
For f € A, we define a norm on J by |flle = [(f, 4. If S is complete with respect to this

norm, it is called a Hilbert C* -module over A or a Hilbert A-module.

Let 2 and # be two Hilbert A-modules. A map T : 5 — ¢ (not necessarily linear or bounded)
is said to be adjointable if there exists a map T™ : & — S such that (T'f, g) = (f, T*g) for all f € 5 and
gex.

From now on, we assume that {¥;};cy and {#;},c; are two sequences of Hilbert A-modules. We also
reserve the notation End’ (¢, ) for the set of all adjointable operators from J# to ¢ and End’ (7, )
is abbreviated to End’y(.7¢).

For a unital C*-algebra A , let £?({¥;};ey) be the Hilbert .A-module defined by

L(F o) = {{gj}jeﬂ ;€% Y (g5, g5) converges in| ||}.

J€J

Definition 2.2 (see [16]) Let T € End’y (5, '), then an adjointable operator Tt € End’y (", H) is called

the Moore—Penrose inverse of T if
TTiT =T, T'TT" =TT, (TTY)* =TT and (TTT)* = TTT. (2.1)

It has been proven that an adjointable operator between two Hilbert C*-modules admits a Moore—Penrose

inverse if and only if it has closed range (see [16, Theorem 2.2]).

Definition 2.3 (see [7]) A sequence {f;};cy of elements in a Hilbert A-module € is said to be a frame for
FC if there exist two constants A, B > 0 such that

AU LY <D IS /Y < B f) (2:2)

J€EJ
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holds for every f € . The numbers A and B are called frame bounds.

Definition 2.4 (see [13]) Let K € End;(5€). A family {f;};c; C S is called a K -frame for F if there
exist constants Ay, By > 0 such that

A f K2 ) <Y f ) 1) < B, f), Vet (2.3)

jel
The numbers Ay and Bi are called K -frame bounds.

(Throughout the paper, the sums like those in the middles of (2.2) and (2.3) are assumed to be convergent

in the norm sense.)

Definition 2.5 (see [11]) One calls a sequence {A; € End’y (A, ¥;)}jer a g-frame for F with respect to
{¥;}jer if there exist two constants C1, D1 > 0 such that

Co(f, 1) <D (A f A f) < Dilf, f) (2.4)

Jj€l

holds for every f € . We call C1 and Dy the g-frame bounds. The g-frame {A;};ecy is said to be A-tight if
Cy = D1 = A. The sequence {A;};cy is called a g-Bessel sequence with g-Bessel bound D1 if we only require
the right-hand inequality of (2.4).

Definition 2.6 Let {A; € Endy (S, ¥;)}je; be a g-Bessel sequence for J with respect to {¥;}jey. The
operator Ty : L*({¥;}jes) — A defined by

Ta{g;}tjer =Y N (2.5)

jel
1s called the synthesis operator.

The g-frame operator Sy : S — € is defined by

Saf =D AjAsf, (2.6)

JEJ

which is a positive and self-adjoint operator. Moreover, if {A;}jcy is a g-frame, then Sy is invertible. This

provides for all f € JZ the reconstruction formula as follows:

D SN f=StSaf=f

Jje€l

= SAS =D A A S (2.7)

Jj€l
The following lemmas will be used to prove our main results.
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Lemma 2.7 (see [15]) Let A; € End’y (A, ¥;) for all j € I, then {A;}jey is a g-frame for F with respect
to {¥;}jer if and only if there exist two constants Ca, Dy > 0 such that

Coll fIIP <

S, Ajf>H< DofIE, Ve (2.)

Jj€l

Lemma 2.8 (see [5]) Let &, F, and 4 be Hilbert A-modules. Also let T € End%(¥, #) and T €
End’y (&, F) with Ran(T*) orthogonally complemented. The following statements are equivalent:

(1) T'T™ < XTT* for some X\ > 0.

(2) There exists pn > 0 such that ||[T"z|| < p||T*z|| for all z € F.

(8) There exists D € End’y (¥, &) such that T' =TD, i.e. TX =T’ has a solution.

(4) Ran(T’) C Ran(T).

