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Abstract: We derive a generalization for the reconstruction of M -sparse sums in Chebyshev bases of the third and
fourth kind. This work is used for a polynomial with Chebyshev sparsity and samples on a Chebyshev grid of [—1,1].
Further, fundamental reconstruction algorithms can be a way for getting M-sparse expansions of Chebyshev polynomials
of the third and fourth kind. The numerical results for these algorithms are designed to compare the time effects of
doing them.
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1. Introduction

A linear combination of Chebyshev polynomials with M nonzero coefficients, where M is much smaller than the
degree, is called a M-sparse polynomial in the corresponding Chebyshev basis. One of the applications is the
recovery and the repair of the sparse signals from a small set of measurements [11, 12]. There are also some
efficient reconstruction algorithms for this work. One of them is a random recovery method such as Legendre
expansion with M nonzero coefficients; see [3, 11]. Moreover, there are some deterministic methods for the

reconstruction
M
F(x) = E cpe'r”
k=1

with complex parameters c; and wg, k = 1,...,M, and —7 < Imw; < ... < Imwy; < m. We hope to

reconstruct ¢, and wy from a given small amount of (possibly noisy) measurement values F(x).

In [9], Potts and Tasche introduced some processes for reconstruction of sparse expansions in bases of
Chebyshev polynomials of the first and second kind. We are motivated to generalize this reconstruction of
M -sparse sums in Chebyshev bases of the third and fourth kind. There are some methods for these works, such
as the Prony method [10], the matrix pencil method [4, 5], and the ESPRIT method [12]. Thus we want to
generalize these processes for recovery of all parameters cx, wg, k =1,...,M for sparse Chebyshev-3 and
Chebyshev-4 interpolations.

Usually Chebyshev polynomials of third and fourth kind that are special cases of Jacobi polynomials
are known less than first and second kind in the literature. However, these polynomials appear in various
applications such as potential theory of differential equations, recurrence relations, decomposition of sequences,

Rodrigues type formula, hypergeometric functions, and generating functions. Some of the explicit advantages of
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Chebyshev polynomials of third and fourth kind are shown in [1] to estimate some definite integrals and solving
boundary value problems in [7].

This paper is organized as follows: in Section 2, we study the Prony method for sparse polynomials with
bases of Chebyshev polynomials of the third and fourth kind; in Section 3, we discuss QR decomposition by
matrix pencil factorization for sparse interpolations; Section 4 is dedicated to the ESPRIT method; and finally
in Section 5, some numerical examples and comparisons for different algorithms are collected. The following
part shows standard and emphasis notations for the reader. We denote the set of all positive integers with N

and nonnegative integers with Ny. The Kronecker symbol is 6.

Ay oy € RMXN g a matrix, its transpose is Al n» and its Moore-Penrose pseudoinverse is A}LM, N- A
square matrix Aps ps is abbreviated to Apr. Ins is an identity matrix in RMx*M Oy, N is a zero matrix in
RMX*N Aprar1(1: M,2: M+1) is the submatrix of Aps a1 by extracting rows 1 through M and columns
2 through M +1. Ap p41(l: M, M + 1) is the submatrix of Az a1 obtained by only the last column
of Aasm41. Definitions are presented by the symbol :=. All algorithms are tested for different matrices by

floating point arithmetic and with double precision in MATLAB.

2. Prony method for sparse polynomials with bases of Chebyshev polynomials of the third and
fourth kind

We begin this section with Chebyshev polynomials of the first, second, third, and fourth kinds. Chebyshev

polynomials will be denoted by T),,U,,V,,, and W,,, respectively [6, 13]:

To(z)=1, Ti(x)==, T, (cosd)=cosnd, (1)
B B o sin(n+1)0
Up(t)=1, Up(z)=2x, Up,(cosh)= —ang

cos (nJr %) 0

Wwit)=1 WVi(z)=2cx—-1, V,(cosh) = T
cos 50

)

sin(n+1)0

Wo(t)=1, Wi(z)=2x+1, W, (cosh)= —
sin 50

)

with n=0,1,2,....

All Chebyshev polynomials satisfy the three-term recurrence relation, for instance,
Tit1 () =22T; () — Ti—1 (x)  for i=1,2,.... (2)

Let M, N be positive integers that M < N;

d
fl@) =Y arTu(w),
k=0

is a polynomial of degree d such that M <« d. If coefficients ay, k£ =0,1,..., M are nonzero and the other
d-M + 1 coefficients vanish, it is called M-sparse in the Chebyshev-1 basis and it is represented in the form

M
f@) = /T, () (3)
j=1
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with ¢ := a,; # 0 and 0 < ny; <np < ... <ny = d. As we know Chebyshev grids are much better than

uniform grids for the recovery of polynomials [2]. In [9] is introduced Prony polynomial P of degree M with
grids z; := T, (un) = cos 535, j=1,...,M where uy := cos 57— and
M
= Ux—coszN*l) (4)

Then P(z) can be represented in the Chebyshev-1 basis by

z) = ZPka(ﬂf)7 pm =1 (5)

In [9] is used in the nonequidistant Chebyshev grids by

0 km
=Ty '=C08S ——— ) = COS ———— =0,...,2M -1
UN k k(uN COs IN — 1) COs ON —1’ k O7 y
of the interval [—1, 1] with sampled data
fe = f( ) = f(cos b ), k=0,1 2M —1 (6)
k= UNk) = IN — 17 R .

