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Abstract: Orthogonal wavelet packets lack symmetry, which is a much desired property in image and signal processing.

The biorthogonal wavelet packets achieve symmetry where the orthogonality is replaced by biorthogonality. In the

present paper, we construct biorthogonal wavelet packets on local fields of positive characteristic and investigate their

properties by means of Fourier transforms. We also show how to obtain several new Riesz bases of the space L2(K) by

constructing a series of subspaces of these wavelet packets. Finally, we provide algorithms for the decomposition and

reconstruction using these biorthogonal wavelet packets.
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1. Introduction

A field K equipped with a topology is called a local field if both the additive K+ and multiplicative groups

K∗ of K are locally compact Abelian groups. The local fields are essentially of two types: zero and positive

characteristic (excluding the connected local fields R and C). Examples of local fields of characteristic zero

include the p-adic field Qp where as local fields of positive characteristic are the Cantor dyadic group and the

Vilenkin p -groups. Even though the structures and metrics of local fields of zero and positive characteristics

are similar, their wavelet and multiresolution analysis theory are quite different. In recent years, local fields

have attracted the attention of several mathematicians, and have found innumerable applications not only in

number theory but also in representation theory, division algebras, quadratic forms, and algebraic geometry.

As a result, local fields are now consolidated as part of the standard repertoire of contemporary mathematics.

For more about local fields and their applications, we refer to the monographs [15, 24].

In recent years there has been considerable interest in the problem of constructing wavelet bases on various

groups, namely, Cantor dyadic groups [12], locally compact Abelian groups [9], p -adic fields [11], and Vilenkin

groups [14]. Benedetto and Benedetto [3] developed a wavelet theory for local fields and related groups. They

did not develop the multiresolution analysis (MRA) approach; their method is based on the theory of wavelet

sets and only allows the construction of wavelet functions whose Fourier transforms are characteristic functions

of some sets. The concept of multiresolution analysis on local fields of positive characteristic was introduced

by Jiang et al. [10]. They pointed out a method for constructing orthogonal wavelets on local field K with a
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constant generating sequence. Subsequently, tight wavelet frames on local fields of positive characteristic were

constructed by Shah and Debnath [21] using extension principles. On the other hand, Behera and Jahan [1]

have constructed biorthogonal wavelets on local fields of positive characteristic and showed that if φ and φ̃ are

the dual scaling functions associated with dual MRAs on local fields of positive characteristic such that their

translates are biorthogonal, then the corresponding wavelet families are also biorthogonal. More results in this

direction can also be found in [8,18–20] and the references therein.

It is well known that the classical orthogonal wavelet bases have poor frequency localization. To overcome

this disadvantage, Coifman et al. [7] constructed univariate orthogonal wavelet packets. Well-known Daubechies

orthogonal wavelets are a special case of wavelet packets. Later, Chui and Li [5] generalized the concept of

orthogonal wavelet packets to the case of nonorthogonal wavelet packets so that they can be applied to spline

wavelets and so on. The introduction of biorthogonal wavelet packets is attributed to Cohen and Daubechies

[6]. They have also shown that all the wavelet packets constructed in this way did not lead to Riesz bases for

L2(R). Shen [23] generalized the notion of univariate orthogonal wavelet packets to the case of multivariate

wavelet packets. Other notable generalizations are the orthogonal version of vector-valued wavelet packets [4],

multiwavelet packets [13], and wavelet packets and framelet packets related to the Walsh polynomials [16,17,22].

Recently, Behera and Jahan [2] constructed orthogonal wavelet packets and wavelet frame packets on

local field K of positive characteristic and showed how to construct an orthonormal basis from a Riesz basis.

Orthogonal wavelet packets have many desired properties such as compact support, good frequency localization,

and vanishing moments. However, there is no continuous symmetry, which is a much desired property in imaging

compression and signal processing. To achieve symmetry, several generalizations of scalar orthogonal wavelet

packets have been investigated in the literature. The biorthogonal wavelet packets achieve symmetry where

the orthogonality is replaced by the biorthogonality. Therefore, the objective of this paper is to construct

biorthogonal wavelet packets on local fields of positive characteristic and investigate their properties by means of

Fourier transforms and construct several new Riesz bases of space L2(K). Finally, we establish some algorithms

for decomposition and reconstruction using these biorthogonal wavelet packets.

This paper is organized as follows. In Section 2, we discuss some preliminary facts about local fields of

positive characteristic and also some results required in the subsequent sections including the definition of an

MRA on local fields. In Section 3, we examine some of the properties of the biorthogonal wavelet packets via

Fourier transforms. In Section 4, we generate Riesz bases of L2(K) from these wavelet packets. Section 5 deals

with the decomposition and reconstruction algorithms corresponding to these wavelet packets.

2. Preliminaries and multiresolution analysis on local fields

Let K be a field and a topological space. Then K is called a local field if both K+ and K∗ are locally compact

Abelian groups, where K+ and K∗ denote the additive and multiplicative groups of K , respectively. If K is

any field and is endowed with the discrete topology, then K is a local field. Further, if K is connected, then K

is either R or C . If K is not connected, then it is totally disconnected. Hence, by a local field, we mean a field

K that is locally compact, nondiscrete, and totally disconnected. The p -adic fields are examples of local fields.

More details are contained in [15,24]. In the rest of this paper, we use the symbols N,N0 , and Z to denote the

sets of natural, nonnegative integers, and integers, respectively.

Let K be a local field. Let dx be the Haar measure on the locally compact Abelian group K+ . If α ∈ K

and α ̸= 0, then d(αx) is also a Haar measure. Let d(αx) = |α|dx . We call |α| the absolute value of α .
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Moreover, the map x → |x| has the following properties: (a) |x| = 0 if and only if x = 0; (b) |xy| = |x||y| for
all x, y ∈ K ; and (c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K . Property (c) is called the ultrametric inequality.

