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Abstract: We derive a generalization for the reconstruction of M -sparse sums in Chebyshev bases of the third and

fourth kind. This work is used for a polynomial with Chebyshev sparsity and samples on a Chebyshev grid of [−1, 1] .

Further, fundamental reconstruction algorithms can be a way for getting M-sparse expansions of Chebyshev polynomials

of the third and fourth kind. The numerical results for these algorithms are designed to compare the time effects of

doing them.
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1. Introduction

A linear combination of Chebyshev polynomials with M nonzero coefficients, where M is much smaller than the

degree, is called a M-sparse polynomial in the corresponding Chebyshev basis. One of the applications is the

recovery and the repair of the sparse signals from a small set of measurements [11, 12]. There are also some

efficient reconstruction algorithms for this work. One of them is a random recovery method such as Legendre

expansion with M nonzero coefficients; see [8, 11]. Moreover, there are some deterministic methods for the

reconstruction

F (x) =
M∑
k=1

cke
iwkx

with complex parameters ck and wk , k = 1, . . . ,M , and −π < Imw1 < . . . < ImwM < π . We hope to

reconstruct ck and wk from a given small amount of (possibly noisy) measurement values F (x).

In [9], Potts and Tasche introduced some processes for reconstruction of sparse expansions in bases of

Chebyshev polynomials of the first and second kind. We are motivated to generalize this reconstruction of

M -sparse sums in Chebyshev bases of the third and fourth kind. There are some methods for these works, such

as the Prony method [10], the matrix pencil method [4, 5], and the ESPRIT method [12]. Thus we want to

generalize these processes for recovery of all parameters ck, wk, k = 1, . . . ,M for sparse Chebyshev-3 and

Chebyshev-4 interpolations.

Usually Chebyshev polynomials of third and fourth kind that are special cases of Jacobi polynomials

are known less than first and second kind in the literature. However, these polynomials appear in various

applications such as potential theory of differential equations, recurrence relations, decomposition of sequences,

Rodrigues type formula, hypergeometric functions, and generating functions. Some of the explicit advantages of
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Chebyshev polynomials of third and fourth kind are shown in [1] to estimate some definite integrals and solving

boundary value problems in [7].

This paper is organized as follows: in Section 2, we study the Prony method for sparse polynomials with

bases of Chebyshev polynomials of the third and fourth kind; in Section 3, we discuss QR decomposition by

matrix pencil factorization for sparse interpolations; Section 4 is dedicated to the ESPRIT method; and finally

in Section 5, some numerical examples and comparisons for different algorithms are collected. The following

part shows standard and emphasis notations for the reader. We denote the set of all positive integers with N
and nonnegative integers with N0 . The Kronecker symbol is δk .

AM,N ∈ RM×N is a matrix, its transpose is AT
M,N , and its Moore–Penrose pseudoinverse is A†

M,N . A

square matrix AM,M is abbreviated to AM . IM is an identity matrix in RM×M . OM,N is a zero matrix in

RM×N . AM,M+1(1 : M, 2 : M +1) is the submatrix of AM,M+1 by extracting rows 1 through M and columns

2 through M + 1. AM,M+1(1 : M,M + 1) is the submatrix of AM,M+1 obtained by only the last column

of AM,M+1 . Definitions are presented by the symbol :=. All algorithms are tested for different matrices by

floating point arithmetic and with double precision in MATLAB.

2. Prony method for sparse polynomials with bases of Chebyshev polynomials of the third and

fourth kind

We begin this section with Chebyshev polynomials of the first, second, third, and fourth kinds. Chebyshev

polynomials will be denoted by Tn, Un, Vn , and Wn , respectively [6, 13]:

T0 (x) = 1, T1 (x) = x, Tn (cos θ) = cosnθ, (1)

U0 (t) = 1, U1 (x) = 2x, Un (cos θ) =
sin (n+ 1) θ

sin θ
,

V0 (t) = 1, V1 (x) = 2x− 1, Vn (cos θ) =
cos

(
n+ 1

2

)
θ

cos 1
2θ

,

W0 (t) = 1, W1 (x) = 2x+ 1, Wn (cos θ) =
sin

(
n+ 1

2

)
θ

sin 1
2θ

,

with n = 0, 1, 2, . . . .

All Chebyshev polynomials satisfy the three-term recurrence relation, for instance,

Ti+1 (x) = 2xTi (x)− Ti−1 (x) for i = 1, 2, . . . . (2)

Let M,N be positive integers that M < N ;

f(x) =
d∑

k=0

akTk(x),

is a polynomial of degree d such that M ≪ d . If coefficients ak, k = 0, 1, . . . ,M are nonzero and the other

d-M + 1 coefficients vanish, it is called M-sparse in the Chebyshev-1 basis and it is represented in the form

f(x) =

M∑
j=1

cjTnj (x) (3)
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with cj := anj ̸= 0 and 0 ≤ n1 < n2 < . . . < nM = d . As we know Chebyshev grids are much better than

uniform grids for the recovery of polynomials [2]. In [9] is introduced Prony polynomial P of degree M with

grids xj := Tnj (uN ) = cos
njπ

2N−1 , j = 1, . . . ,M where uN := cos π
2N−1 and

P (x) = 2M−1
M∏
j=1

(x− cos
njπ

2N − 1
). (4)

Then P (x) can be represented in the Chebyshev-1 basis by

P (x) =

M∑
k=0

pkTk(x), pM := 1. (5)

In [9] is used in the nonequidistant Chebyshev grids by

uN,k := Tk(uN := cos
π

2N − 1
) = cos

kπ

2N − 1
, k = 0, . . . , 2M − 1

of the interval [−1, 1] with sampled data

fk := f(uN,k) = f(cos
kπ

2N − 1
), k = 0, 1, . . . , 2M − 1. (6)

Now we try to achieve the sparse interpolation on bases of Chebyshev polynomials of the third and fourth kind.