Now we try to achieve the sparse interpolation on bases of Chebyshev polynomials of the third and fourth kind.

2.1. Sparse polynomial interpolation in Chebyshev-3 basis with Prony method
For n € Ny and = € (—1,1) , the Chebyshev polynomial of the third kind is defined by

cos((n + 1/2) arccos x)

cos(3 arccos )

V;L (IE) =

see [3, 6]. As we know, these polynomials are orthogonal with respect to the weight (1 —z)~'/2(1 4+ z)'/? in
(—=1,1). Now we consider a polynomial f of degree at most 2N — 1, which is M -sparse in the Chebyshev-3

basis, i.e.

M
7= eV (@) ™

with M < N and c := {cJ 1, #0and 0 < np <mg < ...<mnpy < 2N — 1. The integer M is called the
Chebyshev-3 sparsity of the polynomlal (7).
If we let & = cost, for all ¢ € [0, 7], thus

1
t — t
f(cost) cos ch cos((n; + 2))
we use the grids ¢t = 2]]\“]’:1, k=0,1,...,2N — 1, and we set
M
. km km (nj + 5)km
T f(COSZN_l)COS (2N—1)7;CJCOS N1 (8)
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with Prony polynomial:

ZPka ; pm =1 (9)

The coefficients pg, k=0,...,M — 1, of the Prony polynomial can be determined by the following theorem:

Theorem 2.1 With the above assumptions, the coefficients py of the Prony polynomial (9) satisfy:

M-1

(Fisk + fig—r)s = —(Farsr + fiar—n))- (10)
=0

Proof We have

M 1 .
~ (i +35)J+k)m
Tivk = 2—1 ACSTTHON T

and

M
~ m-i— )|] k‘ﬂ'
Jli—k| ZIZ;QCO —2N—1 ,

we know cos(z + y) + cos(x — y) = 2cosx cosy; then

M 1y: 1
- 5 (4 3)jm (i + g)km
Jitke + fli—xl :2;clcos 2N31 cos 2Ni1 (11)
We deduce that
M M
< < (i + 3 (ru + 3)jm
;(fj-i—k‘i'fljfk\)pj:Q;ClCOb _1 ZPJCOS N — 1
Qi (nl+2)k77p( (nl—|—§)k7r)_0_
TILATN T T TaN ’
hence we get (10). O

Let f(k) == (fjon + f‘j_m)jMzgl, k =0,1,..., M and set the square Toeplitz—Hankel (7" + H) matrix
such that

Far(0) = (Fyn + fisan) iy = (F0) FQ). B = 1))

2fo 2fi o 2fu
2f1 fo+ fo fM+fM 2
= . . (12)
2fv-1 faur+ fu—e . f2M72+J;O
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Eq. (11) follows the factorization of the T'+ H matrix such that

Far(0) = 2V, (%) (diage) Var (x)7,

and
M—-1.M
B ni: + Hkr ’
V() = (Tl ML, = (())

2N —1 k=0,j=1 -

M

Vu(x) is a nonsingular Vandermonde-like matrix with x := (z;);Z

1 - Introducing

M—-1

Y(z):= Z y; cos(lx),
1=0

1
this is a trigonometric polynomial of order at most M —1 with M distinct zeros (nyda)m o 0,7) j=1,...

2N—1
In Eq. (7), diag c is nonsingular. Further, Eq. (13) concludes F;(0) is nonsingular.

The results also show that
Far(1) = (finer + flimn-1) 00 = (f(l) £(2). -f(M)) :

and

Fararen o= (Far(0) Far(1)(1: M,00)) = (F(0) £(1)...F = 1) F(an))

F(s) = FM,MJrl(l cM,1+s:M+s) (s=0,1).

Let Ep := diag(%, L...,D)T e RM|

0 1 0 0 O
1 01 0 00
0 1 0 00
Sar = (Oj-k—1 +0j-re1)jpmo = | 1 SEES E
0 0 0 010
0 0 0 1 01
0 0 0 0 10
01 0 00 —po
1 1 0 0 —P1
010 0 0 —po
PMZ:SMf(O...O p): :
0 0 0 0 1 0
000 ... 10 1—py_s
000 ... 01 —pyu_

By Lemma 2.4 and Lemma 2.5 in [9], we conclude that

det(2xEM — SM) = TM(CL'), r€eR
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and

1 ~
det(2zEy — Pyy) = 2M et (21y, — §EA‘/11PM) = P(z), z€eR. (16)

Theorem 2.2 Let f be a M -sparse polynomial of degree at most 2N — 1 in the Chebyshev-8 basis with M
and N integers (1 < M < N ) with 2M samples

M 1

_ L)k

fio=> cjcos% k=0,...,2M —1:
i=1

i- we have £(M) € span{f(0) f(1)...f(M —1)}.