3. G-frames for operators in Hilbert C*-modules

In this section we introduce g-frames for operators in Hilbert C*-modules and study conditions for a family of
adjointable operators on a Hilbert C*-module to be a g-frame for operator, as well as conditions for removing

an element from a g-frame for operator to again obtain a g-frame for operator. Let us begin with

Definition 3.1 Let K € End () and A; € End (2, ¥;) for all j € J, then {A;}jey is said to be a
K -g-frame for S with respect to {¥;};ey if there exist two constants C, D > 0 such that

C{K*f, K*f) <Y (M f, A f) <D(f, f), Ve, (3.1)
j€J
The numbers C and D are called K -g-frame bounds. Particularly, if
C(K*f, K" f) =) (Aif, Aif), Ve, (32)
2
then we call {A;}jey a C-tight K -g-frame for S with respect to {¥;}jey-
Remark 3.2 (1) If K € End; () is a surjective operator, then every K -g-frame {A; € End’y (5, ¥;)}jes

for € with respect to {¥;}jer is a g-frame. Indeed, if we let C, D be the K -g-frame bounds, then for any
f € I we have
CIEKE) TS ) S O f K f) < (Af A f) < DU ).

JET

(2) Every adjointable operator K on a finitely or countably generated Hilbert C* -module S admits a
K -g-frame. To see this, let {f;}je; be a frame of H with bounds A, B. For each j € J, let ¥; = A and
define adjointable operator Aj : & — V5, Njf = (f, f;). It is easy to check that

A(f, £Y <D A F N S B ), Ve

JEJ
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Now let I'; = AjK* for all j €1, then

AK*f, K*f) <Y (0K f, MK f) =Y (U £, Tif) < BIK*|*(f, f),

Jjed Jj€el
showing that {T';}jey is a K -g-frame for S with respect to {¥;}jey-

Example 3.3 Let [ be the set of all bounded complez-valued sequences. For any v = {u;}jen, v ={v;}jen €

[°°, we define

uv = {u;v;tjen, u* = {TU;}jen, [ull = I}g@dujl-

Then A= {I>, | - ||} is a C*-algebra.

Let 37 = Cy be the set of all sequences converging to zero. For any u, v € € we define
(u, v) = wv” = {u;T;}jen-

Then F is a Hilbert A-module.
Now let K € End;() and J =N. Let also {e;}jecy be the standard orthogonal basis of S . For each

jel, set ¥; =3span{e;}, and define adjointable operator
ANj= =5 AN =(] ej)e;
then for every f € € we have

S AGE AE) =D (s e)ess e)less ) = {fiYierdT ier = (fs f)-

Jjel Jjel
Fiz N € N and define
. _J jej ifj<N,
K: 2 — H#, Kej—{o ifi>N.

It is easy to check that K is adjointable and satisfies

« _J Jjej ifj<N,
Keﬂ_{o ifj > N.

For any f € 5, let f =372, cje;, then

N N N
(K*f, K*f) = <chj€j7 chj€j>= > i ei o).

=1 =1 =
Hence
N . o)
%U(*ﬁ K f) = Z(%)Z@ja ) <Y e ey = 1) =D (A f A ).
Jj=1 =1 Jjel

This shows that {A;}jey is a K -g-frame for H with respect to {¥;};ey with bounds ﬁ, 1.
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The following proposition gives a necessary and sufficient condition for tight g-frames to be tight K-g-

frames in Hilbert C*-modules.

Proposition 3.4 Let {A; € Endy (S, ¥j)}jes be an A-tight g-frame for ' with respect to {¥;};ecy and
K € End’ () ; then {A;}jey is a tight K -g-frame for S with respect to {¥;}jey if and only if there exists
a number M > 0 such that KK* = M -1d 4 .