The set D = {x ∈ K : |x| ≤ 1} is called the ring of integers in K. Define B = {x ∈ K : |x| < 1} . The set B

is called the prime ideal in K . The prime ideal in K is the unique maximal ideal in D and hence as a result

B is both principal and prime. Since the local field K is totally disconnected, there exists an element of B of

maximal absolute value. Let p be a fixed element of maximum absolute value in B . Such an element is called

a prime element of K. Therefore, for such an ideal B in D , we have B = ⟨p⟩ = pD. As proved in [24], the set

D is compact and open. Hence, B is compact and open. Therefore, the residue space D/B is isomorphic to a

finite field GF (q), where q = pk for some prime p and k ∈ N .

Let D∗ = D \ B = {x ∈ K : |x| = 1} . Then it can be proved that D∗ is a group of units in K∗ and

if x ̸= 0 then we may write x = pkx′, x′ ∈ D∗. For a proof of this fact we refer to [15]. Moreover, each

Bk = pkD =
{
x ∈ K : |x| < q−k

}
is a compact subgroup of K+ and usually known as the fractional ideals of

K+ . Let U = {ai}q−1
i=0 be any fixed full set of coset representatives of B in D ; then every element x ∈ K can

be expressed uniquely as x =
∑∞

ℓ=k cℓp
ℓ with cℓ ∈ U . Let χ be a fixed character on K+ that is trivial on D

but nontrivial on B−1 . Therefore, χ is constant on cosets of D and so if y ∈ Bk , then χy(x) = χ(yx), x ∈ K.

Suppose that χu is any character on K+ ; then clearly the restriction χu|D is also a character on D . Therefore,

if {u(n) : n ∈ N0} is a complete list of distinct coset representative of D in K+ , then, as proved in [24], the

set
{
χu(n) : n ∈ N0

}
of distinct characters on D is a complete orthonormal system on D .

The Fourier transform f̂ of a function f ∈ L1(K) ∩ L2(K) is defined by

f̂(ξ) =

∫
K

f(x)χξ(x)dx. (2.1)

It is noted that

f̂(ξ) =

∫
K

f(x)χξ(x)dx =

∫
K

f(x)χ(−ξx)dx.

Furthermore, the properties of the Fourier transform on local field K are very similar to those of on the

real line. In particular, the Fourier transform is unitary on L2(K).

We now impose a natural order on the sequence {u(n)}∞n=0 . We have D/B ∼= GF (q) where GF (q) is

a c -dimensional vector space over the field GF (p). We choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that

span {ζj}c−1
j=0

∼= GF (q). For n ∈ N0 satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,

we define

u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p
−1. (2.2)

Moreover, for n = b0 + b1q + b2q
2 + · · ·+ bsq

s, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s , we set

u(n) = u(b0) + u(b1)p
−1 + · · ·+ u(bs)p

−s. (2.3)

This defines u(n) for all n ∈ N0 . In general, it is not true that u(m + n) = u(m) + u(n). However, if

r, k ∈ N0 and 0 ≤ s < qk , then u(rqk + s) = u(r)p−k + u(s). Further, it is also easy to verify that u(n) = 0
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if and only if n = 0 and {u(ℓ) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed ℓ ∈ N0. Hereafter we use the

notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above. We define a character

χ on K as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j ̸= 1.

(2.4)

Definition 2.1 Let {xn : n ∈ N0} be a subset of a Hilbert space H . Then {xn : n ∈ N0} is said to form a

Riesz basis for H if

(a) span {xn : n ∈ N0} = H , and

(b) there exist constants A and B with 0 < A ≤ B <∞ such that

A
∑
n∈N0

∣∣cn∣∣2 ≤

∥∥∥∥∥∑
n∈N0

cnxn

∥∥∥∥∥
2

≤ B
∑
n∈N0

∣∣cn∣∣2. (2.5)

A generalization of the classical theory of multiresolution analysis on local fields of positive characteristic

was considered by Jiang et al. [10]. Analogous to the Euclidean case, following is a definition of MRA on the

local field K of positive characteristic.

Definition 2.2 Let K be a local field of positive characteristic p > 0 and p be a prime element of K . An

MRA of L2(K) is a sequence of closed subspaces {Vj : j ∈ Z} of L2(K) satisfying the following properties:

(a) Vj ⊂ Vj+1 for all j ∈ Z;

(b)
∪

j∈Z Vj is dense in L2(K);

(c)
∩

j∈Z Vj = {0};

(d) f(·) ∈ Vj if and only if f(p−1·) ∈ Vj+1 for all j ∈ Z;

(e) There is a function φ ∈ V0 , called the scaling function, such that
{
φ
(
· −u(k)

)
: k ∈ N0

}
forms an or-

thonormal basis for V0 .

Since φ ∈ V0 ⊂ V1 and
{
φ
(
p−1x− u(k)

)
: k ∈ N0

}
is a Riesz basis of V1 , there exists {ak} ∈ l2(N0)

such that

φ(x) =
√
q
∑
k∈N0

ak φ
(
p−1x− u(k)

)
. (2.6)

On taking the Fourier transform, we have

φ̂(x) = m0(pξ) φ̂(pξ), (2.7)

where

m0(ξ) =
1
√
q

∑
k∈N0

ak χk(ξ).
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Let Wj , j ∈ Z be the direct complementary subspace of Vj in Vj+1 . Assume that there exist q − 1

functions {ψ1, ψ2, . . . , ψq−1} in L2(K) such that their translates and dilations form Riesz bases of Wj , i.e.