ii- we reconstruct M coefficients ¢; € R (j =1,... M) and the M nonnegative integers n; (j =1,...M),
M
of f(x) = Zj:l Cjan (:E)

Proof The coefficients of the Prony polynomial can be determined via the linear system:
Fu(0)p = —£(M), (17)

where p := (pg)2;!. The equation (17) is spanned by Theorem 2.1 that shows f(M) € span{f(0) f(1)...f(M—
1)}. With the above assumptions, the coefficients py of the Prony polynomial (9) satisfy the equations

M—
(Fik + Fljmr)ps = =(Frrx + Flna—r))-
=0

=

J

The zeros of the Prony polynomial are the eigenvalues of the companion matrix %EX;P m in (16). Then
we can compute not only M nonnegative integers n; (j = 1,...M), but also we denote M coefficients
¢; €R (j=1,...M) by solution of the square Vandermonde-like relation V;(x)c = (fk)g/;l. O

The following algorithm can be used for the interpolation of known Chebyshev-3 sparsity.

Algorithm 2.3 Prony method for known Chebyshev-3 sparsity
Input: Matriz Fu;(0) and vector £(M) by

M 1

~ i+ 5)k

fr ::chcos% k=0,....2M — 1.
j=1

Step 1: Solve the following linear square problem F(0)p = —f(M).

Step 2: Find roots —1 < xp < ... <z <1 of the Prony polynomial in (9).
Step 3: Compute

2N -1 1

arccosxj—§ , =1 ..

n;: .,M,

by rounding to the nearest integer.
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Table 1. Numerical evaluation of indices by Algorithm 2.3.

n; Cj ’ﬁj 6nj
60 10 60 10.000000000004942
120 20 120  19.999999999994991
1760 30 1760 30.000000000009710
1780 40 1780  39.999999999989704
2000 50 2000 50.000000000000647

T W N = | .

Step 4: Solve the square Vandermonde-like problem

Vur(x)e = (fi)ily!
Output: We have ¢c; € R (j=1,...M) and M nonnegative integers n; (j=1,...M).

Example 2.4 We use Algorithm 2.3 with N = 2000 for the recovery of the sparse polynomial in the Chebyshev-
3 basis

f(x) = 10Vso(x) 4+ 20Vig0(x) + 30Vizeo(x) + 40Vi7s0(x) + 50Va000 ().

Table 1 shows the approzimations for n; and ¢; of the original parameters n; and c;, 7 = 1,2,3,4,5 and

_ s
UN = COS 5x—7 -

Let L, K, M, N be positive integers with M < L < K < N. We try to generalize the last results of this
section to a rectangular 7'+ H matrix and rectangular Vandermonde-like matrices. We try to factorize the
rectangular T'4+ H matrix and the modified Prony polynomial

L
= l;[acfcos 2N—1 quTk qr =1, =z €R. (18)

The zeros of the modified Prony polynomial can be computed via solving a rectangular eigenvalues problem. We

choose more sampling points by improving the numerical stability; then we introduce fk = f(unk) €ER, k=
0,1,...,L+ K —1 and T 4+ H matrix

Frpi1 = (fj4n+ ﬂjfm){i;i’f = (FKL(O) Frr(1)(1: K, L)) ; (19)
Frn(s) = (fjrhrs + flii—s)lmeo — 5=0,1 (20)

FK7L(1) is a shifted version of the matrix FKL(O), namely

Freo(l) = (FO) £ F(0) = (P K10 L-1) £(L)) (21)

Frr(s)=Frxr(l: K,14+s:L+s) (s=0,1). (22)
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Note that if M = L = K we obtain T 4+ H matrix in (14), (15) and the vector p := (pg)p_, with
pv = Lpyyr = ... =pr_1:=0.
Without loss of generality we can use the results of Lemma 3.1 in [9] for sparse polynomial interpolation

in the Chebyshev-3 basis,
rank FK,LH = rank FK,LH(S) =M s=0,1

FK,L(O) = QVKVM(X)(diCLg C)VL,M(X)T, (23)

where
K,M

(nj +5)(k — 1)7T>

Ve (%) = (Tio1 ()5 5y = <COS 2N — 1

)
k,j=1

is a rectangular Vandermonde-like matrix with x := (xj)j]‘/il and

dim(nullFg 1) = L— M +1,

dim(nullFg 1 1(s)) =L—M s=0,1.

Lemma 2.5 Let L, K, M, N be positive integers with M < L < K < N, fk = f(uN)k) k=0,.... L+ K—-1
be sampled data of the sparse polynomial (7) of degree at most 2N — 1 and the coefficients ¢c; € R — {0} ; then

the following results are equivalent:
i-
L
Q(z) = Ti(z), qr:=1 g €R (24)
k=0
is a polynomial with distinct roots {x;}0L, such that —1 <xp <...<xy <1.
ii- A solution of the following linear system is the vector q = (qk)ﬁ;ol such that
Fr.r(0)q=—f(L) that £(L):= (frsm + flo—m)hzs- (25)

iii-The matriz Qr := S — (0...0 q) € RE*L has the property
Fre(0)Qr =Frr(1)+ (0 £0) £(1)...F(L-2)). (26)
Therefore, the eigenvalues %EleL are the zeros of the polynomial Q(x) in (24).