2.1. Sparse polynomial interpolation in Chebyshev-3 basis with Prony method

For n ∈ N0 and x ∈ (−1, 1) , the Chebyshev polynomial of the third kind is defined by

Vn(x) :=
cos((n+ 1/2) arccosx)

cos( 12 arccosx)

see [3, 6]. As we know, these polynomials are orthogonal with respect to the weight (1 − x)−1/2(1 + x)1/2 in

(−1, 1). Now we consider a polynomial f of degree at most 2N − 1, which is M -sparse in the Chebyshev-3

basis, i.e.

f(x) =
M∑
j=1

cjVnj (x) (7)

with M < N and c := {cj}Mj=1 ̸= 0 and 0 ≤ n1 < n2 < . . . < nM ≤ 2N − 1. The integer M is called the

Chebyshev-3 sparsity of the polynomial (7).

If we let x = cos t , for all t ∈ [0, π] , thus

f(cos t) cos
t

2
=

M∑
j=1

cj cos((nj +
1

2
)t),

we use the grids t = kπ
2N−1 , k = 0, 1, . . . , 2N − 1, and we set

f̃k := f(cos
kπ

2N − 1
) cos

kπ

2(2N − 1)
=

M∑
j=1

cj cos
(nj +

1
2 )kπ

2N − 1
(8)
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with Prony polynomial:

P̃ (x) = 2M−1
M∏
j=1

(x− cos
(nj +

1
2 )π

2N − 1
) =

M∑
k=0

pkTk(x), pM := 1. (9)

The coefficients pk, k = 0, . . . ,M − 1, of the Prony polynomial can be determined by the following theorem:

Theorem 2.1 With the above assumptions, the coefficients pk of the Prony polynomial (9) satisfy:

M−1∑
j=0

(f̃j+k + f̃|j−k|)pj = −(f̃M+k + f̃|M−k|). (10)

Proof We have

f̃j+k =
M∑
l=1

cl cos
(nl +

1
2 )(j + k)π

2N − 1
,

and

f̃|j−k| =

M∑
l=1

cl cos
(nl +

1
2 )|j − k|π

2N − 1
,

we know cos(x+ y) + cos(x− y) = 2 cosx cos y ; then

f̃j+k + f̃|j−k| = 2
M∑
l=1

cl cos
(nl +

1
2 )jπ

2N − 1
cos

(nl +
1
2 )kπ

2N − 1
. (11)

We deduce that

M∑
j=0

(f̃j+k + f̃|j−k|)pj = 2

M∑
l=1

cl cos
(nl +

1
2 )kπ

2N − 1

M∑
j=0

pj cos
(nl +

1
2 )jπ

2N − 1

= 2
M∑
l=1

cl cos
(nl +

1
2 )kπ

2N − 1
P̃ (cos

(nl +
1
2 )kπ

2N − 1
) = 0;

hence we get (10). 2

Let f̃(k) := (f̃j+k + f̃|j−k|)
M−1
j=0 , k = 0, 1, ...,M and set the square Toeplitz–Hankel (T + H ) matrix

such that

F̃M (0) := (f̃j+k + f̃|j−k|)
M−1
j,k=0 =

(
f̃(0) f̃(1) . . . f̃(M − 1)

)

=


2f̃0 2f̃1 . . . 2f̃M−1

2f̃1 f̃2 + f̃0 . . . f̃M + f̃M−2

...
...

...

2f̃M−1 f̃M + f̃M−2 . . . f̃2M−2 + f̃0

 . (12)
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Eq. (11) follows the factorization of the T +H matrix such that

F̃M (0) = 2VM (x)(diagc)VM (x)T , (13)

and

VM (x) := (Tk(xj))
M−1,M
k=0,j=1 =

(
cos

(nj +
1
2 )kπ

2N − 1

)M−1,M

k=0,j=1

.

VM (x) is a nonsingular Vandermonde-like matrix with x := (xj)
M
j=1 . Introducing

Y (x) :=
M−1∑
l=0

yl cos(lx),

this is a trigonometric polynomial of order at most M−1 with M distinct zeros
(nj+

1
2 )π

2N−1 ∈ (0, π) j = 1, . . . ,M .

In Eq. (7), diag c is nonsingular. Further, Eq. (13) concludes F̃M (0) is nonsingular.

The results also show that

F̃M (1) := (f̃j+k+1 + f̃|j−k−1|)
M−1
j,k=0 =

(
f̃(1) f̃(2) . . . f̃(M)

)
,

and

F̃M,M+1 :=
(
F̃M (0) F̃M (1)(1 : M,M)

)
=

(
f̃(0) f̃(1) . . . f̃(M − 1) f̃(M)

)
(14)

F̃M (s) := F̃M,M+1(1 : M, 1 + s : M + s) (s = 0, 1). (15)

Let EM := diag( 12 , 1, . . . , 1)
T ∈ RM ,

SM := (δj−k−1 + δj−k+1)
M−1
j,k=0 =



0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 1 0
0 0 0 . . . 1 0 1
0 0 0 . . . 0 1 0


,

PM := SM − (0 . . .0 p) =



0 1 0 . . . 0 0 −p0
1 0 1 . . . 0 0 −p1
0 1 0 . . . 0 0 −p2
...

...
...

...
...

