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Abstract: In this paper, we first introduce the k -order radial function ρk(θ) for star-shaped curves in R2 and then

prove a geometric inequality involving ρk(θ) and the area A enclosed by a star-shaped curve, which can be looked

upon as the dual Chernoff–Ou–Pan inequality. As a by-product, we get a new proof of the classical dual isoperimetric

inequality. We also prove that C2

k2 ≤ A < πC2

k
for star-shaped curves with ρk(θ) = C(const.) . In particular, if the curve

is equichordal, then C2

4
≤ A < πC2

2
.
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1. Introduction

Let α be a convex curve in the Euclidean plane R2 with area A and width function w(θ). In 1969, Chernoff

[1] proved an inequality that says

A ≤ 1

2

∫ π
2

0

w(θ)w(θ +
π

2
)dθ,

where the equality holds if and only if α is a circle. Recently, Ou and Pan in [8] introduced the higher-order

width function wk(θ) and got the Chernoff–Ou–Pan inequality (see [3]) as follows:

A ≤ 1

k

∫ π
k

0

wk(θ)wk(θ +
π

k
)dθ, (1.1)

where the equality holds if and only if α is a circle. wk(θ) is defined by

wk(θ) = h(θ) + · · ·+ h(θ +
2(k − 1)π

k
),

and h(θ) is the support function of α .

Let a compact subset K of Rn be star-shaped with respect to the origin; for u ∈ Sn−1 , its radial function

ρK(·) is defined by

ρK(u) = max{λ > 0 : λu ∈ K}.

If ρK(·) is continuous and positive, then K is called a star body (about the origin).
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In contrast to the theory of convex bodies, in the dual theory, convex bodies are replaced by star bodies,

the support function of a convex body is replaced by the radial function of a star body, and many geometric

inequalities for star bodies are obtained (see [4, 5, 6, 10, 11]).

In this paper, a simple closed curve γ is called a star-shaped curve (about the origin) if it is the boundary

of a planar star body. Therefore, the radial function ρ(θ) of γ is positive, continuous. Our goal is to extend the

Chernoff–Ou–Pan inequality for convex curves to its dual form for star-shaped curves. To do so, we introduce for

star-shaped curves the function ρk(θ) for an integer k ≥ 2. This function is defined in (2.4) below. Furthermore,

let γ be a C1 (i.e. its radial function ρ(θ) is C1 ) star-shaped curve with area A ; then we can obtain the dual

Chernoff–Ou–Pan inequality

A ≥ 1

k

∫ π
k

0

ρk(θ)ρk(θ +
π

k
)dθ, (1.2)

where the equality holds if and only if the radial function ρ(θ) of γ is of the form

ρ(θ) =
1

2
a0 +

∞∑
n=1

(a2nk cos 2nkθ + b2nk sin 2nkθ), n ∈ Z+.

Let D be the star body enclosed by γ . From the definition of the dual mixed volume in [4, 7], the dual mixed

area of D and the unit disc B in R2 , Ã(D,B), can be expressed by

Ã(D,B) =
1

2

∫ 2π

0

ρ(θ)dθ.

Lutwak in [4] got the classical dual isoperimetric inequality

Ã(D,B)2 ≤ πA(D), (1.3)

where the equality holds if and only if D is a disc. However, we can calculate

lim
k→∞

1

k

∫ π
k

0

ρk(θ)ρk(θ +
π

k
)dθ =

1

π
Ã(D,B)2, (1.4)

Thus (1.2) and (1.4) give a new proof of the classical dual isoperimetric inequality (1.3).

Another purpose of this paper is to show that there are many curves with ρk(θ) = const. , and to build

the following inequality: If the star-shaped curve γ satisfies ρk(θ) = C(const.) , then

C2

k2
≤ A <

πC2

k
, (1.5)

where the equality on the left-hand side holds if and only if γ is a circle of radius 1
kC .

In particular, if γ is equichordal with respect to the origin, i.e. all chords of γ through the origin have

the same length (for more information on equichordal curves one may consult [2, 9] and the literature therein),

then the inequality (1.5) leads to

C2

4
≤ A <

πC2

2
,

where the equality on the left-hand side holds if and only if γ is a circle of radius 1
2C .
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2. Preliminaries

Let γ be a C1 star-shaped curve (about the origin) in the Euclidean plane R2 and ρ(θ) be its radial function,

θ ∈ [0, 2π] . Here, we say that γ is C1 if and only if ρ(θ) is C1 with respect to θ . Clearly, γ can be

parameterized in terms of θ and ρ(θ) as

γ(θ) =
(
x(θ), y(θ)

)
=
(
ρ(θ) cos θ, ρ(θ) sin θ

)
.