For proof refer to [9].
Now we formulate Lemma 2.5 as an algorithm for the modified Prony method for sparse Chebyshev-3
interpolation. Since the unknown coefficients ¢;, j =1,..., M do not vanish, for convenient bound € (0 < € <

1), we suppose |c;| > €.
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Algorithm 2.6 Prony method for unknown Chebyshev-3 sparsity
Input: Matriz F (0) and vector £(L) by
M 1
z (nj + 3)km
fk; ::;cjcosﬁ k:0,7L+K_1
that L, K, M, N are positive integers with M < L < K < N.
Step 1: Solve the least squares problem

Fr,r(0)a=—f(L).

Step 2: Find roots —1 < Ty <...< Ty <Z1 <1 of the Prony polynomial in (24) such that M>M.

Step 3: Solve the least squares solution of the overdetermined linear Vandermonde-like system

VL+K,M(i)(éj)jM:1 = (fk)ii({(il
with % = (&;)M, and V| (%) in (23).
Step 4: Compute the remaining values of ©; (j =1,..., M) by deleting all the 7, (1 € {1,..., M} with
ler] <€)

Step 5: Compute
_[2N -1

1 -
arccosa:j—§ , j=1,.... M <M,

n;:

by rounding to the nearest integer.

Step 6: Again solve the least squares problem of the overdetermined Vandermonde-like system
Vi) () = (fo)pds
Output: We have ¢c; € R (j =1,...M) and M nonnegative integers n; (j=1,...M).

Example 2.7 We use Algorithm 2.6 with N = 5000, K =60, L =15 M =5, and €:= 107> for the

recovery of the sparse polynomial in the Chebyshev-3 basis
f(CC) = —32V75(117) =+ 45V129(1‘) — 1086‘/1763(17) =+ 1057‘/1785(1‘) — 56797V2067(I)

Table 2 shows the approzimations for n; and ¢; of the original parameters n; and c;, j = 1,2,3,4,5 and

T

UN = COS 5x—7 -

2.2. Sparse polynomial interpolation in Chebyshev-4 basis with Prony method
For n € Ny and z € (—1,1), the Chebyshev polynomial of fourth kind is defined by

sin((n + 1/2) arccos x)

sin(3 arccos x) ’

W, (z) :=
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Table 2. Numerical evaluation of indices by Algorithm 2.6.

j n; Cj flj En].
1 75 -32 75 —0.031999999999999 x 103
2 129 445 129 +0.045000000000001 x 103
3 1763 -108.6 1763 —0.108600000000001 x 103
4 1785 +1057 1785 +1.056999999999999 x 103
5 2067 -5679.7 2067 —5.679709999999997 x 103
see [3, (). As we know these polynomials are orthogonal with respect to the weight (1 — x)~™'/2(1 4 z)'/2 in

(—=1,1). Now we consider a polynomial ¢ of degree at most 2N — 1, which is M -sparse in the Chebyshev-4
basis, i.e.

M
x) = chan (x) (27)

M < N and 0 < ny <ng < ... < ny < 2N —1 with ¢ := {c] 1 # 0. The integer M is called the
Chebyshev-4 sparsity of the polynomial (27).

We know Won_1 =Usn_1 +Usn_o=To+2(Th +To+ ...+ Ton—1); see [(]. Then Won_1 + Won_o =
2T +4(Th+To+. . .+Ton—2)+2Ton—1 . Therefore, the 4-sparse polynomial Wan_1+Waon_o in the Chebyshev-4

basis is not a sparse polynomial in the Chebyshev-1 basis. If we let z = cost, for all ¢t € [0, 7], thus

1
g(cost) bln* Zc] sin((n; + )t)

We use the grids ¢t = 2]’\’}21, k=0,1,...,2N — 1, and set

Jk = g(cos b ) sin Zc sm + )k (28)
Tk = IS 9N 2N—1 o N
with Prony polynomial:
= oM-1 H T — cos ZPka . pu o= 1. (29)

Let g :=—gx k=1,2,...,2N — 1; the coefficients px, £ =0,..., M — 1, of the Prony polynomial can now
be determined via the following theorem:

Theorem 2.8 With the above assumptions, the coefficients py of the Prony polynomial (29) satisfy:
M—1

(Gj+k = 91j—k))Pj = —(GM+k — GiM—k))- (30)
7=0
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Proof We have

M 1 .
. (it +k)T
Gj+k = E ¢y s W?

and

M

. . (g + )|J k|m

95—k = g ClS’ana
=1

we know sin(x + y) — sin(x — y) = 2sinx cos y; then

N B M . (m + %)jﬂ' (nl + %)k‘ﬂ
itk — Glj—k| = 220; sin

. 1
ON -1 P TaN-1 (31)
We deduce that
M
(ng + (n + )]7r
; itn = Qi-wP _QZC’SIH A Zp]“’sﬁ

M 1 1
. (i + )k o (n + 3)km
:2;:1 csin ~—— P(

. cos SN 1 ) =0;

hence we obtain (30).