Proof We assume first that {A;},cy is a B-tight K-g-frame for . with respect to {¥}};ey; then for any
f € A we have

B(K*f, K*f) =Y (A f, Ajf) = A(f, f).
jel
Thus, (KK*f, f) = %(f, f) and polarization formula shows that (KK*f, ¢g) = %(ﬁ g) for any f,g € 2.
4 Idse.
For the other implication, let K K* = M - Id » for some positive number M ; then for any f € 7 we

Consequently, KK* =

have
D NS AF) = 7 (M, f) = (KK f, ) = 3, K ).
jel
This shows that {A;},cy is a %—tigh‘c K -g-frame for J¢ with respect to {¥#;};es. g

Let K € End%(57); by Fi () and FE () we denote the sets of all K-g-frames and all tight K -g-
frames of 7 respectively. Our next result presents one relation between two sets of tight K -g-frames and the

involved operators.

Proposition 3.5 Let 5 be a finitely or countably generated Hilbert A-module and K, Ko € End’ (), then
Fik () C FE () if and only if there exists a constant A >0 such that AK, K3 = K1 K7 .

Proof Let {A; € End’ (S, ¥;)},cr be a g-frame for 7 with respect to {¥;};cy with g-frame operator Sy ;
then for all f € # we have (f, f) = 2, (A;Sx* f, A;S5 * f). Therefore,

(Kif, KT f) =S (A8, KT f. AySy KT f), (3.3)
jel

showing that {AjSX%Kf}jGJ is a tight K -g-frame of 5. Assume that Fi () C Fi (H); then {AjSX%KT}jGJ

is also a tight Ko-g-frame of J#. Hence there exists A > 0 such that

ARG 1, K3 ) = SO (A;Sy P K7 f, Ay, KL f). (3.4)

JEJ

Altogether we obtain A(KS f, K3 f) = (K{f, K;f), equivalently, AK- K5 = K1 K7 .
Suppose now that {A; € End’ (7, ¥;)} ey is a tight K;-g-frame of ¢ ; then there exists A; > 0 such
that A (K{f, Kif) =3;c5(Af, Ajf) forall f € 5. Thus

AAUKSf K f) = A(KTF, K f) =Y (A f, Ajf).

J€EJ
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Therefore, {A;};ey is a AA;-tight Ky-g-frame of ¢ and, consequently, Fggl (50) C F};z (52). O

We also have the relation between two sets of K-g-frames and the ranges of the involved operators.

Proposition 3.6 Let K, Ky € End’ (). If Ran(K>) C Ran(K;) and Ran(K7) is orthogonally comple-
mented, then Fr, () C Fi,(5€).

Proof By Lemma 2.8 we know that there exists > 0 such that Ko K5 < uK1K7. Let {A; € Endy (2, ¥;)}jes
be a K;-g-frame for s with respect to {¥;};ey with bounds C, D; then

O * * * *

—(K3f, K3) <C(K{f, Ki) <> (M f, A f) < D(f, f), Ve,

H jel

This shows that {A;},cy is a Ka-g-frame for . with respect to {¥;};c; with bounds %, D. Therefore, we

have FKl(%)gFK2(%) O

The converse of the above proposition remains true if we replace Fg, (/) by Fi ().

Proposition 3.7 Let K, Ky € End’y(¢). If Fi; (#) C Fg,(5) and Ran(KY) is orthogonally comple-
mented, then Ran(Ks3) C Ran(Ky).

Proof Let {A; € End% (5, ¥j)}jer be a C-tight K;-g-frame for J# with respect to {¥;};ey. Since
FE () C Fi, (), it follows that there exists D > 0 such that [|K3f|? < S| K;f|]*> for all f € 5.
By Lemma 2.8 we get Ran(Kz) C Ran(K1). O

The following is a simple but very useful representation for K -g-frames.

Theorem 3.8 Let K € End’ () and let A; € Endy (S, %;) for each j € J. Suppose that the operator
T: H — L*{V}ien) is given by Tf = {A;f}jer and Ran(T) is orthogonally complemented. Then {Aj}jer
is a K -g-frame for J€ with respect to {¥;}jer if and only if there exist constants C, D > 0 such that

CIK*fI* <

st sf)|< DISE. s e (35)
JEl
Proof Evidently, every K -g-frame of % satisfies (3.5).