Wj = span
{
qj/2 ψℓ

(
p−j · −u(k)

)
: k ∈ N0, 1 ≤ ℓ ≤ q − 1

}
, j ∈ Z. (2.8)

Since ψℓ ∈W0 ⊂ V1, 1 ≤ ℓ ≤ q − 1, there exists a sequence {aℓk} ∈ ℓ2(N0) such that

ψℓ(x) =
√
q
∑
k∈N0

aℓkφ
(
p−1x− u(k)

)
, 1 ≤ ℓ ≤ q − 1. (2.9)

Eq. (2.9) can be written in the frequency domain as

ψ̂ℓ(ξ) =
1
√
q

∑
k∈N0

aℓk χk(pξ)φ̂(pξ)

[1em] = mℓ(pξ) φ̂(pξ), (2.10)

where mℓ(ξ) =
1
√
q

∑
k∈N0

aℓk χk(ξ), 1 ≤ ℓ ≤ q − 1.

Definition 2.3 Let f, f̃ ∈ L2(K) be given. We say that they are biorthogonal if⟨
f(·), f̃

(
· −u(k)

)⟩
= δ0,k, (2.11)

where δ0,k is the Kronecker’s delta function.

If φ(·), φ̃(·) ∈ L2(K) are a pair of biorthogonal scaling functions, then we have⟨
φ(·), φ̂

(
· −u(k)

)⟩
= δ0,k, k ∈ N0. (2.12)

Further, we say that ψℓ(·), ψ̃ℓ(·) ∈ L2(K), 1 ≤ ℓ ≤ q − 1 are a pair of biorthogonal wavelets associated with a

pair of biorthogonal scaling functions φ(·), φ̃(·) ∈ L2(K) if the set {ψℓ

(
· −u(k)

)
: k ∈ N0, 1 ≤ ℓ ≤ q− 1} forms

a Riesz basis of W0 , and ⟨
φ(·), ψ̃ℓ

(
· −u(k)

)⟩
= 0, k ∈ N0, 1 ≤ ℓ ≤ q − 1, (2.13)⟨

φ̃(·), ψℓ

(
· −u(k)

)⟩
= 0, k ∈ N0, 1 ≤ ℓ ≤ q − 1, (2.14)⟨

ψℓ(·), ψ̃ℓ′
(
· −u(k)

)⟩
= δℓ,ℓ′ δ0,k, k ∈ N0, 1 ≤ ℓ, ℓ′ ≤ q − 1. (2.15)

For ℓ = 1, 2, . . . , q − 1, we have

W ℓ
j = span

{
qj/2ψℓ

(
p−j · −u(k)

)
: k ∈ N0

}
, j ∈ Z. (2.16)

Using the definition of Wj and identities (2.13)–(2.15), we have the following result:
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Definition 2.4 If ψℓ(·), ψ̃ℓ(·) ∈ L2(K), 1 ≤ ℓ ≤ q−1 are a pair of biorthogonal wavelets associated with a pair

of biorthogonal scaling functions φ(·), φ̃(·) ∈ L2(K) , then

L2(K) =
⊕
j∈Z

Wj =
⊕
j∈Z

q−1⊕
ℓ=1

W ℓ
j . (2.17)

In the biorthogonal setting, the refinement equation and wavelet equation are very similar to Eqs. (2.6) and

(2.9)

φ̃(x) =
√
q
∑
k∈N0

ãk φ̃
(
p−1x− u(k)

)
, (2.18)

and

ψ̃ℓ(x) =
√
q
∑
k∈N0

ãℓk φ̃
(
p−1x− u(k)

)
, 1 ≤ ℓ ≤ q − 1. (2.19)

Taking the Fourier transform of Eqs. (2.18) and (2.19), we obtain

ˆ̃φ(ξ) =
1
√
q

∑
k∈N0

ãk χk(pξ) ˆ̃φ(pξ)

= m̃0(pξ) ˆ̃φ(pξ), (2.20)

where m̃0(ξ) =
1
√
q

∑
k∈N0

ãk χk(ξ), and

ˆ̃
ψℓ(ξ) =

1
√
q

∑
k∈N0

ãℓk χk(pξ) ˆ̃φ(pξ)

= m̃ℓ(pξ) ˆ̃φ(pξ), (2.21)

where m̃ℓ(ξ) =
1
√
q

∑
k∈N0

ãℓk χk(ξ), 1 ≤ ℓ ≤ q − 1.

It is proved in [1] that if φ(·), φ̃(·) ∈ L2(K) are a pair of biorthogonal scaling functions associated with

the given MRA, then the system {φ
(
· −u(k)

)
: k ∈ N0} is biorthogonal to {φ̃

(
· −u(k)

)
: k ∈ N0} if and only if

∑
k∈N0

φ̂
(
ξ + u(k)

)
ˆ̃φ
(
ξ + u(k)

)
= 1 a.e. (2.22)

3. Biorthogonal wavelet packets on local fields

For n = 0, 1, . . . , the basic wavelet packets associated with a scaling function φ(·) on a local field K of positive

characteristic are defined recursively by

ωn(x) = ωqr+s(x) =
√
q
∑
k∈N0

ask ωr

(
p−1x− u(k)

)
, 0 ≤ s ≤ q − 1 (3.1)
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where r ∈ N0 is the unique element such that n = qr + s, 0 ≤ s ≤ q − 1 holds (see [2]).

Similar to the orthogonal wavelet packets, the biorthogonal wavelet packets associated with φ̃(·) are given

by

ω̃n(x) = ω̃qr+s(x) =
√
q
∑
k∈N0

ãsk ω̃r

(
p−1x− u(k)

)
, 0 ≤ s ≤ q − 1. (3.2)

Note that for r = 0 and 1 ≤ s ≤ q − 1, we have

ω0(x) = φ(x), ω̃0(x) = φ̃(x), ωs(x) = ψs(x), and ω̃s(x) = ψ̃s(x).