...
0 0 0 . . . 0 1 0
0 0 0 . . . 1 0 1− pM−2

0 0 0 . . . 0 1 −pM−1


By Lemma 2.4 and Lemma 2.5 in [9], we conclude that

det(2xEM − SM ) = TM (x), x ∈ R
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and

det(2xEM −PM ) = 2M−1det(xIM − 1

2
E−1

M PM ) = P̃ (x), x ∈ R. (16)

Theorem 2.2 Let f be a M -sparse polynomial of degree at most 2N − 1 in the Chebyshev-3 basis with M

and N integers (1 ≤ M ≤ N ) with 2M samples

f̃k :=

M∑
j=1

cj cos
(nj +

1
2 )kπ

2N − 1
k = 0, . . . , 2M − 1 :

i- we have f̃(M) ∈ span{f̃(0) f̃(1) . . . f̃(M − 1)} .

ii- we reconstruct M coefficients cj ∈ R (j = 1, . . .M) and the M nonnegative integers nj (j = 1, . . .M) ,

of f(x) =
∑M

j=1 cjVnj (x) .

Proof The coefficients of the Prony polynomial can be determined via the linear system:

F̃M (0)p = −f̃(M), (17)

where p := (pk)
M−1
k=0 . The equation (17) is spanned by Theorem 2.1 that shows f̃(M) ∈ span{f̃(0) f̃(1) . . . f̃(M−

1)} . With the above assumptions, the coefficients pk of the Prony polynomial (9) satisfy the equations

M−1∑
j=0

(f̃j+k + f̃|j−k|)pj = −(f̃M+k + f̃|M−k|).

The zeros of the Prony polynomial are the eigenvalues of the companion matrix 1
2E

−1
M PM in (16). Then

we can compute not only M nonnegative integers nj (j = 1, . . .M), but also we denote M coefficients

cj ∈ R (j = 1, . . .M) by solution of the square Vandermonde-like relation VM (x)c = (f̃k)
M−1
k=0 . 2

The following algorithm can be used for the interpolation of known Chebyshev-3 sparsity.

Algorithm 2.3 Prony method for known Chebyshev-3 sparsity

Input: Matrix F̃M (0) and vector f̃(M) by

f̃k :=
M∑
j=1

cj cos
(nj +

1
2 )kπ

2N − 1
k = 0, . . . , 2M − 1.

Step 1: Solve the following linear square problem F̃M (0)p = −f̃(M) .

Step 2: Find roots −1 ≤ xM < . . . < x1 ≤ 1 of the Prony polynomial in (9).

Step 3: Compute

nj :=

[
2N − 1

π
arccosxj −

1

2

]
, j = 1, . . . ,M,

by rounding to the nearest integer.
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Table 1. Numerical evaluation of indices by Algorithm 2.3.

j nj cj ñj c̃nj

1 60 10 60 10.000000000004942
2 120 20 120 19.999999999994991
3 1760 30 1760 30.000000000009710
4 1780 40 1780 39.999999999989704
5 2000 50 2000 50.000000000000647

Step 4: Solve the square Vandermonde-like problem

VM (x)c = (f̃k)
M−1
k=0 .

Output: We have cj ∈ R (j = 1, . . .M) and M nonnegative integers nj (j = 1, . . .M) .

Example 2.4 We use Algorithm 2.3 with N = 2000 for the recovery of the sparse polynomial in the Chebyshev-

3 basis

f(x) = 10V60(x) + 20V120(x) + 30V1760(x) + 40V1780(x) + 50V2000(x).

Table 1 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4, 5 and

uN = cos π
2N−1 .

Let L,K,M,N be positive integers with M ≤ L ≤ K ≤ N . We try to generalize the last results of this

section to a rectangular T + H matrix and rectangular Vandermonde-like matrices. We try to factorize the

rectangular T +H matrix and the modified Prony polynomial

Q(x) = 2L−1
L∏

j=1

(x− cos
(nj +

1
2 )π

2N − 1
) =

L∑
k=0

qkTk(x), qL := 1, x ∈ R. (18)

The zeros of the modified Prony polynomial can be computed via solving a rectangular eigenvalues problem. We

choose more sampling points by improving the numerical stability; then we introduce f̃k = f(uN,k) ∈ R, k =

0, 1, . . . , L+K − 1 and T +H matrix

F̃K,L+1 := (f̃j+k + f̃|j−k|)
K−1,L
l,m=0 =

(
F̃K,L(0) F̃K,L(1)(1 : K,L)

)
, (19)

F̃K,L(s) := (f̃j+k+s + f̃|j−k−s|)
K−1,L−1
l,m=0 s = 0, 1. (20)

F̃K,L(1) is a shifted version of the matrix F̃K,L(0), namely

F̃K,L(1) =
(
f̃(1) f̃(2) . . . f̃(L)

)
=

(
F̃K,L(0)(1 : K, 1 : L− 1) f̃(L)

)
(21)

F̃K,L(s) := F̃K,L+1(1 : K, 1 + s : L+ s) (s = 0, 1). (22)
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Note that if M = L = K we obtain T + H matrix in (14), (15) and the vector p := (pk)
L−1
k=0 with

pM := 1, pM+1 = . . . = pL−1 := 0.

Without loss of generality we can use the results of Lemma 3.1 in [9] for sparse polynomial interpolation

in the Chebyshev-3 basis,

rank F̃K,L+1 = rank F̃K,L+1(s) = M s = 0, 1

F̃K,L(0) = 2VK,M (x)(diag c)VL,M (x)T , (23)

where

VK,M (x) := (Tk−1(xj))
K,M
k,j=1 =

(
cos

(nj +
1
2 )(k − 1)π

2N − 1

)K,M

k,j=1

,

is a rectangular Vandermonde-like matrix with x := (xj)
M
j=1 and

dim(nullF̃K,L+1) = L−M + 1,

dim(nullF̃K,L+1(s)) = L−M s = 0, 1.