For the converse, we suppose that a sequence {A; € End’ (5, ¥;)} ey fulfills (3.5). For all f € s, the
left-hand inequality of (3.5) gives ||[K*f[|? < &[T f||*. Then Lemma 2.8 implies that there exists a constant
> 0 such that KK* < uT*T and hence

1 * *
—(K*f, K*f) <(Tf, Tf) =Y (Nf, Ajf), V[es.
H 2
To complete the proof, it remains to show that {A;};cy is a g-Bessel sequence. For any {g;}je; €
L%({¥;}jer) and any I C J, the right-hand inequality of (3.5) leads to
2

2 2

Aj(gj)|| = sup < A*-(g-),f> =  sup (Aj(95), f)
j% P reriini= % 7 rest. =1 ; Y
< sup Z(gj,gﬂ‘ > (A Ajf>HSD Z<9j79j>‘-
fes 1=l e jel jel
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Thus the series ), ; A%(g;) converges in ¢ unconditionally. Since

2l
(TF Aaghies) = S8 a) = (1 L A0 ),
Jjel Jjel
T is adjointable. Now for any f € 7 we have
Y (Af A ) = (T L TF) < IITIP f),
jel

as desired. 0
Using Theorem 3.8 we can easily prove the following result, which offers a condition for getting a K -g-
frame from a g-frame.

Proposition 3.9 Let {A; € End’y (7, ¥;)}jes be a g-frame for A with respect to {¥;};ep with bounds C, D
and the synthesis operator Ty . Let K € End’y (5¢) and Ran(Ty) be orthogonally complemented. Then {A;} ey
is a K -g-frame for A with respect to {¥;}jer.

Proof Let S) be the g-frame operator of {A;}cr; then for every f € J the reconstruction formula gives
Kf= Zje]] A;AjSXIKf and so

2

IK*fI? = sup  (K*f,m)P= sup > (A;S ' Kh, Asf)
hest, |hll=1 hest, =115
< sup Z<Ajs;1Kh,Ajs;1Kh>‘ Z<Ajf,Ajf>H
hest, |hll=1

Jjed jEJ

< sup  D|Sy'Kh|?
hes?, ||hl|=1

> (A, Ajf)H

JEJ

< DC7?|K|?

>, Ajf)‘

JEJ

It follows that

DO K| 72K £ <

DA, Ajf)H-

Jjel

O
In the two next theorems, we generalized the results in [2] for K -g-frames in Hilbert spaces to Hilbert

C*-modules.

Theorem 3.10 Let K € Endy () and let Aj € Endy (', %;) for each j € J. Suppose that the operator
T : A — L2({V;}jer) is given by Tf = {A;f}jes and Ran(T) is orthogonally complemented. Then the

following statements are equivalent:

(i) {A;}jer is a K -g-frame for 5€ with respect to {¥;}jes.
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(11) {A;};ey is a g-Bessel sequence for F with respect to {¥;}jer and there exists a g-Bessel sequence
{T';}jey for A with respect to {¥;};cy such that

Kf=Y NT;f, Vfer. (3.6)
jel
(iti) The series iy
that for every f € H, there is {gj t}jcr € L*({¥;}jer) satisfying

AZgj converges in H for all {g;}jer € ZL%({¥;}jer) and there exists M > 0 such

Kf=Y Ngsand > {g7;, 975 < M{f, f).

Jjed J€J
Proof (i)=(ii). Let C' and D be the bounds of {A;};cy; then for every f € J7,
C(Kf, K f) < 3 (A f, A f) < D{J, ).
JjeJ

The left-hand inequality is equivalent to CKK* < T*T. By Lemma 2.8 we know that there exists I' €
End’y (5, £*({¥;}je1)) such that K = T*I'. Let P, be the projection on £%({¥;};ey) that maps each

element to its n-th component, i.e. P,g = {u;},cy, where

L gn ifj=mn,
YT 0 ifj#£n,

for each g = {g;};es € L*({¥;}jer). If we define I'; = P;T", then for each f € 5 we have

ST ) =Y (PTL PTS) =Y (Tf);, (Tf);) = Tf, Tf) < TIPS, £).

jel jel JjEJ
Hence {I';};cy is a g-Bessel sequence for . with respect to {¥;};e5. Now
Kf=TTf=> A(Tf); =Y AM(PTf)=> AT,f.
jel jel jel