Moreover, the Fourier transform of (3.1) and (3.2) gives

ω̂qr+s(ξ) = ms(pξ) ω̂r(pξ), (3.3)

and

ˆ̃ωqr+s(ξ) = m̃s(pξ) ˆ̃ωr(pξ). (3.4)

We are now in a position to discuss the biorthogonality properties for these wavelet packets by means of the

Fourier transform.

Lemma 3.1 Assume that ωs(x), ω̃s(x) ∈ L2(K) are a pair of biorthogonal wavelets associated with a pair of

biorthogonal scaling functions ω0(x), ω̃0(x) . Then we have

q−1∑
ℓ=0

mr

(
pξ + pu(ℓ)

)
m̃s

(
pξ + pu(ℓ)

)
= δr,s, 0 ≤ r, s ≤ q − 1. (3.5)

Proof For given 0 ≤ r, s ≤ q − 1, we have

δr,s =
∑
k∈N0

ωr

(
ξ + u(k)

)
ω̃r

(
ξ + u(k)

)
=

∑
k∈N0

mr

(
pξ + pu(k)

)
ω̂0

(
pξ + pu(k)

)
ˆ̃ω0

(
pξ + pu(k)

)
m̃s

(
pξ + pu(k)

)

=

q−1∑
ℓ=0

∑
k∈N0

mr

(
pξ + pu(qk + ℓ)

)
ω̂0

(
pξ + pu(qk + ℓ)

)
ˆ̃ω0

(
pξ + pu(qk + ℓ)

)
× m̃s

(
pξ + pu(qk + ℓ)

)
=

q−1∑
ℓ=0

mr

(
pξ + pu(ℓ)

)
ms

(
pξ + pu(ℓ)

)
×

{∑
k∈N0

ω̂0

(
pξ + pu(qk + ℓ)

)
ˆ̃ω0

(
pξ + pu(qk + ℓ)

)}

=

q−1∑
ℓ=0

mr

(
pξ + pu(ℓ)

)
ms

(
pξ + pu(ℓ)

)
.

2
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Theorem 3.2 If {ωn(x) : n ∈ N0} and {ω̃n(x) : n ∈ N0} are wavelet packets associated with a pair of biorthog-

onal scaling functions ω0(x) and ω̃0(x) , respectively, then we have⟨
ωn(·), ω̃n

(
· −u(k)

)⟩
= δ0,k, k ∈ Z, n ∈ N0. (3.6)

Proof We will prove this result by using induction on n . It follows from (2.12) and (2.15) that the claim

is true for n = 0 and n = 1, 2, . . . , q − 1. Assume (3.6) holds for n < t , where t ∈ N . Then we prove the

result (3.6) for n = t . Let n = qr + s , where r ∈ N0, 0 ≤ s ≤ q − 1, and r < n . Therefore, by the inductive

assumption, we have⟨
ωr(·), ω̃r

(
· −u(k)

)⟩
= δ0,k ⇐⇒

∑
k∈N0

ωr

(
ξ + u(k)

)
ω̃r

(
ξ + u(k)

)
= 1.

Using Lemmas 2.5 and 3.1 and Eqs. (3.3) and (3.4), we obtain⟨
ωn(·), ω̃n

(
· −u(k)

)⟩
=

⟨
ω̂n(·), ˆ̃ωn

(
· −u(k)

)⟩
=

∫
K

ω̂qr+s(ξ) ˆ̃ωqr+s(ξ)χk(ξ)dξ

=
⟨
ω̂n(·), ˆ̃ωn

(
· −u(k)

)⟩
=

∫
K

ω̂qr+s(ξ) ˆ̃ωqr+s(ξ)χk(ξ)dξ

=

∫
K

ms(pξ)ω̂r(pξ) m̃s(pξ) ˆ̃ωr(pξ)χk(ξ)dξ

=

∫
D

∑
k∈N0

ms

(
pξ + pu(k)

)
ω̂r(pξ + pu(k))

×m̃s

(
pξ + pu(k)

)
ˆ̃ωr

(
pξ + pu(k)

)
χk(ξ)dξ

=

∫
D

q−1∑
ℓ=0

∑
k∈N0

ms

(
pξ + pu(qk + ℓ)

)
ω̂r

(
pξ + pu(qk + ℓ)

)
×m̃s

(
pξ + pu(qk + ℓ)

)
ˆ̃ωr

(
pξ + pu(qk + ℓ)

)
χk(ξ)dξ

=

∫
D

q−1∑
ℓ=0

ms

(
pξ + pu(ℓ)

)
m̃s

(
pξ + pu(ℓ)

)
×

{∑
k∈N0

ω̂r

(
pξ + pu(qk + ℓ)

)
ˆ̃ωr

(
pξ + pu(qk + ℓ)

)
χk(ξ)dξ

}

=

∫
D

q−1∑
ℓ=0

ms

(
pξ + pu(ℓ)

)
m̃s

(
pξ + pu(ℓ)

)
χk(ξ)dξ

= δ0,k.