O
- . . M,M -1 .
Let g(k) := (Fj4x — lj—k|) g1 j—o and set the square T'+ H matrix such that

Gr(0) = (G406 — -k iit im0 = (8(0) &(1)...&(M —1))

2¢1 g2 — 9o gM — gM—2
292 g3+ g1 ceo gM+1 — gM-3
pr— . . (32)
29m  gm+1+ dm-1 Gam—1+ g1
Eq. (31) follows the factorization of the T+ H matrix such that
Gar(0) = 2V3;(x)(diage) Vi, (x)" (33)
where
Vi (x) = <cos (n; + %)]WT)MLM
M X) = N 1
2N —1 k=0,j=1
and

M
. (nj + l)ka
s . 2
Vi (x) = (sm N1 )y ,
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both Vandermonde-like matrices are nonsingular. Introducing

M-1
y cos(lx),
1=0

1
thus this is a trigonometric polynomial of order at most M — 1 that has M distinct zeros (T;”;j‘l)ﬂ € 0,m) j=

., M . This is possible only with Y = 0.

Theorem 2.9 Let g be a M -sparse polynomial of degree at most 2N — 1 in the Chebyshev-4 basis with M
and N integers (1 < M < N ) and 2M samples

+ 3)km
gk—Zc]sm N 1 k=0,...,2M —1:

i- we show g(M) € span{g(0) g(1)...g(M —1)}.

ii- we reconstruct M coefficients ¢; € R (j = 1,... M) and M nonnegative integers n; (j =1,...M), of
M
g(x) = Zj:l cWh, (7).

Proof The coefficients of the Prony polynomial can be determined via the linear system:
Gu(0)p = —g(M) (34)

that p := (pr)~L,". The equation (34) is spanned by Theorem 2.8 that shows g(M) € span{g(0) g(1)...g(M—
1)}. With the above assumptions, the coefficients py of the Prony polynomial (29) satisfy the equations

M-—1
(Gi+k = Gj—k))Pj = =G0k — Ginr—k))-

j=0
The zeros of the Prony polynomial are the eigenvalues of the companion matrix %EA_/}P am in (16). Then we
can not only compute M nonnegative integers n; (j =1,...M) but also denote M coefficients ¢; e R (j =
1,... M) by solution of the square Vandermonde-like relation V§,(x)c = (gr)ry"- O
Analogously as Section 2.1 we obtain the algorithms for the known Chebyshev-4 sparsity polynomial.

Algorithm 2.10 Prony method for known Chebyshev-4 sparsity
Input: Matriz Gy (0) and vector (M) by

M 1

- . (nj+§)k'ﬂ'

gk::g ¢jsin —-—="— k=0,...,2M - 1.
= 2N —1

Step 1: Solve the following linear square problem G (0)p = —g(M).
Step 2: Find roots —1 < xp < ...<xz9 <x1 <1 of the Prony polynomial in (29).
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Table 3. Numerical evaluation of indices by Algorithm 2.10.

j n; Cj ’ﬁj 6n].

1 40 410 40  +10.000000000055900
2 100 -20 100 -20.000000000038430
3 184 +30 184 +30.000000000012285
4 261 -40 261 -40.000000000002665
5 489 +50 489 +450.000000000000057

Step 3: Compute
2N —1 1

= == =1 M

n; o arccosz; — o, J ooy M,

by rounding to the nearest integer.

Step 4: Solve the square Vandermonde-like problem
Vir(x)e = (gr)ily'-
Output: We have c; € R (j=1,...M) and M nonnegative integers n; (j=1,...M).

Example 2.11 We use Algorithm 2.10 with N = 500 for the recovery of the sparse polynomial in the
Chebyshev-4 basis

f(.’L‘) = 10Wyo (J?) — 20W1g0 (.Z’) + 3OW184(.’I}) — 40W261(33) + 50Wys9 (.1‘)

Table 3 shows the approzimations for n; and ¢; of the original parameters n; and c;, j = 1,2,3,4,5 and

J— s
UN = COS 57— -

Let L, K, M, N be positive integers with M < L < K < N. We try to generalize the last results of this section
to a rectangular T4+ H matrix and rectangular Vandermonde-like matrices. We try to factorize the rectangular
T + H matrix and the modified Prony polynomial

L
Q(z) =2F H asfcos(QN_1 quTk qr. =1, = €R. (35)

The zeros of the modified Prony polynomial can be computed via solving a rectangular eigenvalues problem. We
choose more sampling points by improving the numerical stability; then we introduce g, = g(un i) € R, k=
0,1,...,L+ K —1 and T 4+ H matrix

Gt = (Gth + Glj—k)imy = (GKL(O) GK,L(l)(HKL)), (36)

Gr,1(5) = (Gjshss + j—r-s)imeo — 5=0,L (37)

G (1) is a shifted version of the matrix G, 1,(0), namely
Grerl) = (8(1) &2).. &(L) = (Grr(O)1: K. 1:L-1) &(L)) (38)
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Grr(s)=Grr(1:K,14+s:M+s) (s=0,1). (39)

Without loss of generality we can use the results of the section 2.1 and Lemma (2.5) for sparse polynomial

interpolation in the Chebyshev-4 basis.