(ii) = (iii). Since {A;};ey is a g-Bessel sequence, Zje,ﬂ Ajg; converges with respect to the norm topology
for all {g;}je; € L*({¥;}jer). Let D be the g-Bessel bound of {I';};cy and taking g;f =TI;f for all j €J
and all f € 5 we get

Kf=Y Ngipand > (g7, 955) = _(T;£, T;£) < D{f, f).
Jjel JEJ J€J
(iii) = (i). Since >, yAjg; converges with respect to the norm topology for all {g;};ey € L2({V5}jer)
and {A;f}jer € L2({¥;}jey) forall f € 7, we conclude, as in the proof of Theorem 3.8, that 7" is adjointable.

Therefore,

S, Ajf>H— s, THI < ITIPIFIP.

JEl
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Now for every f € 5 we compute

2

1K fI? = sup  (K*f,m)IP= sup Y (A, gig)
he, ||h||=1 he . |hl=1ll7g]
< sup (D (A Ajf>H > {955, gj,f>H
nes, Inl=11157 =
< [ Sss 8]
JEJ
Thus, {A;},ey is a K-g-frame for s with respect to {¥;};er, by Theorem 3.8. O

Corollary 3.11 Let {A; € End’y (A, ¥;)}jer be an A-tight K -g-frame for J with respect to {¥;}jey with
synthesis operator Tx. Suppose that Ran(Ty) is orthogonally complemented. Then there exists a g-Bessel
sequence {I'; € End’y (S, ¥;)}jey for H with respect to {¥;}jey such that Kf = Zjej AT f forall f et

and

sup
hes, ||h||=1

1
> (T, th>H> =4 (3.7)
Jjel

Proof By Theorem 3.10, there exists a g-Bessel sequence {I'; € End(J, ¥;)}jey such that Kf =
e ML f for all f € . A simple calculation shows that K*f = > . ;I7A;f. Now for all f € J#

J
we obtain

St A = Al = A s
2 jel
2
=A-  sup (A, f, T;h)
he, ||h||=1 ]% s
< A- sup Z<A]fa Ajf> ’ Z<th, F]h>H
nest, Inll=11l423 =

It follows that

sup
hes#, ||h|=1

1
Z(th, rjh>H> =4
jel

O

Theorem 3.12 Let {A; € Endy(J, ¥;)}je; be a g-Bessel sequence for H with respect to {¥;}jey with
synthesis operator Ty and K € End% (). Suppose that Ran(T}) is orthogonally complemented. Then
{A;}jer is a K-g-frame if and only if there exists I' € End’y(ZL?({¥;}jer), #) with Ran(I'*) orthogonally
complemented such that Ran(K) C Ran(I') and A; = P;T* for each j € J, where P; is the projection on
L2({¥;}jer) that maps each element to its j-th component.

Proof Suppose first that {A;},ecy is a K-g-frame for J¢ with respect to {¥;};ey. Taking I' = T, then the
definition of K -g-frames along with Lemma 2.8 gives Ran(K) C Ran(I') and A; = P;I™* for all j € J.
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Conversely, assume that A; = P;,I'* for all j € J, where I' € End’y (£?({¥;};e1), #) with Ran(I'*)
orthogonally complemented and Ran(K) C Ran(I'). Then by Lemma 2.8, there exists A > 0 such that
AKK* <TT*. Thus for all f € 5 we have

A fIIP < [0 fI? =

ST, @ );)

JEI

> (A, Ajf)H-

Jjel

Now the conclusion follows from Theorem 3.8. O
We conclude this section with the results showing that the removal of an element from a K-g-frame can

leave again a K -g-frame.