Lemma 2.5 Let L,K,M,N be positive integers with M ≤ L ≤ K ≤ N , f̃k = f̃(uN,k) k = 0, . . . , L+K − 1

be sampled data of the sparse polynomial (7) of degree at most 2N − 1 and the coefficients cj ∈ R− {0} ; then
the following results are equivalent:

i-

Q(x) :=

L∑
k=0

qkTk(x), qL := 1 qk ∈ R (24)

is a polynomial with distinct roots {xj}Mj=1 such that −1 ≤ xM < . . . < x1 ≤ 1 .

ii- A solution of the following linear system is the vector q = (qk)
L−1
k=0 such that

F̃K,L(0)q = −f̃(L) that f̃(L) := (f̃L+m + f̃|L−m|)
K−1
m=0. (25)

iii-The matrix QL := SL − (0 . . .0 q) ∈ RL×L has the property

F̃K,L(0)QL = F̃K,L(1) +
(
0 f̃(0) f̃(1) . . . f̃(L− 2)

)
. (26)

Therefore, the eigenvalues 1
2E

−1
L QL are the zeros of the polynomial Q(x) in (24).

For proof refer to [9].

Now we formulate Lemma 2.5 as an algorithm for the modified Prony method for sparse Chebyshev-3

interpolation. Since the unknown coefficients cj , j = 1, ...,M do not vanish, for convenient bound ϵ (0 < ϵ ≪
1), we suppose |cj | > ϵ .
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Algorithm 2.6 Prony method for unknown Chebyshev-3 sparsity

Input: Matrix F̃K,L(0) and vector f̃(L) by

f̃k :=

M∑
j=1

cj cos
(nj +

1
2 )kπ

2N − 1
k = 0, . . . , L+K − 1

that L,K,M,N are positive integers with M ≤ L ≤ K ≤ N.

Step 1: Solve the least squares problem

F̃K,L(0)q = −f̃(L).

Step 2: Find roots −1 ≤ x̃M̃ < . . . < x̃2 < x̃1 ≤ 1 of the Prony polynomial in (24) such that M̃ ≥ M .

Step 3: Solve the least squares solution of the overdetermined linear Vandermonde-like system

VL+K,M̃ (x̃)(c̃j)
M̃
j=1 = (f̃k)

L+K−1
k=0 .

with x̃ := (x̃j)
M̃
j=1 and VL+K,M̃ (x̃) in (23).

Step 4: Compute the remaining values of xj (j = 1, . . . ,M) by deleting all the x̃l (l ∈ {1, . . . , M̃} with

|cl| ≤ ϵ).

Step 5: Compute

nj :=

[
2N − 1

π
arccosxj −

1

2

]
, j = 1, . . . ,M ≤ M̃,

by rounding to the nearest integer.

Step 6: Again solve the least squares problem of the overdetermined Vandermonde-like system

VL+K,M (x)(cj)
M
j=1 = (f̃k)

L+K−1
k=0 .

Output: We have cj ∈ R (j = 1, . . .M) and M nonnegative integers nj (j = 1, . . .M) .

Example 2.7 We use Algorithm 2.6 with N = 5000, K = 60, L = 15, M = 5, and ϵ := 10−5 for the

recovery of the sparse polynomial in the Chebyshev-3 basis

f(x) = −32V75(x) + 45V129(x)− 108.6V1763(x) + 1057V1785(x)− 5679.7V2067(x).

Table 2 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4, 5 and

uN = cos π
2N−1 .

2.2. Sparse polynomial interpolation in Chebyshev-4 basis with Prony method

For n ∈ N0 and x ∈ (−1, 1), the Chebyshev polynomial of fourth kind is defined by

Wn(x) :=
sin((n+ 1/2) arccosx)

sin( 12 arccosx)
;
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Table 2. Numerical evaluation of indices by Algorithm 2.6.

j nj cj ñj c̃nj

1 75 -32 75 −0.031999999999999× 103

2 129 +45 129 +0.045000000000001× 103

3 1763 -108.6 1763 −0.108600000000001× 103

4 1785 +1057 1785 +1.056999999999999× 103

5 2067 -5679.7 2067 −5.679709999999997× 103

see [3, 6]. As we know these polynomials are orthogonal with respect to the weight (1 − x)−1/2(1 + x)1/2 in

(−1, 1). Now we consider a polynomial g of degree at most 2N − 1, which is M -sparse in the Chebyshev-4

basis, i.e.

g(x) =
M∑
j=1

cjWnj (x) (27)

M < N and 0 ≤ n1 < n2 < . . . < nM ≤ 2N − 1 with c := {cj}Mj=1 ̸= 0 . The integer M is called the

Chebyshev-4 sparsity of the polynomial (27).

We know W2N−1 = U2N−1 + U2N−2 = T0 + 2(T1 + T2 + . . .+ T2N−1); see [6]. Then W2N−1 +W2N−2 =

2T0+4(T1+T2+. . .+T2N−2)+2T2N−1 . Therefore, the 4-sparse polynomial W2N−1+W2N−2 in the Chebyshev-4

basis is not a sparse polynomial in the Chebyshev-1 basis. If we let x = cos t , for all t ∈ [0, π] , thus

g(cos t) sin
t

2
=

M∑
j=1

cj sin((nj +
1

2
)t).

We use the grids t = kπ
2N−1 , k = 0, 1, . . . , 2N − 1, and set

g̃k := g(cos
kπ

2N − 1
) sin

kπ

2(2N − 1)
=

M∑
j=1

cj sin
(nj +

1
2 )kπ

2N − 1
(28)

with Prony polynomial:

P̃ (x) = 2M−1
M∏
j=1

(x− cos
(nj +

1
2 )π

2N − 1
) =

M∑
k=0

pkTk(x), pM := 1. (29)

Let g̃−k := −g̃k k = 1, 2, . . . , 2N − 1; the coefficients pk, k = 0, . . . ,M − 1, of the Prony polynomial can now

be determined via the following theorem:

Theorem 2.8 With the above assumptions, the coefficients pk of the Prony polynomial (29) satisfy:

M−1∑
j=0

(g̃j+k − g̃|j−k|)pj = −(g̃M+k − g̃|M−k|). (30)
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Proof We have

g̃j+k =
M∑
l=1

cl sin
(nl +

1
2 )(j + k)π

2N − 1
,

and

g̃|j−k| =
M∑
l=1

cl sin
(nl +

1
2 )|j − k|π

2N − 1
,

we know sin(x+ y)− sin(x− y) = 2 sinx cos y ; then

g̃j+k − g̃|j−k| = 2
M∑
l=1

cl sin
(nl +

1
2 )jπ

2N − 1
cos

(nl +
1
2 )kπ

2N − 1
. (31)

We deduce that

M∑
j=0

(g̃j+k − g̃|j−k|)pj = 2
M∑
l=1

cl sin
(nl +

1
2 )kπ

2N − 1

M∑
j=0

pj cos
(nl +

1
2 )jπ

2N − 1

= 2
M∑
l=1

cl sin
(nl +

1
2 )kπ

2N − 1
P̃ (cos

(nl +
1
2 )kπ

2N − 1
) = 0;

hence we obtain (30). 2

Let g̃(k) := (g̃j+k − g̃|j−k|)
M,M−1
k=1,j=0 and set the square T +H matrix such that

G̃M (0) := (g̃j+k − g̃|j−k|)
M,M−1
k=1,j=0 = (g̃(0) g̃(1) . . . g̃(M − 1))

=


2g̃1 g̃2 − g̃0 . . . g̃M − g̃M−2

2g̃2 g̃3 + g̃1 . . . g̃M+1 − g̃M−3

...
...

...
2g̃M g̃M+1 + g̃M−1 . . . g̃2M−1 + g̃1

 . (32)

Eq. (31) follows the factorization of the T +H matrix such that

G̃M (0) = 2Vs
M (x)(diagc)Vc

M (x)T (33)

where

Vc
M (x) :=

(
cos

(nj +
1
2 )kπ

2N − 1

)M−1.M

k=0,j=1

and

Vs
M (x) :=

(
sin

(nj +
1
2 )kπ

2N − 1

)M

k,j=1

,
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both Vandermonde-like matrices are nonsingular. Introducing

Y (x) :=

M−1∑
l=0

yl cos(lx),

thus this is a trigonometric polynomial of order at most M − 1 that has M distinct zeros
(nj+

1
2 )π

2N−1 ∈ (0, π) j =

1, . . . ,M . This is possible only with Y ≡ 0.

Theorem 2.9 Let g be a M -sparse polynomial of degree at most 2N − 1 in the Chebyshev-4 basis with M

and N integers (1 ≤ M ≤ N ) and 2M samples

g̃k :=
M∑
j=1

cj sin
(nj +

1
2 )kπ

2N − 1
k = 0, . . . , 2M − 1 :

i- we show g̃(M) ∈ span{g̃(0) g̃(1) . . . g̃(M − 1)} .

ii- we reconstruct M coefficients cj ∈ R (j = 1, . . .M) and M nonnegative integers nj (j = 1, . . .M) , of

g(x) =
∑M

j=1 cjWnj (x) .

Proof The coefficients of the Prony polynomial can be determined via the linear system:

G̃M (0)p = −g̃(M) (34)

that p := (pk)
M−1
k=0 . The equation (34) is spanned by Theorem 2.8 that shows g̃(M) ∈ span{g̃(0) g̃(1) . . . g̃(M−

1)} . With the above assumptions, the coefficients pk of the Prony polynomial (29) satisfy the equations

M−1∑
j=0

(g̃j+k − g̃|j−k|)pj = −(g̃M+k − g̃|M−k|).

The zeros of the Prony polynomial are the eigenvalues of the companion matrix 1
2E

−1
M PM in (16). Then we

can not only compute M nonnegative integers nj (j = 1, . . .M) but also denote M coefficients cj ∈ R (j =

1, . . .M) by solution of the square Vandermonde-like relation Vc
M (x)c = (g̃k)

M−1
k=0 . 2

Analogously as Section 2.1 we obtain the algorithms for the known Chebyshev-4 sparsity polynomial.

Algorithm 2.10 Prony method for known Chebyshev-4 sparsity

Input: Matrix G̃M (0) and vector g̃(M) by

g̃k :=

M∑
j=1

cj sin
(nj +

1
2 )kπ

2N − 1
k = 0, . . . , 2M − 1.

Step 1: Solve the following linear square problem G̃M (0)p = −g̃(M) .

Step 2: Find roots −1 ≤ xM < . . . < x2 < x1 ≤ 1 of the Prony polynomial in (29).
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Table 3. Numerical evaluation of indices by Algorithm 2.10.

j nj cj ñj c̃nj

1 40 +10 40 +10.000000000055900
2 100 -20 100 -20.000000000038430
3 184 +30 184 +30.000000000012285
4 261 -40 261 -40.000000000002665
5 489 +50 489 +50.000000000000057

Step 3: Compute

nj :=

[
2N − 1

π
arccosxj −

1

2

]
, j = 1, . . . ,M,

by rounding to the nearest integer.

Step 4: Solve the square Vandermonde-like problem

Vs
M (x)c = (gk)

M−1
k=0 .

Output: We have cj ∈ R (j = 1, . . .M) and M nonnegative integers nj (j = 1, . . .M) .

Example 2.11 We use Algorithm 2.10 with N = 500 for the recovery of the sparse polynomial in the

Chebyshev-4 basis

f(x) = 10W40(x)− 20W100(x) + 30W184(x)− 40W261(x) + 50W489(x).

Table 3 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4, 5 and

uN = cos π
2N−1 .