Denote by A the area γ bounds. Using Green’s formula, one can get

A =
1

2

∫ 2π

0

ρ2(θ)dθ. (2.1)

Since the radial function of a given star-shaped curve γ is always continuous, bounded, and 2π -periodic, it has

a Fourier series of the form

ρ(θ) =
1

2
a0 +

∞∑
n=1

(an cosnθ + bn sinnθ), (2.2)

where

a0 =
1

π

∫ 2π

0

ρ(θ)dθ,

an =
1

π

∫ 2π

0

ρ(θ) cosnθ dθ, bn =
1

π

∫ 2π

0

ρ(θ) sinnθ dθ, n ∈ Z+.

(2.3)

In this paper, we introduce for the star-shaped curve γ the function ρk(θ):

ρk(θ) = ρ(θ) + ρ

(
θ +

2π

k

)
+ · · ·+ ρ

(
θ +

2(k − 1)π

k

)
(2.4)

for an integer k ≥ 2, which is called the k -order radial function of γ . For k = 2, ρ2(θ) is the length of

the chord passing through the origin in the direction u⃗ = (cos θ, sin θ). Thus, the function ρk(θ) is a natural

generalization of the chord of γ passing through the origin.

3. Main results

For a given integer k ≥ 2, we get the following dual Chernoff–Ou–Pan inequality.

Theorem 3.1 Let γ be a C1 star-shaped curve in R2 with area A it bounds. Then

A ≥ 1

k

∫ π
k

0

ρk(θ)ρk

(
θ +

π

k

)
dθ, (3.1)

and the equality in (3.1) holds if and only if the radial function of γ is of the form

ρ(θ) =
1

2
a0 +

∞∑
n=1

(a2nk cos 2nkθ + b2nk sin 2nkθ). (3.2)

The following lemma plays a crucial role in the proof of Theorem 3.1.
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Lemma 3.2

∫ π
k

0

ρk(θ)ρk

(
θ +

π

k

)
dθ =

1

2

k−1∑
i=0

∫ 2π

0

ρ(θ)ρ
(
θ +

(2i+ 1)π

k

)
dθ. (3.3)

Proof It follows from (2.4) that

ρk(θ)ρk

(
θ +

π

k

)
=

2(k−1)∑
m=0

ρ
(
θ +

mπ

k

)
ρ

(
θ +

(m+ 1)π

k

)
+

2(k−2)∑
m=0

ρ
(
θ +

mπ

k

)
ρ

(
θ +

(m+ 3)π

k

)

+ · · ·+
2i∑

m=0

ρ
(
θ +

mπ

k

)
ρ

(
θ +

(m+ 2k − 1− 2i)π

k

)

+ · · ·+
2∑

m=0

ρ
(
θ +

mπ

k

)
ρ

(
θ +

(m+ 2k − 3)π

k

)
+ ρ(θ)ρ

(
θ +

(2k − 1)π

k

)
.

Moreover,

ρk(θ)ρk

(
θ +

π

k

)
=

k−1∑
i=0

2i∑
m=0

ρ
(
θ +

mπ

k

)
ρ
(
θ +

(m+ 2k − 1− 2i)π

k

)
. (3.4)

A simple computation can give us

2i∑
m=0

∫ π
k

0

ρ
(
θ +

mπ

k

)
ρ
(
θ +

(m+ 2k − 2i− 1)π

k

)
dθ

=

∫ (2i+1)π
k

0

ρ(θ)ρ
(
θ +

(2k − 2i− 1)π

k

)
dθ,

(3.5)

where i = 0, 1, · · · , k − 1. Let j = (k − 1)− i ; thus

k−1∑
i=0

∫ (2i+1)π
k

0

ρ(θ)ρ
(
θ +

(2k − 2i− 1)π

k

)
dθ

=

k−1∑
j=0

∫ (2k−2j−1)π
k

0

ρ(θ)ρ
(
θ +

(2j + 1)π

k

)
dθ.