Theorem 3.13 Let {A; € Endy(J, ¥})}jey be a K-g-frame for H with respect to {¥;};cy with bounds
A, B. Let jo € J be given. Suppose that K has closed range and Ran(K) is orthogonally complemented. We

have the following results:

(i) If span{\;(H;)}jen (joy C Ran(K) and Ran(A} Aj)) L Ran(K), then {A;}jen oy is a K -g-frame
for A with respect to {¥;}jer-

(ii) If span{\;(A;)}jenjoy € Ran(K) and A—||KT|2[|A;, ]2 > 0, then {A;}jen (o) is a K -g-frame
for A with respect to {¥;};ey, where KT is the Moore—Penrose inverse of K .
Proof (i) For any h € Ran(K), since h € Ker(A} Aj,), we have

A(E*h, K*h) <> (Ajh, Ajhy = >~ (Ajh, Ajh).
jed jeN{jo}

Since Ran(K) is orthogonally complemented, every f € 2 has a decomposition as f = f; + fo, where f; €
Ran(K) and f, € (Ran(K))*. A direct calculation shows K* f, = 0. We also have fy L Span{ A (5) }jen Loy -

Therefore,

AR, K f)y = AR fi, K*fi) < ) (AL AR = Y (MF ).

j€N{do} j€N{do}
(ii) Since K has closed range, every h € Ran(K) can be expressed as h = KK'h = (KK')*h =
(KT)*K*h. Thus
(h, h) = (K" K*h, (K" K*h) < |[(K)*|*(K*h, K*h) = | K"|*{(K*h, K*h).
For all f € #, again applying the fact that f = fi + fo with f; € Ran(K) and f, € (Ran(K))* we have

SOWEND =D ML AR =D (N M) — (Mo f1, Ao fr)

JE€N{jo} JE€N{jo} J€J
> A(K* f1, K* f1) = [|Ag |12 (fr f)
> ACK* 1, K* fu) = | KA, 1P (K" fr, K* f)
= (A= | KTIP[As ) (K™ fr, K* fr)

= (A= KA ) f, K ).
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Theorem 3.14 Let {A; € Endy (5, ¥;)}jey be a K-g-frame for F with respect to {¥;}jey and jo €
I be given. Let Typr be the synthesis operator of {A;}jepqjoy and suppose that Ran(Ty,) is orthogonally
complemented. Then {A;};en (o) 5 a K -g-frame for S with respect to {¥;}jey if and only if there exists a
g-Bessel sequence {I'j € End’y (€, ¥;)}jcy for A with respect to {¥;}jcr and 0 < X <1 such that

HK*f - > F;Aijg MNIK*fll, Vfe. (3.8)
JEN{do}
Proof We assume first that {A;} e (o3 is a K-g-frame for . with respect to {#;};cy. Then by Theorem
3.10, there exists a g-Bessel sequence {©; € End’y (2, ¥;)}jep (o} for # with respect to {¥}};ey such that
K2 f =3 1en oy O30 f forall f € A, For every j € I, let I'; = ©; if j € J\{jo}, and I'; = 0 if j = jo.
Then it is clear that {I';},c; is a g-Bessel sequence for ¢ with respect to {¥#;};cy. Hence (3.8) holds for any
given A € [0,1).
For the other implication, let Ly (o1 f = Zje,]l\{jo} I5A;f for any f € 7. Then

2
ILpgoy fI? = sup > (Ajf, T;h)
92 IMI=11 €1\ (o}
< s | S wran||  mamnf<n] ¥ wran) 69
hest, M= en (o) JEN{o} €N Lo}
where D is the g-Bessel bound of {I';};cy. We also have
IEfI = Loy oy Il < KT f = Loy Sl < MK,
and hence
LGy fll = (L= MK F]. (3.10)
This along with the inequality (3.9) yields
(1=
THK fI7 < Z N f, A1)
J€N{Jo}
By Theorem 3.8, {A;} en o} is a K-g-frame for J# with respect to {7}};ey. O

4. Duality of g-frames for operators in Hilbert C*-modules

In this section we define a concept of dual by means of a bounded operator and the associated synthesis
operators to investigate the relation between a g-frame for operator and a g-Bessel sequence with respect to

different sequences of Hilbert C*-modules.

Definition 4.1 Let {f;};ey be a K -frame and {g;};ey be a Bessel sequence of 7. Then {g;}jey is called a
dual K -frame of {f;}jer if

Kf=Y (f f)g;, Vfer. (4.1)

JEJ
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Inspired by the concept of @-dual fusion frames in [9], we next introduce what we call V -dual K -g-frames
in Hilbert C*-modules.