2
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Theorem 3.3 Suppose {ωn(x) : n ∈ N0} and {ω̃n(x) : n ∈ N0} are the biorthogonal wavelet packets associated

with a pair of biorthogonal scaling functions ω0(x) and ω̃0(x) , respectively. Then we have

⟨
ωqr+s1(·), ω̃qr+s2

(
· −u(k)

)⟩
= δ0,kδs1,s2 , 0 ≤ s1, s2 ≤ q − 1, r, k ∈ N0. (3.7)

Proof By Lemma 2.5, we have

⟨
ωqr+s1(·), ω̃qr+s2

(
· −u(k)

)⟩
=

⟨
ω̂qr+s1(·), ˆ̃ωqr+s2

(
· −u(k)

)⟩
=

∫
K

ω̂qr+s1(ξ) ˆ̃ωqr+s2(ξ)χk(ξ)dξ

=

∫
K

ms1(pξ) ω̂r(pξ) m̃s2(pξ) ˆ̃ωr(pξ)χk(ξ)dξ

=

∫
D

∑
k∈N0

ms1(pξ + pu(k)) ω̂r(pξ + pu(k))

×m̃s2(pξ + pu(k)) ˆ̃ωr(pξ + pu(k))χk(ξ)dξ

=

∫
D

q−1∑
ℓ=0

∑
k∈N0

ms1

(
pξ + pu(qk + ℓ)

)
ω̂r

(
pξ + pu(qk + ℓ)

)
×m̃s2

(
pξ + pu(qk + ℓ)

)
ˆ̃ωr

(
pξ + pu(qk + ℓ)

)
χk(ξ)dξ

=

∫
D

q−1∑
ℓ=0

ms1

(
pξ + pu(ℓ)

)
m̃s2

(
pξ + pu(ℓ)

)

×

{∑
k∈N0

ω̂r

(
pξ + pu(qk + ℓ)

)
ˆ̃ωr

(
pξ + pu(qk + ℓ)

)
χk(ξ)dξ

}

=

∫
D

q−1∑
ℓ=0

ms1

(
pξ + pu(ℓ)

)
m̃s2

(
pξ + pu(ℓ)

)
χk(ξ)dξ

= δ0,kδs1,s2 .

2

Theorem 3.4 Suppose {ωn(x) : n ∈ N0} and {ω̃n(x) : n ∈ N0} are wavelet packets with respect to a pair of

biorthogonal scaling functions ω0(x) and ω̃0(x) , respectively. Then we have

⟨
ωℓ(·), ω̃n

(
· −u(k)

)⟩
= δℓ,n δ0,k, ℓ, n, k ∈ N0. (3.8)

Proof For ℓ = n , the result (3.8) follows by Theorem 3.2. When ℓ ̸= n , and 0 ≤ ℓ, n ≤ q− 1, the result (3.8)

can be established from Theorem 3.3. Assume ℓ is not equal to n and at least one of ℓ, n does not belong to

{1, 2, . . . , q − 1} ; then we can write ℓ, n as ℓ = qr1+s1, n = qu1+v1, r1, u1 ∈ N0, s1, v1 ∈ {0, 1, 2, . . . , q − 1} . 2

300



SHAH and BHAT/Turk J Math

Case 1: If r1 = u1 , then s1 ̸= v1 . Therefore, (3.8) follows by virtue of the properties (3.3)–(3.5) and

Lemma 2.5 i.e.⟨
ωℓ(·), ω̃n

(
· −u(k)

)⟩
=

⟨
ωqr1+s1(·), ω̃qu1+v1

(
· −u(k)

)⟩
=

⟨
ω̂qr1+s1(·), ˆ̃ωqu1+v1

(
· −u(k)

)⟩
=

∫
K

ω̂qr1+s1(ξ) ˆ̃ωqu1+v1(ξ)χk(ξ)dξ

=

∫
K

ms1(pξ) ω̂r1(pξ) m̃v1(pξ) ˆ̃ωu1(pξ)χk(ξ)dξ

=

∫
D

∑
k∈N0

ms1

(
pξ + pu(k)

)
ω̂r1(pξ + pu(k))

×m̃v1

(
pξ + pu(k)

)
ˆ̃ωu1

(
pξ + pu(k)

)
χk(ξ)dξ

=

∫
D

q−1∑
ℓ=0

∑
k∈N0

ms1

(
pξ + pu(qk + ℓ)

)
ω̂r1

(
pξ + pu(qk + ℓ)

)
×m̃v1

(
pξ + pu(qk + ℓ)

)
ˆ̃ωu1

(
pξ + pu(qk + ℓ)

)
χk(ξ)dξ

=

∫
D

q−1∑
ℓ=0

ms1

(
pξ + pu(ℓ) + pu(ℓ)

)
m̃v1

(
pξ + pu(ℓ)

)
×

{∑
k∈N0

ω̂r1

(
pξ + pu(qk + ℓ)

)
ˆ̃ωu1

(
pξ + pu(qk + ℓ)

)
χk(ξ)dξ

}

=

∫
D

q−1∑
ℓ=0

ms1

(
pξ + pu(ℓ)

)
m̃v1

(
pξ + pu(ℓ)

)
χk(ξ)dξ

= δ0,k.

Case 2: If r1 ̸= u1 , then r1 = pr2+s2, u1 = pu2+v2 , where r2, u2 ∈ N0, and s2, v2 ∈ {0, 1, . . . , q − 1} . If
r2 = u2 , then s2 ̸= v2 . Similar to Case 1, (3.8) can be established. When r2 ̸= u2 , we order r2 = pr3+s3, u2 =

pu3 + v3, where r3, u3 ∈ N0, and s3, v3 ∈ {0, 1, . . . , q − 1} . Thus, after taking finite steps (denoted by h), we

obtain rh, uh ∈ N0 and sh, vh ∈ {0, 1, . . . , q − 1} . If rh = uh , then sh ̸= vh . Similar to Case 1, (3.8) can be

established. When rh ̸= uh , it follows from Eqs. (2.12)–(2.15) that⟨
ωrh(·), ω̃uh

(
· −u(k)

)⟩
= 0 ⇐⇒

∑
k∈N0

ωrh

(
ξ + u(k)

)
ω̃uh

(
ξ + u(k)

)
= 0, ξ ∈ K.