(3.6)
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From (3.4)–(3.6) and the fact that ρ(θ) is 2π -periodic, one can obtain

∫ π
k

0

ρk(θ)ρk(θ +
π

k
)dθ =

k−1∑
i=0

∫ (2i+1)π
k

0

ρ(θ)ρ
(
θ +

(2k − 2i− 1)π

k

)
dθ

=
1

2

k−1∑
i=0

(∫ (2i+1)π
k

0

ρ(θ)ρ
(
θ+

(2k−2i−1)π

k

)
dθ+

∫ [2−(2i+1)
k ]π

0

ρ(θ)ρ
(
θ+

(2i+1)π

k

)
dθ

)

=
1

2

k−1∑
i=0

(∫ 2π

[2−(2i+1)
k ]π

ρ
(
θ+

(2i+1)π

k

)
ρ(θ)dθ+

∫ [2−(2i+1)
k ]π

0

ρ(θ)ρ
(
θ+

(2i+1)π

k

)
dθ

)

=
1

2

k−1∑
i=0

∫ 2π

0

ρ(θ)ρ
(
θ +

(2i+ 1)π

k

)
dθ.

2

Based on Lemma 3.2, we give two proofs of Theorem 3.1. The first uses the Schwarz inequality and the

second uses the Parseval equality. However, the first proof is easier for establishing the inequality, while the

second proof is easier for obtaining the equality condition.

First proof of Theorem 3.1 Lemma 3.2 and the Schwarz inequality yield

1

k

∫ π
k

0

ρk(θ)ρk
(
θ +

π

k

)
dθ

=
1

2k

k−1∑
i=0

∫ 2π

0

ρ(θ)ρ
(
θ +

(2i+ 1)π

k

)
dθ

≤1

k

k−1∑
i=0

{
1

2

∫ 2π

0

ρ2(θ)dθ

} 1
2
{
1

2

∫ 2π

0

ρ2
(
θ +

(2i+ 1)π

k

)
dθ

} 1
2

=A,

where the equality holds if and only if for i = 0, 1, . . . , k − 1,

ρ(θ) = rρ
(
θ +

(2i+ 1)π

k

)
,

where r is a constant. It follows that

ρ(θ) = rρ
(
θ +

(2i+ 1)π

k

)
= r2ρ

(
θ +

2(2i+ 1)π

k

)
= · · · = r2kρ(θ),

which together with ρ(θ) > 0 implies that r = 1, that is,

ρ(θ) = ρ
(
θ +

(2i+ 1)π

k

)
. (3.7)
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By a direct computation, it follows from (3.7) and (2.2) that for i = 0, 1, . . . , k − 1,

∞∑
n=1

an sin
n(2i+ 1)π

2k
sin
(
nθ +

n(2i+ 1)π

2k

)
−

∞∑
n=1

bn sin
n(2i+ 1)π

2k
cos
(
nθ +

n(2i+ 1)π

2k

)
= 0.

Hence, an sin
n(2i+1)π

2k = bn sin
n(2i+1)π

2k = 0 for i = 0, 1, . . . , k − 1, n ∈ Z+ , which implies that an = bn = 0 or

n = 2km, m ∈ Z , which leads us to the desired result. 2

Second proof of Theorem 3.1 It follows from (2.2) that

ρ
(
θ +

(2i+ 1)π

k

)
=
1

2
a0 +

∞∑
n=1

(
an cos

(
nθ +

(2i+ 1)nπ

k

)
+ bn sin

(
nθ +

(2i+ 1)nπ

k

))

=
1

2
a0 +

∞∑
n=1

(
an cosnθ cos

(2i+ 1)nπ

k
− an sinnθ sin

(2i+ 1)nπ

k

)

+

∞∑
n=1

(
bn sinnθ cos

(2i+ 1)nπ

k
+ bn cosnθ sin

(2i+ 1)nπ

k

))
.

By (2.3) and the Parseval equality, we obtain

∫ 2π

0

ρ(θ)ρ
(
θ +

(2i+ 1)π

k

)
dθ =

π

2
a20 + π

∞∑
n=1

(
a2n + b2n

)
cos

(2i+ 1)nπ

k
. (3.8)

When n ̸= km, m ∈ Z ,

k−1∑
i=0

cos
(2i+ 1)nπ

k
=

1

sin nπ
k

k−1∑
i=0

cos
(2i+ 1)nπ

k
sin

nπ

k

=
1

sin nπ
k

(
cos

nπ

k
sin

nπ

k
+ cos

3nπ

k
sin

nπ

k
+ · · ·+ cos

(2k − 1)nπ

k
sin

nπ

k

)
=

sin 2nπ

2 sin(nπ/k)
= 0.