Definition 4.2 Let {A; € End (S, ¥;)}je; be a K -g-frame for 7 with respect to {¥;}jcy and {I'; €
Endy (A, #;)}jey be a g-Bessel sequence for H with respect to {#;}jey with synthesis operators Ty and
Tr, respectively. Then {T';}jer is called a V -dual K -g-frame of {A;}jey if there exists a bounded operator
Vi L2V} jer) = L2} jer) such that ToVT; = K.

To derive our main result, we need the following lemma.

Lemma 4.3 Let K € End () and Aj € Endy (S, ¥;) for all j € J. Suppose that {fji}rer, is a frame
for ¥V with frame bounds A; and B; and let 0 < A = infjey Aj < sup;c; Bj = B < co. Then the following
conditions are equivalent:

(1) {A;}ier is a K -g-frame for 5€ with respect to {¥;}jes-

(ii) {A} fix}jer ker; is a K-frame for 7.

Proof The claim (i) < (ii) follows from the fact that for any f € . we have

AN NG NG <D AN A <D0 G Fk) Bk A )

jel jel Jel kel
=YD N ER A fis £) <Y B S A f) < BY (A Sy A f).
jel kel; jel jel

O

Theorem 4.4 Let {A; € Endj (S, ¥;)}jes and {T'; € End’y (A, #;)}jes be two sequences of adjointable
operators on A . For each j € J, let {fjr}rer, be a frame for ¥; and {fjk}ke[j be a frame for W
with frame bounds Aj;, B; and ﬁj, Ej, respectively. Suppose that 0 < A = infje; A; < B = sup;¢; By,
0< A= infjey Zj <B= Supjej éj. Then the following conditions are equivalent:

(i) {F§J§k}jeﬂ,kefj is a dual K -frame of {A] fik}je, rel, -

(i) {T;}jer is a V -dual K -g-frame of {A;}jer, where V : L2({¥;}jc1) — L2({H#;}jer) is defined by
VihYies = { Sher, has Fik) Fin} ey
Proof By Lemma 4.3, we have that {A fjx} ey ke, being a K-frame of J# is equivalent to {A;};e; being a

K -g-frame for ¢ with respect to {#;};ey. The same occurs with the sequences {F;fjk}je‘]]’ rer; and {I'j} ey

Thus it remains only to prove the duality.

Let us denote by T; and ij the synthesis operators associated to the frames {fjx}res, and {fjk}ke I

respectively. Recall that 7} is an operator from ¢2(A) onto ¥; defined by

Ti{ck}rer, = Z cefin, V{crtrer, € 62(./4) = {{aj}jej CA: Zaja;- converges in|| - ||}

kel; jel
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Now define the operator V : L2({¥;};e1) = L*({#;}je1) by
V{hj}jer = {Z(hm fjk>fjk} :
kel; Jed
Since
Y (TT; (hy), Ty (hy)) < Y T IPITS NP By, Bg),s
Jjed Jj€J

it follows that

IV{h;}jesll? =

§]@¢@»@¢@wk53
JjeJ

> (hy, hy)

J€]

’=BBMmh@W-

Therefore, V' is well defined and also bounded.
Let T and Tt be the synthesis operators of {A;};ey and {I';} ey respectively; then

TrVIRf =TrV{A;f}jer = Tr{ > (A, fjk>fjk‘}
jel

kel;

=N N BT e =)0 U A k)T fe
j€l kel; j€l kel;
Hence the last term is equal to Kf for all f € 2 if and only if {F;Ek}jej7ke[ﬂ. is a dual K-frame of
{AS firYjen ker; - O
If we let #; = % for each j € J and V = Idg2({4,},.,) in definition 4.2, then

Kf =Y TiA;f (4.2)
J€J

for all f € 2. In this case we call {I';}c; a dual K-g-frame of {A;};c5.