Moreover, we have ⟨
ωr(·), ω̃u

(
· −u(k)

)⟩
=

⟨
ω̂r(·), ˆ̃ωu

(
· −u(k)

)⟩
=

⟨
ω̂qr1+s1(·), ˆ̃ωqu1+v1

(
· −u(k)

)⟩
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=

∫
K

ω̂qr1+s1(ξ) ˆ̃ωqu1+v1(ξ)χk(ξ)dξ

=

∫
K

ms1(pξ)ms2(p
2ξ) ω̂r2(p

2ξ) m̃v1(pξ) m̃v2(p
2ξ) ˆ̃ωu2(p

2ξ)χk(ξ)dξ

...

=

∫
K

{
h∏

ℓ=1

msℓ(p
ℓξ)

}
ω̂rh(p

hξ)

{
h∏

ℓ=1

m̃vℓ(p
ℓξ)

}
ˆ̃ωuh

(phξ)χk(ξ)dξ

=

∫
D

∑
k∈N0

{
h∏

ℓ=1

msℓ

(
pℓ
(
ξ + u(k)

))}{
ω̂rh

(
ph
(
ξ + u(k)

))
ω̂uh

(
ph
(
ξ + u(k)

))}

×

{
h∏

ℓ=1

mvℓ

(
pℓ
(
ξ + u(k)

))}
χk(ξ)dξ

= 0.

4. Construction of Riesz bases from wavelet packets

In this section, we will decompose the subspaces Vj , Ṽj , Wj and W̃j by constructing subspaces of wavelet packets.

We also present a direct decomposition for L2(K).

For any n ∈ N0 , define

En =

{
f(x) : f(x) =

∑
k∈N0

akωn(x− u(k)), {ak}k∈N0
∈ l2(N0)

}
, (4.1)

Ẽn =

{
f̃(x) : f̃(x) =

∑
k∈N0

ãkω̃n(x− u(k)), {ãk}k∈N0
∈ l2(N0)

}
. (4.2)

Clearly E0 = V0 and Es = W s
0 , for any 1 ≤ s ≤ q − 1. Assume that

{
ms

(
pξ + pu(k)

)}q−1

s,k=0
is a unitary

matrix.

Lemma 4.1 For n ∈ N0 , the space ∆En can be decomposed into the direct sum of Eqn+s, 1 ≤ s ≤ q − 1 , i.e.

∆En =

q−1⊕
s=0

Eqn+s, (4.3)

where ∆ is the dilation operator such that ∆f(x) = f(p−1x) , for any f ∈ L2(K) .

Proof For n ∈ N0 , we claim that

∆En =

{
f(x) : f(x) =

q−1∑
s=0

∑
k∈N0

ask ωqn+s

(
x− u(k)

)
, {ask}k∈N0

∈ l2(N0)

}
. (4.4)
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As for any 0 ≤ s ≤ q − 1, by (3.1) and (4.1), ωqn+s

(
x− u(k)

)
∈ ∆En . Assume that f(x) ∈ ∆En ; then there

exists a sequence {bk}k∈N0
∈ l2(N0) such that

f(x) =
∑
k∈N0

bk ωn

(
p−1x− u(k)

)
. (4.5)

Similarly, for each s = 0, 1, . . . , q − 1, there exist a sequence {ask}k∈N0
in l2(N0) such that

f(x) =

q−1∑
s=1

∑
k∈N0

ask ωn

(
p−1x− u(k)

)
, (4.6)

provided f(x) ∈ ∆En .

Taking the Fourier transform on both sides of (4.5) and (4.6), respectively, and by using (3.3), we obtain

f̂(ξ) = h(pξ)ω̂n(pξ) =

q−1∑
s=1

gs(ξ)ms(pξ)ω̂n(pξ), (4.7)

where h(ξ) =
∑
k∈N0

bkχk(ξ), gs(ξ) =
∑
k∈N0

askχk(ξ).

The above equality (4.7) follows if the following holds:

h(pξ) =

q−1∑
s=1

gs(ξ)ms(pξ). (4.8)

For any {bk}k∈N0
∈ l2(N0), we will prove that there exists a sequence {ask}k∈N0

∈ l2(N0) such that (4.8) is

satisfied. Moreover, Eq. (4.8) is equal to the following identity:

h
(
pξ + pu(k)

)
=

q−1∑
s=1

gs(ξ)ms

(
pξ + pu(k)

)
. (4.9)

The solvability of (4.9) for every sequence {bk}k∈N0
∈ l2(N0) follows from the fact that the matrix

{
ms

(
pξ +

pu(k)
)}q−1

s,k=0
is unitary. Hence, Eq. (4.4) follows. Further, applying Theorem 3.3, it follows that

{
ωqn+s

(
p−1x− u(k)

)
n ∈ N0, 0 ≤ s ≤ q − 1, k ∈ N0

}
is a Riesz basis of ∆En .

Similar to (4.3), we can establish the following results:

Ẽ0 = Ṽ0, Ẽs = W̃ s
0 , 1 ≤ s ≤ q − 1,

∆Ẽn =

q−1⊕
s=0

Ũqn+s, 1 ≤ s ≤ q − 1. (4.10)
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For ℓ ∈ N , define ϑ̃ℓ =
{
x : x =

∑ℓ
j=0 ajq

j , aj = 0, 1, 2, . . . , q − 1
}
, and ϑℓ = ϑ̃ℓ − ϑ̃ℓ−1 . Next, we will

establish the direct decomposition of space L2(K). 2

Theorem 4.2 The family of functions
{
ωn

(
x− u(k)

)
: n ∈ ϑℓ, k ∈ N0

}
constitutes the Riesz basis of ∆ℓW0 .