(3.9)
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From (3.8), (3.9), and (3.3) we can get

I =
1

k

∫ π
k

0

ρk(θ)ρk(θ +
π

k
)dθ

=
1

2k

k−1∑
i=0

(
π

2
a20 + π

∞∑
n=1

(
a2n + b2n

)
cos

(2i+ 1)nπ

k

)

=
π

4
a20 +

π

2

∞∑
n=1

(
a2nk + b2nk

) k−1∑
i=0

1

k
cos(2i+ 1)nπ

=
π

4
a20 +

π

2

∞∑
n=1

(−1)n(a2nk + b2nk).

(3.10)

We also wish to express A in terms of the Fourier coefficients of ρ(θ). By the Parseval equality and (2.1), we

get

A =
1

4
πa20 +

1

2
π

∞∑
n=1

(a2n + b2n), (3.11)

which together with (3.10) gives us I ≤ A and the equality holds if and only if

ρ(θ) =
1

2
a0 +

∞∑
n=1

(a2nk cos 2nkθ + b2nk sin 2nkθ),

and this completes the proof. 2

Corollary 3.3 Let γ be a C1 star-shaped curve in R2 with area A . If ρk(θ) = C , where C is a constant;

then

A =
1

k

∫ π
k

0

ρk(θ)ρk(θ +
π

k
)dθ =

C2π

k2

if and only if γ is a circle of radius 1
kC and centered at the origin.

Remark 1 For k = 2 , let γ be a star-shaped curve with ρ(θ) = 2 + sin 4θ , then

1

2

∫ π
2

0

ρ2(θ)ρ2(θ +
π

2
)dθ =

9

2
π = A,

but γ is not a circle. This shows that the condition ρk(θ) = C in Corollary 3.3 is necessary, which is different

from the equality case of the Chernoff–Ou–Pan inequality [1, 8].

Proof of Corollary 3.3 The assumption ρk(θ) = C implies that

ank = bnk = 0, n = 1, 2, · · · . (3.12)
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In fact, (2.2) and (2.4) lead to

ρk(θ) =
1

2
ka0+

∞∑
n=1

(an cosnθ+bn sinnθ)

+· · ·+
∞∑

n=1

(
an cos

(
nθ+

2n(k − 1)π

k

)
+bn sin

(
nθ+

2n(k − 1)π

k

))

=
1

2
ka0+

∞∑
n=1

(
an cosnθ+bn sinnθ

)(
1+cos

2nπ

k
+· · ·+cos

2n(k − 1)π

k

)
+

∞∑
n=1

(
bn cosnθ−an sinnθ

)(
sin

2nπ

k
+· · ·+sin

2n(k − 1)π

k

)
.

(3.13)

When n = km, m ∈ Z+ ,

1 + cos
2nπ

k
+ · · ·+ cos

2n(k − 1)π

k
= k,

sin
2nπ

k
+ · · ·+ sin

2n(k − 1)π

k
= 0.

(3.14)

When n ̸= km, m ∈ Z+ ,

1 + cos
2nπ

k
+ · · ·+ cos

2n(k − 1)π

k
= 0,

sin
2nπ

k
+ · · ·+ sin

2n(k − 1)π

k
= 0.

(3.15)

From (3.13)–(3.15) we get

ρk(θ) =k

(
1

2
a0 +

∞∑
n=1

(
ank cosnkθ + bnk sinnkθ

))
.

Since ρk(θ) = C , it is clear that

ank = bnk = 0, n = 1, 2, · · · . (3.16)

If γ is a circle, it is obvious that I = A = πC2

k2 . Conversely, suppose that I = A ; then the equality in

Theorem 3.1 holds, which together with ρk(θ) = C gives us ρ(θ) = a0

2 and a0

2 = C
k . This completes the proof

of Corollary 3.3. 2

From the proof of Corollary 3.3, we can get

Corollary 3.4 Let γ be a C1 star-shaped curve in R2 with ρk(θ) equal to a constant C . Then the Fourier

expansion of the radial function ρ(θ) of γ is of the form

ρ(θ) =
1

2
a0 +

∞∑
n=1

n ̸=mk

(an cosnθ + bn sinnθ), m ∈ Z+, (3.17)

where a0 = 2C
k .