Example 4.5 Let K € End’ () and T € Endy () an invertible operator such that T*K is surjective. Let
also T; € End’(¥;) be invertible for each j € J and suppose that 0 < m = infj¢c; ||Tj_1||’1 < supe;g [T} =
M < oo. Let {Aj € End’y (S, ¥;)}jey be a K -g-frame for A with respect to {¥;} ey with bounds A, B. For
all j €, let I'j = T;A;T; then for any f € 5€ we have

Y AU T =Y ATNTF TAT ) > Y T3 AT S, AT )
Jjel Jjel jel

>m® Y (AT, AT f) > m* A(K*Tf, K*Tf)
jel

> m A[[(K*T) (K*T) 7|7, f)-

Similarly we have >, (U f, Tjf) < M?B\|T\*(f, ). Therefore, {T';};ey is a g-frame for F# with respect
to {¥;}jes. Denote the g-frame operator of {I';};ey by Sr and set &; = Tj*TjAjTSl?lT*K* for each j € J.
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Then it is easy to check that {®; € End’y (', ¥j)},ecr is a g-Bessel sequence for S with respect to {¥;}jey.
Now for any f € 5 we obtain

DO = KDY TS T ATITA, f
Jjel jel
= KTS 'Y T AT TA, f
Jjel

=KTS;'SrT— ' f = Kf.
This implies that {®;};ey is a dual K -g-frame of {A;}jey.

Proposition 4.6 Let {A; € End (S, ¥j)}jes be a K -g-frame for F with respect to {¥;}jey and {T; €
End’y (S, ¥j)}jer be a dual K -g-frame of {A;}jey with synthesis operator Tr. Suppose that Ran(T}) is
orthogonally complemented. Then {I';}jey is also a K -g-frame for J€ with respect to {¥;}jey. Moreover,
{A;}jer and {T';}jep in (4.2) can be interchanged if and only if K = K*.

Proof Denote by D the g-Bessel bound of {A;},cy; then for every f € 7 we have

2
IK*fI? = sup  (K*f, )P =sup Y (Tif, A;h)
he, ||h||=1 hes, ||nll=1l5Z]
< osup D (@ ij>H > (Ajh, Ajh>H<D > (T, rmH.
hedt, Ihll=111 ey j€l jel

By Theorem 3.8, {I';}jecy is a K-g-frame for 4 with respect to {¥#;};cy. The “Moreover” part follows

immediately from the observation that for all f, g € 5# we have

(K*f, 9) = (f, Kg) = <f, ZF}‘AJ'9>= <Z AT, f, g>~

= Jjel
O

Proposition 4.7 Let {A; € End(J, ¥})}jey be a K -g-frame for S with respect to {¥;};cy with bounds
C, D and {T'; € End’y (S, ¥;)}jey be a dual K -g-frame of {A;}jey. If K is right-invertible, then {I';};jey is
a g-frame for S€ with respect to {¥;}jes.

Proof Assume that KT =1d,». Then f = Zjej IZA;Tf for all f € 7. Now

J

2 2
i1 = (S rsaer )| = [Saer e
2 2
< |7, Aij>H DTSt ij>Hs D|T|*| > (T, ij>H.
JjEJ 2 JjEJ
By Lemma 2.7, {I';};¢5 is a g-frame for 4 with respect to {¥;};e5. O
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Proposition 4.8 Let {A; € Endy (S, ¥;)}jey be a K-g-frame for A with respect to {¥;};ey and {I'; €
End’ (47, ¥})}jer be a dual K -g-frame of {A;}jey. For each j € I, let ({fjx}rer,» {9jr}trer, ) be a pair of
dual frames of ¥; with frame bounds Aj;, B; and Ej, §j , respectively. Suppose that 0 < A =inf;c;j A; < B =
sup;e; B, 0 < A =infjey A; < B =sup;c; B;. Then {T%gjn}jes ner, s a dual K -frame of {A% fii}jer ker, -

Proof By Lemma 4.3, {Afjr}jes ker; is a K-frame of 7. For all f € S, since

SN g Tigi, £) <D BHU L Tf) < BY (Ui f, T5),

jel kel jel jel

we conclude that {F;‘ gjk}jel, ker, is a Bessel sequence of 7. Now the result follows from the following equality:

Kf=3 a0 =31 (Z (S, fjk>gjk>— S S A g

jel jel kel; JEI kel;

for all fe 7. O
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