In particular,
{
ωn

(
x− u(k)

)
: n, k ∈ N0

}
constitutes the Riesz basis of L2(K) .

Proof From Eq. (4.3), we have

∆E0 =

q−1⊕
s=0

Es i.e., ∆E0 = E0

q−1⊕
s=1

Es.

Since E0 = V0 and W0 =
⊕q−1

s=1W
s
0 =

⊕q−1
s=1 Es ; therefore, ∆E0 = V0

⊕
W0 . It can be inductively inferred

from (4.3) that

∆ℓE0 = ∆ℓ−1E0

⊕
n∈ϑℓ

En, ℓ ∈ N. (4.11)

Since Vj+1 = Vj
⊕
Wj , j ∈ Z ; hence, ∆ℓE0 = ∆ℓ−1E0

⊕
∆ℓ−1W0, ℓ ∈ N . Now it follows from (4.3) and

Proposition 2.4 that ∆ℓW0 =
⊕

n∈ϑℓ
En, and

L2(K) = V0
⊕⊕

ℓ≥0

∆ℓW0

 = E0

⊕⊕
ℓ≥0

(⊕
n∈ϑℓ

En

) =
⊕
n∈N0

En. (4.12)

In view of Theorem 3.3, the family of functions
{
ωn

(
x− u(k)

)
: n ∈ ϑℓ, k ∈ N0

}
is a Riesz basis of ∆ℓW0 .

Thus, according to (4.12), the family
{
ωn

(
x− u(k)

)
: n, k ∈ N0

}
forms a Riesz basis of L2(K). 2

Corollary 4.3 For every ℓ ∈ N , the family of functions
{
ω̃n

(
x− u(k)

)
: n ∈ ϑℓ, k ∈ N0

}
forms a Riesz basis

of ∆̃lW0 .

Corollary 4.4 For every ℓ ∈ N , the family of functions
{
ωn

(
p−jx− u(k)

)
: n, k ∈ N0

}
forms a Riesz basis of

L2(K) .

5. Decomposition and reconstruction algorithms

We begin this section with the decomposition formulae for the biorthogonal wavelet packets on local fields of

positive characteristic followed by an algorithm.

Theorem 5.1 Let {ωn : n ∈ N0} and {ω̃n : n ∈ N0} be the biorthogonal wavelet packets defined by (3.1) and

(3.2), respectively. Then for all k ∈ N0 , we have the following decomposition formulae:

ωn

(
p−1x− u(k)

)
=

1
√
q

q−1∑
ν=1

∑
µ∈N0

ãνk−qµ ωqn+ν

(
x− u(µ)

)
, (5.1)
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and

ω̃n

(
p−1x− u(k)

)
=

1
√
q

q−1∑
ν=1

∑
µ∈N0

aνk−qµ ω̃qn+ν

(
x− u(µ)

)
. (5.2)

Proof We will prove only (5.1). The second formula (5.2), being the dual of (5.1), will follow. Using Eq.

(3.1), we have

1
√
q

q−1∑
ν=0

∑
µ∈N0

ãνk−qµωqn+ν

(
x− u(µ)

)

=
1
√
q

q−1∑
ν=0

∑
µ∈N0

ãνk−qµ q
1/2

∑
r∈N0

aνrωn

(
p−1
(
x− u(µ)

)
− u(r)

)

=

q−1∑
ν=0

∑
µ∈N0

ãνk−qµ

∑
r∈N0

aνrωn

(
p−1x− u(qµ− r)

)

=

q−1∑
ν=0

∑
t∈N0

ωn

(
p−1x− u(t)

) ∑
µ∈N0

ãνk−qµa
ν
t−qµ

= ωn

(
p−1x− u(k)

)
.

This completes the proof of the Theorem. 2

Given a level J and consider

f ≈ fJ =
∑
k∈N0

cJkω0

(
p−Jx− u(k)

)
,

where {cJk} ∈ l2(N0). Using the fact

VJ =WJ−1 ⊕ VJ−1 = · · · =WJ−1 ⊕WJ−2 ⊕ · · ·WJ−M ⊕ VJ−M ,

one obtains

fJ = gJ−1 + gJ−2 + · · ·+ gJ−M + fJ−M ,

where fJ−M ∈ VJ−M and gj ∈Wj , j = J −M, . . . , J − 1.

Furthermore, by using Theorem 5.1, gj ∈ Wj , j = J −M, . . . , J − 1 can be further decomposed. To do

this, let

fj(x) =
∑
k∈N0

cjk ω0

(
p−jx− u(k)

)
, (5.3)

and

gj(x) =

q−1∑
ν=1

∑
k∈N0

dν,jk ων

(
p−jx− u(k)

)
, (5.4)

where {cjk}k∈N0 , {d
ν,j
k }k∈N0 ∈ l2(N0).
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Implementation of Eq. (5.1) for n = 0 gives the decomposition of fj(x) as

fj(x) =
∑
k∈N0

cjkω0

(
p−jx− u(k)

)

=
1
√
q

∑
k∈N0

cjk

q−1∑
ν=0

∑
µ∈N0

ãνk−qµωqn+ν

(
p−jx− u(µ)

)

=
1
√
q

∑
k∈N0

∑
µ∈N0

cjµ

q−1∑
ν=0

ãνµ−qkων

(
p−j+1x− u(k)

)

=
1
√
q

∑
k∈N0

∑
µ∈N0

cjµã
0
µ−qk

ω0

(
p−j+1x− u(k)

)

+
1
√
q

∑
k∈N0

q−1∑
ν=1

∑
µ∈N0

cjµã
ν
µ−qk

ων

(
p−j+1x− u(k)

)

=
∑
k∈N0

cj−1
k φ

(
p−j+1x− u(k)

)
+

q−1∑
ν=1

∑
k∈N0

di,j−1
k ων

(
p−j+1x− u(k)

)
= fj−1(x) + gj−1(x),

where

cj−1
k =

1
√
q

∑
µ∈N0

cjµ ã
0
µ−qk, di,j−1

k =
1
√
q

∑
µ∈N0

cjµ ã
ν
µ−qk, (5.5)

k ∈ N0, j = J, J − 1, . . . , J −M + 1.