Let L,K,M,N be positive integers with M ≤ L ≤ K ≤ N . We try to generalize the last results of this section

to a rectangular T +H matrix and rectangular Vandermonde-like matrices. We try to factorize the rectangular

T +H matrix and the modified Prony polynomial

Q̃(x) = 2L−1
L∏

j=1

(x− cos
(nj +

1
2 )π

2N − 1
) =

L∑
k=0

qkTk(x), qL := 1, x ∈ R. (35)

The zeros of the modified Prony polynomial can be computed via solving a rectangular eigenvalues problem. We

choose more sampling points by improving the numerical stability; then we introduce g̃k = g(uN,k) ∈ R, k =

0, 1, . . . , L+K − 1 and T +H matrix

G̃K,L+1 := (g̃j+k + g̃|j−k|)
K−1,L
l,m=0 =

(
G̃K,L(0) G̃K,L(1)(1 : K,L)

)
, (36)

G̃K,L(s) := (g̃j+k+s + g̃|j−k−s|)
K−1,L−1
l,m=0 s = 0, 1. (37)

G̃K,L(1) is a shifted version of the matrix G̃K,L(0), namely

G̃K,L(1) = (g̃(1) g̃(2) . . . g̃(L)) =
(
G̃K,L(0)(1 : K, 1 : L− 1) g̃(L)

)
(38)
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G̃K,L(s) := G̃K,L+1(1 : K, 1 + s : M + s) (s = 0, 1). (39)

Without loss of generality we can use the results of the section 2.1 and Lemma (2.5) for sparse polynomial

interpolation in the Chebyshev-4 basis.

Algorithm 2.12 Prony method for unknown Chebyshev-4 sparsity

Input: matrix G̃K,L(0) and vector g̃(L) by

g̃k :=

M∑
j=1

cj sin
(nj +

1
2 )kπ

2N − 1
k = 0, . . . , L+K − 1

that L,K,M,N are positive integers with M ≤ L ≤ K ≤ N .

Step 1: Solve the least squares problem

G̃K,L(0)q = −g̃(L).

Step 2: Find roots −1 ≤ x̃M̃ < . . . < x̃2 < x̃1 ≤ 1 of the Prony polynomial in (35) such that M̃ ≥ M .

Step 3: Solve the least squares solution of the overdetermined Vandermonde-like system

Vs
M (x̃)(c̃j)

M̃
j=1 = (g̃k)

L+K−1
k=0 ,

with x̃ := (x̃j)
M̃
j=1 and Vs

L+K,M̃
(x̃) :=

(
sin

(nj+
1
2 )kπ

2N−1

)L+K−1,M̃

k=0,j=1
.

Step 4: Compute the remaining values of xj (j = 1, . . . ,M) by deleting all x̃l (l ∈ {1, . . . , M̃} that

|cl| ≤ ϵ).

Step 5: Compute nj :=
[
2N−1

π arccosxj − 1
2

]
, j = 1, . . . ,M ≤ M̃ by rounding to the nearest integer.

Step 6: Again solve the least squares solution of the overdetermined Vandermonde-like system

Vs
L+K,M (x)(cj)

M̃
j=1 = (g̃k)

L+K−1
k=0 .

Output: We have cj ∈ R (j = 1, . . .M) and M nonnegative integers nj (j = 1, . . .M) .

Example 2.13 We use Algorithm 2.12 with N = 2000, K = 50, L = 50, M = 4, and ϵ := 10−0.5 for the

recovery of the sparse polynomial in the Chebyshev-3 basis

f(x) = W60(x) + 2W120(x) + 3W1760(x) + 4W1780(x).

Table 4 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4 and

uN = cos π
2N−1 .
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Table 4. Numerical evaluation of indices by Algorithm 2.12.

j nj cj ñj c̃nj

1 60 1 60 1.000000000000000
2 120 2 120 1.999999999999999
3 1760 3 176 2.999999999999998
4 1780 4 1780 3.999999999999998

3. QR decomposition by matrix pencil factorization for sparse Chebyshev-3 and Chebyshev-4

interpolations

In this section we show that the Prony method for sparse Chebyshev-3 and Chebyshev-4 interpolations can be

improved to the matrix pencil method. The matrix pencil can be

2xF̃K,L(0)EL − F̃K,L(0)QL

by eigenvalues x = {xj}Mj=1 ∈ [−1, 1] and a right eigenvector v ∈ CL of xj .

(2xjF̃K,L(0)EL − F̃K,L(0)QL)v = F̃K,L(0)(2xjEL −QL)v. (40)

By Lemma 2.5, we denote det(2xjEL −QL) = Q(xj), that Q(xj) = 0.

(2xjEL −QL)v ⇒ QLv = 2vxjEL ⇒ 1

2
E−1

L QLv = vxj . (41)

Now we factorize the rectangular T +H matrix (19) by QR factorization and column pivoting

F̃K,L+1ΠL+1 = UKRK,L+1

such that UK is an orthogonal matrix and RK,L+1(1 : M, 1 : M) is a nonsingular upper triangular matrix.

As we denoted ΠL+1 is a permutation matrix such that the diagonal entries of RK,L+1(1 : M, 1 : M) have

nonincreasing absolute values. We conclude that the diagonal matrix contains their diagonal entries by DM .

With

SK,L+1 := RK,L+1Π
T
L+1 =

(
SK,L+1(1 : M, 1 : L+ 1)

0K−M,L+1

)
,

we can conclude

F̃K,L(s) = UKSK,L(s) s = 0, 1,

with

SK,L(s) = SK,L+1(1 : K, 1 + s : L+ s) s = 0, 1.