Algorithm 2.12 Prony method for unknown Chebyshev-4 sparsity
Input: matriz G ,(0) and vector g(L) by

M 1

4+ L)

G ::chsin% k=0,....L+K—1
j=1

that L, K, M, N are positive integers with M < L < K < N.

Step 1: Solve the least squares problem

Step 2: Find roots —1 < Ty <...< Ty <Z1 <1 of the Prony polynomial in (35) such that M > M.

Step 3: Solve the least squares solution of the overdetermined Vandermonde-like system

Vi, (R)(€)M, = (Gr)Ei,

i (n+ 1)k L+K—1,M
) < ‘— (7. S <) +— N J 2
with X == (Z;);2, and VL+K,M(X) = (sm SN )

k=0,j=1
Step 4: Compute the remaining values of x; (j =1,...,M) by deleting all Z; (I € {1,.. ., MY that

lear] <€)

Step 5: Compute n; := [

2] , j=1,.... M < M by rounding to the nearest integer.
Step 6: Again solve the least squares solution of the overdetermined Vandermonde-like system

2N-1 grecos T; — 1
v

VSL+K,M(X)(CJ')§L£1 = (Nk)éié(il'

Output: We have ¢; € R (j=1,...M) and M nonnegative integers n; (j =1,...M).

Example 2.13 We use Algorithm 2.12 with N = 2000, K =50, L =50, M =4, and €:=10"%% for the

recovery of the sparse polynomial in the Chebyshev-3 basis

f(],‘) = Wﬁo(l‘) + 2W120($) + 3W1760($) + 4W1780($).

Table 4 shows the approxzimations for n; and ¢; of the original parameters n; and c;, j = 1,2,3,4 and

— s
UN = COoS SN—1°
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Table 4. Numerical evaluation of indices by Algorithm 2.12.

n; Cj n; Cn].

60 1 60 1.000000000000000
120 2 120  1.999999999999999
1760 3 176  2.999999999999998
1780 4 1780  3.999999999999998

W N | .

3. QR decomposition by matrix pencil factorization for sparse Chebyshev-3 and Chebyshev-4
interpolations

In this section we show that the Prony method for sparse Chebyshev-3 and Chebyshev-4 interpolations can be
improved to the matrix pencil method. The matrix pencil can be

22F g 1(0)EL — Fr £(0)Qr
by eigenvalues x = {x;}}L, € [-1,1] and a right eigenvector v € C* of ;.

(QLUJFKL(O)EL - FK,L(O)QL)V = FK)L(O)(Q.T]EL - QL)V. (40)

By Lemma 2.5, we denote det(2z;Er — Qr) = Q(z;), that Q(z;) = 0.
| —
(QIjELfQL)VéQLV:QVIjEL:} iEL QLV:VIj. (41)
Now we factorize the rectangular 7'+ H matrix (19) by QR factorization and column pivoting

Frrilli1 =UgRg 41

such that Uk is an orthogonal matrix and Rg r41(1 : M,1 : M) is a nonsingular upper triangular matrix.
As we denoted IIpy; is a permutation matrix such that the diagonal entries of Rk p4+1(1 : M,1 : M) have

nonincreasing absolute values. We conclude that the diagonal matrix contains their diagonal entries by Dy, .
With

S 1:M,1:L+1
SK,L—H = RK)L+1H£+1 = ( K,L+1( )) ,

Orx_ M, 141
we can conclude
Frr(s) = UgSkr(s) s=0,1,
with
Sk.(s)=Skr+1(1: K,1+s:L+s) s=0,L1.

We factorize the following matrices
- - 1 . -
2F k.1, (0)EL = 2F g 1,(0) (2, 1,..., 1) =Fg 1 (0)I+Fg(0)(0,1,...,1)
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= UxSk.(0) + (0, f(1)...F(L - 1)) = UxSk..(0) + (0, Frop(l: K, 1:L— 1))

=UgSk,(0) + (0, UrSk (1)(1:K,1:L—1))=UgSk (0), (42)
and
Frer(0)Qr = Frep(1)+ (0 £0)...F(L - 2))
=UgSk,(1)+ (0, UgSk(0)(1:K,1:L—-1))= UKS/IQL(I); (43)
where

/K,L(O) = SKyL(O) + (0 SK,L(l)(l : K,l . L— 1)),

/K,L(]-) = SK,L(]-) + (0 SK,L(O)(]. K, 1: L — 1))

We know Uy is orthogonal; then the generalized eigenvalue problem of the matrix pencil (29513‘;(’ L(0OE;, —

F k..(0)QL) is equivalent to the generalized eigenvalue problem of the matrix pencil
2S% 1 (0) =Sk (1) z R

We can simplify the following matrix pencil by

.’ET]V[’L(O) — TJVI,L(]-) reR (44)
where
Tar(0):=Sk(1: M,1+s:L+s) s=0,1. (45)
We define
Ty, (s) :== Dy Tarn(s), (46)

where D), is a diagonal preconditioner matrix. Then the generalized eigenvalue problem of the transposed

matrix pencil
xTM,L(O) - T,JVI,L(l)T (47)

has the same eigenvalues as the matrix pencil (44) except for the zero eigenvalues. Finally we obtain the

eigenvalue problem of the M-by-M matrix
i
(T, (0)7) Ty (1)T
(namely the nodes z; € [-1,1], j=1,...,M).