Obviously, if γ is an equichordal curve, that is, ρ2(θ) = const. , then the Fourier series of ρ(θ) for γ has only

odd terms and a constant term.
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o
o o

a b c

Figure. Examples.

4. Applications

Let γ be a star-shaped curve in R2 with area A . Let D denote the star body enclosed by γ and B denote

the unit disc in R2 . From the continuity of ρ(θ), it is easy to see that, for all θk ∈ [0, 2π
k ] ,

lim
k→∞

2π

k
ρk(θk) = lim

k→∞

2π

k

k∑
m=1

ρ
(
θk +

2mπ

k

)
=

∫ 2π

0

ρ(θ)dθ.

Moreover, for any k ∈ N , there exists a ξk ∈ [0, π
k ] such that

1

k

∫ π
k

0

ρk(θ)ρk(θ +
π

k
)dθ =

π

k2
ρk(ξk)ρk(ξk +

π

k
).

Since ξk ∈ [0, π
k ] ⊂ [0, 2π

k ] , we have ξk + π
k ∈ [0, 2π

k ] . Thus, we obtain

lim
k→∞

1

k

∫ π
k

0

ρk(θ)ρk(θ +
π

k
)dθ = lim

k→∞

1

k2
ρk(ξk)ρk(ξk +

π

k
)

=
1

4π

(∫ 2π

0

ρ(θ)dθ

)2

=
1

π
Ã2(D,B),

which together with (3.1) gives us a new proof of the classical dual isoperimetric inequality (1.3).

Now, for a given integer k ≥ 2, the star-shaped curve γ is called a k -order equichordal curve with respect

to the origin, if ρk(θ) is a constant. Therefore, k -order equichordal curves can be regarded as a generalization

of the equichordal curves.

By Corollary 3.4, it can be easily seen that there are many star-shaped curves with ρk(θ) equal to a

constant C besides circles; here are three examples.

Examples (i) Take ρ(θ) = 3 + cos θ + cos 3θ , then ρ2(θ) = 6, γ is an equichordal curve with respect to the

origin; see Figure 1a.

(ii) Take ρ(θ) = 1
2 (8 + cos θ + cos 2θ), then ρ3(θ) = 12, γ is a 3-order equichordal curve with respect to the

origin; see Figure 1b.
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(iii) Take ρ(θ) = 3 + cos 3θ + sin 4θ , then ρ5(θ) = 15, γ is a 5-order equichordal curve with respect to the

origin; see Figure 1c.

Considering a class of star-shaped curves with ρk(θ) = const. , we can obtain the following inequality:

Theorem 4.1 Let γ be a C1 star-shaped curve in R2 with ρk(θ) equal to a constant C ; then

C2

k2
≤ A <

πC2

k
, (4.1)

where A is the area it bounds, and the equality on the left-hand side holds if and only if γ is a circle of radius
1
kC and centered at the origin.

Proof By (2.1) and ρ(θ) > 0, we have

A =
1

2

∫ 2π

0

ρ2(θ)dθ

=
1

2

∫ 2π
k

0

(
ρ2(θ) + ρ2(θ +

2π

k
) + · · ·+ ρ2(θ +

2(k − 1)π

k
)
)
dθ

<
1

2

∫ 2π
k

0

(
ρ(θ) + ρ(θ +

2π

k
) + · · ·+ ρ(θ +

2(k − 1)π

k
)
)2
dθ.

(4.2)

Combining (4.2) with ρk(θ) = C yields

A <
πC2

k
.

From Theorem 3.1 and Corollary 3.3 we have A ≥ πC2

k2 and the equality holds if and only if γ is a disc. 2

In particular, let γ be a C1 equichordal curve in R2 with area A . If ρ(θ) + ρ(θ + π) = C (a constant),

then

1

4
πC2 ≤ A <

1

2
πC2, (4.3)

and the equality on the left-hand side holds if and only if γ is a circle of radius 1
2C and centered at the origin.

It follows from (4.3) that circles have the minimal area among all the equichordal curves, but we do not

know which has the greatest area. Naturally, we pose a dual Blaschke–Lebesgue problem:

Problem Among all curves with ρ(θ) + ρ(θ + π) being equal to a constant C , which has the greatest area?
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