We factorize the following matrices

2F̃K,L(0)EL = 2F̃K,L(0)

(
1

2
, 1, . . . , 1

)
= F̃K,L(0)I+ F̃K,L(0) (0, 1, . . . , 1)
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= UKSK,L(0) +
(
0, f̃(1) . . . f̃(L− 1)

)
= UKSK,L(0) +

(
0, F̃K,L+1(1 : K, 1 : L− 1)

)
= UKSK,L(0) + (0, UKSK,L(1)(1 : K, 1 : L− 1)) = UKS′

K,L(0), (42)

and

F̃K,L(0)QL = F̃K,L(1) +
(
0 f̃(0) . . . f̃(L− 2)

)
= UKSK,L(1) + (0, UKSK,L(0)(1 : K, 1 : L− 1)) = UKS′

K,L(1), (43)

where

S′
K,L(0) := SK,L(0) + (0 SK,L(1)(1 : K, 1 : L− 1)) ,

S′
K,L(1) := SK,L(1) + (0 SK,L(0)(1 : K, 1 : L− 1)) .

We know Uk is orthogonal; then the generalized eigenvalue problem of the matrix pencil (2xF̃K,L(0)EL −

F̃K,L(0)QL) is equivalent to the generalized eigenvalue problem of the matrix pencil

xS′
K,L(0)− S′

K,L(1) x ∈ R.

We can simplify the following matrix pencil by

xTM,L(0)−TM,L(1) x ∈ R (44)

where

TM,L(0) := S′
K,L(1 : M, 1 + s : L+ s) s = 0, 1. (45)

We define

T′
M,L(s) := D−1

M TM,L(s), (46)

where DM is a diagonal preconditioner matrix. Then the generalized eigenvalue problem of the transposed

matrix pencil

xT′
M,L(0)−T′

M,L(1)
T (47)

has the same eigenvalues as the matrix pencil (44) except for the zero eigenvalues. Finally we obtain the

eigenvalue problem of the M-by-M matrix

(
T′

M,L(0)
T
)†

T′
M,L(1)

T

(namely the nodes xj ∈ [−1, 1], j = 1, . . . ,M ).

Algorithm 3.1 Chebyshev-3 basis with QR decomposition

Input: Matrix F̃K,L+1 by

f̃k :=

M∑
j=1

cj cos
(nj +

1
2 )kπ

2N − 1
k = 0, . . . ,K + L− 1.
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Table 5. Numerical evaluation of indices by Algorithm 3.1.

j nj cj ñj c̃nj

1 10 +1 10 +0.999999999999712
2 20 -2 20 -2.000000000000363
3 30 +3 30 +2.999999999999822
4 40 -4 40 -4.000000000000144
5 50 +5 50 +4.999999999999629
6 60 -6 60 -6.000000000000366

Step 1: Compute QR factorization of the rectangular T +H matrix F̃K,L+1 .

Step 2: Find roots −1 ≤ xM < . . . < x2 < x1 ≤ 1 of the M-by-M matrix
(
T′

M,L(0)
T
)†

T′
M,L(1)

T .

Step 3: Compute

nj :=

[
2N − 1

π
arccosxj −

1

2

]
, j = 1, . . . ,M,

by rounding to the nearest integer.

Step 4: Solve the least squares problem of the overdetermined Vandermonde-like system

VL+K,M (x)(cj)
M
j=1 = (f̃k)

L+K−1
k=0

Output: We have cj ∈ R (j = 1, . . .M) and M nonnegative integers nj (j = 1, . . .M) .

Example 3.2 We use Algorithm 3.1 with N = 101, K = 6, L = 6, M = 6 for the recovery of the sparse

polynomial in the Chebyshev-3 basis

f(x) = V10(x)− 2V20(x) + 3V30(x)− 4V40(x) + 5V50(x)− 6V60(x).

Table 5 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4, 5 and

uN = cos π
2N−1 .

We derive the sparse interpolation with the basis of Chebyshev polynomials of the fourth kind with QR

decomposition. Here we applied analogous ideas as in Section 3 on the matrix (36). Then we can obtain

an algorithm similar to Algorithm 3.1; it is called Algorithm 3̃.1.

Example 3.3 We use Algorithm 3̃.1 with N = 1500, K = 200, L = 100, M = 3 for the recovery of the

sparse polynomial in the Chebyshev-4 basis

f(x) = 30.5W60(x)− 40.89W120(x) + 50.01W1000(x).

Table 6 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4, 5 and

uN = cos π
2N−1 .
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Table 6. Numerical evaluation of indices by Algorithm 3̃.1.

j nj cj ñj c̃nj

1 60 +30.5 60 +30.500000000000004
2 120 -40.89 120 -40.890000000000008
3 1000 +50.01 1000 +50.010000000000012

4. ESPRIT method for sparse Chebyshev-3 and Chebyshev-4 interpolations

In this section we obtain some results for sparse Chebyshev-3 and Chebyshev-4 interpolations by singular value

decomposition (SV D) of the T +H matrix (19):

F̃K,L+1 = UkDK,L+1WL+1,

where Uk and WL+1 are orthogonal matrices and DK,L+1 is a rectangular diagonal matrix. The diagonal

entries of DK,L+1 are the singular values of (19) such that

σ1 ≥ σ2 ≥ . . . ≥ σM > σM+1 = . . . = σL+1 = 0.

Thus we can denote the rank M of the Hankel matrix (19), which sets with the Chebyshev-3 sparsity of the

polynomial (7). Therefore, we introduce the following matrices

D̃K,M := DK,L+1(1 : K, 1 : M) =

(
diag(σj)

M
j=1

0K−M,M

)

WM,L(s) = WM,L+1(1 : M, 1 + s : L+ s), s = 0, 1.

WM,L+1 = WM,L+1(1 : M, 1 : L+ 1),

By simplify the SVD of the Hankel matrix (19) we have

F̃K,L+1 = UkDK,MWM,L+1,

and

F̃K,L(s) = UkDK,MWM,L(s), s = 0, 1.

Hence we can factorize the following matrices by similar processes in (42) and (43).