Algorithm 3.1 Chebyshev-8 basis with QR decomposition
Input: Matriz FK’LH by

M 1

- 2 )k

fk::g qcos% k=0,...,. K+L—-1.
=1
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Table 5. Numerical evaluation of indices by Algorithm 3.1.

u% Cj u% Cn].

10 +1 10 +0.999999999999712
20 -2 20 -2.000000000000363
30 +3 30 +2.999999999999822
40 -4 40 -4.000000000000144
50 +5 50 +4.999999999999629
60 -6 60 -6.000000000000366

UL W N = .

Step 1: Compute QR factorization of the rectangular T + H matrix IE‘K’LH.

Step 2: Find roots —1 < xp < ...<z9 <x1 <1 of the M-by-M matriz (T’M’L(O)T)Jr T (D)7
Step 3: Compute

2N —1 1
= arccosz; — - |, j=1,..., M,

n;:
J T 2

by rounding to the nearest integer.
Step 4: Solve the least squares problem of the overdetermined Vandermonde-like system

VL+K7]\/[(X)(Cj)inl = (fk)é;rgil

Output: We have c; € R (j =1,...M) and M nonnegative integers n; (j=1,...M).

Example 3.2 We use Algorithm 3.1 with N =101, K =6, L =6, M =6 for the recovery of the sparse
polynomial in the Chebyshev-3 basis

f(x) = Vio(z) — 2Vao(x) + 3Vag(x) — 4Vio(x) + 5Vso(x) — 6Veo ().

Table 5 shows the approzimations for n; and ¢; of the original parameters n; and c;, j = 1,2,3,4,5 and

T

UN = COS 5x—7 -

We derive the sparse interpolation with the basis of Chebyshev polynomials of the fourth kind with QR

decomposition. Here we applied analogous ideas as in Section 3 on the matrix (36). Then we can obtain

an algorithm similar to Algorithm 3.1; it is called Algorithm 3.1.

Example 3.3 We use Algorithm 3.1 with N = 1500, K = 200, L = 100, M = 3 for the recovery of the
sparse polynomial in the Chebyshev-4 basis

f(fE) = 305W60(1’) - 4089W120(.’E) + 50.01W1000(£L’).

Table 6 shows the approzimations for n; and ¢; of the original parameters n; and c;, j = 1,2,3,4,5 and

— cos T
UN = COS 557 -
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Table 6. Numerical evaluation of indices by Algorithm 3.1.

n; ¢j n; Cn;
60  +30.5 60  +30.500000000000004
120 -40.89 120  -40.890000000000008

1000  +50.01 1000 +50.010000000000012

W N | .

4. ESPRIT method for sparse Chebyshev-3 and Chebyshev-4 interpolations

In this section we obtain some results for sparse Chebyshev-3 and Chebyshev-4 interpolations by singular value
decomposition (SV D) of the T + H matrix (19):

Frr+1=UDgr+1 Wiy,

where Uy, and Wy, are orthogonal matrices and Dg 41 is a rectangular diagonal matrix. The diagonal

entries of Dk 141 are the singular values of (19) such that
012092 ...20>0M41=...=0r4+1 = 0.

Thus we can denote the rank M of the Hankel matrix (19), which sets with the Chebyshev-3 sparsity of the
polynomial (7). Therefore, we introduce the following matrices

~ ; M
DK,JV[ = DK,L+1(]— . K, 1 . M) = (dl(;l]i(al\i[);w_l)

WM’L(S) = WM,L+1(1 M, 1+ s: L+S), s=0,1.
Wy =Warppi(1: M,1: L+1),

By simplify the SVD of the Hankel matrix (19) we have

Frr+1 = UrDrg v W41,

and
Frr(s) = UDrguWarr(s), s=0,1.

Hence we can factorize the following matrices by similar processes in (42) and (43).

9F L (0)E; = Fre1(0) + (o f(1)...F(L - 1)) — UDy Wi 1. (0),

Frer(0)Qr = Frer () + (0 £0)... (L —2)) = UyDrear Wi (1),
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where

x0(0):=Wgk(0)+(0 Wg(1)(1: K,1:L-1)),

/K,L(]-) = WK’L(l) + (0 WK’L(O)(]. : K,l L — 1))

We know Uj is orthogonal and so the generalized eigenvalue problem of the rectangular matrix pencil

oF K.L L — F K.L 1) is equivalent to the generalized eigenvalue problem of the matrix penci
22F g 1, (0)E Fr (0)Q 1 h, lized 1 bl f th 1
xDK,MW%LL(O) - DK,MWM,L(]-)'

Now we multiply the above transposed matrix pencil from the right side with

(diag(a;l)j“&)
Ox—m,m ’
and we obtain the generalized eigenvalue problem of the matrix pencil

aWhy (007 = Wiy (D)7, (48)

with the same eigenvalues except for the zero eigenvalues. Finally we obtain the eigenvalue problem of the
M-by-M matrix (W?VI’L(O)T)T W?\/[,L(I)Tv similarly as nodes z; € [-1,1] (j =1,...,M). This completes the
ESPRIT method for sparse Chebyshev-3 interpolation.