For all r ∈ N0, we have

gj ∈Wj = ∆jW1 = ∆j−r∆rW1 = ∆j−r

qr+1−1⊕
ν=qr

Eν .

Using Theorem 5.1 for n = 1, 2, . . . , qr+1 − 1 yields

gj(x) =

q−1∑
ν=1

∑
k∈N0

di,jk ων

(
p−jx− u(k)

)

=
1
√
q

∑
k∈N0

q−1∑
ν=1

di,jk

∑
µ∈N0

q−1∑
s=o

ãsk−qµωqν+µ

(
p−j+1x− u(µ)

)

=
1
√
q

∑
k∈N0

q2−1∑
ν=1

∑
µ∈N0

d⌊ν/q⌋,jµ ã

(
ν−q⌊ν/q⌋

)
µ−qk

ων

(
p−j+1x− u(k)

)
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=
∑
k∈N0

q2−1∑
ν=1

dν,j,1k ων

(
p−j+1x− u(k)

)
...

=
∑
k∈N0

qr+1−1∑
ν=qr

dν,j,rk ων

(
p−j+rx− u(k)

)
,

where

dν,j,ik =
1
√
q

∑
µ∈N0

d⌊ν/q⌋,j,i−1
µ ã

(
ν−q⌊ν/q⌋

)
µ−qk , dν,j,0k = dν,jk . (5.6)

i = 1, 2, . . . , r, ν = qi, qi + 1, . . . , qi+1 − 1.

Therefore, for r ∈ N0, fJ can be decomposed as:

fJ = fJ−M +
J−1∑

j=J−M

gj

=
∑
k∈N0

cJ−M
k ω0

(
pJ−Mx− u(k)

)
+

J−1∑
j=J−M

q−1∑
ν=1

∑
k∈N0

dν,jk ων

(
p−jx− u(k)

)
=

∑
k∈N0

cJ−M
k φ

(
pJ−Mx− u(k)

)
+

J−1∑
j=J−M

qr+1−1∑
ν=qr

∑
k∈N0

dν,j,rk ων

(
pr−jx− u(k)

)
,

where the coefficients are given by Eqs. (5.5) and (5.6).

On the other hand, by using Eq. (3.1), we can reconstruct gj(·) as follows:

gj(x) =

qr+1−1∑
ν=qr

∑
k∈N0

dν,j,rk ων

(
pr−jx− u(k)

)

=

qr+1−1∑
ν=qr

∑
k∈N0

dν,j,rk

∑
µ∈N0

a

(
ν−q⌊ν/q⌋

)
µ ω⌊ν/q⌋

(
pr−j−1x− u(qk − µ)

)

=

qr−1∑
ν=qr−1

∑
k∈N0

dν,j,r−1
k ων(p

r−j−1x− u(k)
)

...

=

q−1∑
ν=1

∑
k∈N0

dν,jk ων(p
−jx− u(k)

)
,

where

dν,j,i−1
k =

q−1∑
s=0

∑
µ∈N0

dqν+s,j,i
µ ask−qµ, dν,jk = dν,j,0k . (5.7)

307



SHAH and BHAT/Turk J Math

i = 1, 2, . . . , r, ν = qi−1, qi−1 + 1, . . . , qi − 1.

Thus, after obtaining the coefficients dν,jk , ν = 1, 2, . . . , q − 1, j = J −M, . . . , J − 1, k ∈ N0 , we use Theorem

5.1 and (2.6) to construct fj as follows:

fj = fj−1 + gj−1

=
∑
k∈N0

cj−1
k ω0

(
p−j−1x− u(k)

)
+

q−1∑
ν=1

∑
k∈N0

dν,j−1
k ων

(
p−j+1x− u(k)

)

=
∑
k∈N0

cj−1
k

∑
µ∈N0

a0µω0

(
p−jx− u(qk − µ)

)
+

q−1∑
ν=1

∑
k∈N0

dν,j−1
k

∑
µ∈N0

aνµω0

(
p−jx− u(qk − µ)

)

=
∑
k∈N0

cj−1
k

∑
µ∈N0

a0µ−qkω0

(
p−jx− u(µ)

)
+

q−1∑
ν=1

∑
k∈N0

dν,j−1
k

∑
µ∈N0

aνµ−qkω0

(
p−jx− u(µ)

)

=
∑
k∈N0

∑
µ∈N0

cj−1
k a0µ−qk +

q−1∑
ν=1

∑
µ∈N0

dν,j−1
µ aνµ−qk

ω0

(
p−jx− u(k)

)
=

∑
k∈N0

cjkφ
(
p−jx− u(k)

)
,

where

cjk =
∑
µ∈N0

cj−1
k a0µ−qk +

q−1∑
ν=1

∑
µ∈N0

dν,j−1
µ aνµ−qk, j = J −M + 1, J −M + 2, . . . , J, k ∈ N0. (5.8)

Therefore, with the given sequences
{
cJ−M
k : k ∈ N0

}
and

{
dν,J−M
k : k ∈ N0

}
, ν = 1, . . . , q − 1, and

applying (5.8), one can reconstruct

f ≈ fJ =
∑
k∈N0

cJkω0

(
p−Jx− u(k)

)
∈ VJ .
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