2F̃K,L(0)EL = F̃K,L(0) +
(
0 f̃(1) . . . f̃(L− 1)

)
= UkDK,MW′

K,L(0),

F̃K,L(0)QL = F̃K,L(1) +
(
0 f̃(0) . . . f̃(L− 2)

)
= UkDK,MW′

K,L(1),
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where

W′
K,L(0) := WK,L(0) + (0 WK,L(1)(1 : K, 1 : L− 1)) ,

W′
K,L(1) := WK,L(1) + (0 WK,L(0)(1 : K, 1 : L− 1)) .

We know Uk is orthogonal and so the generalized eigenvalue problem of the rectangular matrix pencil

(2xF̃K,L(0)EL − F̃K,L(0)QL) is equivalent to the generalized eigenvalue problem of the matrix pencil

xDK,MW′
M,L(0)−DK,MW′

M,L(1).

Now we multiply the above transposed matrix pencil from the right side with(
diag(σ−1

j )Mj=1

0K−M,M

)
,

and we obtain the generalized eigenvalue problem of the matrix pencil

xW′
M,L(0)

T −WM,L(1)
T , (48)

with the same eigenvalues except for the zero eigenvalues. Finally we obtain the eigenvalue problem of the

M-by-M matrix
(
W′

M,L(0)
T
)†

W′
M,L(1)

T , similarly as nodes xj ∈ [−1, 1] (j = 1, . . . ,M). This completes the

ESPRIT method for sparse Chebyshev-3 interpolation.

Algorithm 4.1 Chebyshev-3 basis with ESPRIT method

Input: Matrix F̃K,L+1 by

f̃k :=

M∑
j=1

cj cos
(nj +

1
2 )kπ

2N − 1
k = 0, . . . ,K + L− 1.

Step 1: Compute the SVD factorization of the rectangular T +H matrix F̃K,L+1 .

Step 2: Find roots −1 ≤ xM < . . . < x2 < x1 ≤ 1 of the M-by-M matrix

(
W′

M,L(0)
T
)†

W′
M,L(1)

T .

Step 3: Compute

nj :=

[
2N − 1

π
arccosxj −

1

2

]
, j = 1, . . . ,M,

by rounding to the nearest integer.

Step 4: Solve the least squares problem of the overdetermined Vandermonde-like system

VL+K,M (x)(cj)
M̃
j=1 = (fk)

L+K−1
k=0

Output: We have cj ∈ R (j = 1, . . .M) and M nonnegative integers nj (j = 1, . . .M) .
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Table 7. Numerical evaluation of indices by Algorithm 4.1.

j nj cj ñj c̃nj

1 500 -100 500 −1.000000050833920× 102

2 1500 +200 1500 +2.000000089247412× 102

3 2000 -300 2000 −2.999999991339938× 102

4 3000 +400 3000 +3.999999949162848× 102

Table 8. Numerical evaluation of indices by Algorithm 4̃.1.

j nj cj ñj c̃nj

1 100 -1.01 100 -1.010000000000001
2 200 +2.02 200 + 2.020000000000000
3 400 -3.03 400 -3.029999999999999
4 605 +4.04 605 + 4.040000000000000
5 781 -5.05 781 -5.050000000000000

Example 4.2 We use Algorithm 4.1 with N = 3000, K = 100, L = 80, M = 4 for the recovery of the

sparse polynomial in the Chebyshev-3 basis

f(x) = −100V500(x) + 200V1500(x)− 300V2000(x) + 400V3000(x).

Table 7 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4, 5 and

uN = cos π
2N−1 .

We derive the sparse interpolation with bases of the Chebyshev polynomials of the fourth kind with the ESPRIT

method. Here we applied analogous ideas as in Section 4 on the matrix (36).

Then we can obtain an algorithm similar to Algorithm 4.1; it is called Algorithm 4̃.1.

Example 4.3 We use Algorithm 4̃.1 with N = 10000, K = L = M = 5 for the recovery of the sparse

polynomial in the Chebyshev-4 basis

f(x) = −1.01W1000(x) + 2.02W2000(x)− 3.03W4000(x) + 4.04W6050(x)− 5.05W9810(x).

Table 8 shows the approximations for ñj and c̃j of the original parameters nj and cj , j = 1, 2, 3, 4, 5 and

uN = cos π
2N−1 .

5. Numerical examples and comparisons

In this section, the discussed algorithms are tested for different matrices by using IEEE standard floating point

arithmetic with double precision. We have implemented our algorithms in MATLAB. M -sparse polynomials

are given in the forms (7) and (27) with Chebyshev polynomials Vnj and Wnj of degree nj and real coefficients

cj ̸= 0 j = 1, . . . ,M .

Figure 1 and Figure 2 in their parts (a, b, c, d) are designed to compare the time effects of doing them.
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Figure 1. Comparison of the absolute error for Chebyshev-3 basis [left (a)] and Chebyshev-4 basis [right (b)].
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Figure 2. Comparison of the time for Chebyshev-3 basis [left (c)] and Chebyshev-4 basis [right (d)].

Example 5.1 We start the following algorithms for different matrices with rank N = (200 : 200 : 3000) with

K = 100, L = 100, M = 5 and c = (1, 2, 3, 4, 5), nj = (6, 12, 176, 178) and uN := cos π
2N−1 . We can see

the success of the three different strategies for M -sparse expansions of Chebyshev polynomials of the third and

fourth kind. We compared these methods by absolute error and time consuming.

Absolute error of the coefficients is computed by

e(c) := max
j=1,...,5

|cj − c̃j | c := (cj)
5
j=1,
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where c̃j are the coefficients calculated by our algorithms. Figure 1 presents absolute error for Chebyshev-3

basis [left (a)] and Chebyshev-4 basis [right (b)] and Figure 2 presents time consuming for Chebyshev-3 basis

[left (c)] and Chebyshev-4 basis [right (d)] by different algorithms and matrices. In all examples the numerical

stability of Algorithms 3.1 and 3̃.1 in section 3 and Algorithms 4.1 and 4̃.1 in section 4 can be improved by

using more sampling values.
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