Algorithm 4.1 Chebyshev-3 basis with ESPRIT method
Input: Matriz FK7L+1 by
M
(

fio = Z Cj COS

Jj=1

nj-i-%)kﬂ'
-2 k=0,.... K+L—-1.
IN — 1 e

Step 1: Compute the SVD factorization of the rectangular T + H matrix FK7L+1.
Step 2: Find roots —1 < zp < ...<xzy <x1 <1 of the M-by-M matrix

(Whe(0)7) Wi, (1)

Step 3: Compute

2N —1 1 .
= arccosr; — —|, j=1,..

M
2

) )

’Iljt

by rounding to the nearest integer.

Step 4: Solve the least squares problem of the overdetermined Vandermonde-like system

VL+K,M(X)(Cj)jNil =(fo)ito "

Output: We have c; € R (j =1,...M) and M nonnegative integers n; (j=1,...M).
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Table 7. Numerical evaluation of indices by Algorithm 4.1.

u% Cj ij én].
500 -100 500  —1.000000050833920 x 102
1500 4200 1500 +2.000000089247412 x 102
2000 -300 2000 —2.999999991339938 x 107
3000  +400 3000 +3.999999949162848 x 102

W N | .

Table 8. Numerical evaluation of indices by Algorithm 4.1.

n; Cj ’flj Enj
100 -1.01 100 -1.010000000000001
200 +2.02 200 + 2.020000000000000
400 -3.03 400 -3.029999999999999
605 +4.04 605 4 4.040000000000000
781 -5.06 781 -5.050000000000000

Uk W N = | S,

Example 4.2 We use Algorithm J.1 with N = 3000, K = 100, L = 80, M = 4 for the recovery of the
sparse polynomial in the Chebyshev-3 basis

f(l') = *100‘/500(1) + 200Vi500 (l’) — 300V2000(I) + 400V3000 (l’)

Table 7 shows the approzimations for n; and ¢; of the original parameters n; and c;, 7 = 1,2,3,4,5 and

_ s
UN = COS 5x—7 -

We derive the sparse interpolation with bases of the Chebyshev polynomials of the fourth kind with the ESPRIT

method. Here we applied analogous ideas as in Section 4 on the matrix (36).

Then we can obtain an algorithm similar to Algorithm 4.1; it is called Algorithm 4.1.

Example 4.3 We use Algorithm 4.1 with N = 10000, K = L = M = 5 for the recovery of the sparse
polynomial in the Chebyshev-4 basis

f(:l?) = 71.01W1000(I) + 2.02W2000(I) — 3.03W4000(I) + 4.04W6050(£C) — 5.05W9810(I>.

Table & shows the approzimations for n; and ¢; of the original parameters n; and c;, j = 1,2,3,4,5 and

T

UN = COS 53— -
5. Numerical examples and comparisons

In this section, the discussed algorithms are tested for different matrices by using IEEE standard floating point
arithmetic with double precision. We have implemented our algorithms in MATLAB. M -sparse polynomials
are given in the forms (7) and (27) with Chebyshev polynomials V;,; and W), of degree n; and real coefficients
¢ #0 j=1,...,M.

Figure 1 and Figure 2 in their parts (a, b, ¢, d) are designed to compare the time effects of doing them.
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Figure 1. Comparison of the absolute error for Chebyshev-3 basis [left (a)] and Chebyshev-4 basis [right (b)].
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Figure 2. Comparison of the time for Chebyshev-3 basis [left (c¢)] and Chebyshev-4 basis [right (d)].

Example 5.1 We start the following algorithms for different matrices with rank N = (200 : 200 : 3000) with
K =100, L =100, M =5 and c = (1,2,3,4,5), n; = (6,12,176,178) and uy := cos zxr—. We can see
the success of the three different strategies for M -sparse expansions of Chebyshev polynomials of the third and

fourth kind. We compared these methods by absolute error and time consuming.

Absolute error of the coefficients is computed by

= P = . 5
e(c) : jg??F,S lej — ¢ e (Cj)gzla
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where ¢; are the coefficients calculated by our algorithms. Figure 1 presents absolute error for Chebyshev-3

basis [left (a)] and Chebyshev-4 basis [right (b)] and Figure 2 presents time consuming for Chebyshev-3 basis

[left (c)] and Chebyshev-4 basis [right (d)] by different algorithms and matrices. In all examples the numerical

stability of Algorithms 3.1 and 3.1 in section 3 and Algorithms 4.1 and 4.1 in section 4 can be improved by

using more sampling values.
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