
Turk J Math

(2016) 40: 317 – 332

c⃝ TÜBİTAK
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Abstract: We explore the sign properties of eigenvalues and the basis properties of eigenvectors for a special quadratic

matrix polynomial and use the results obtained to solve the corresponding linear system of differential equations on the

half line subject to an initial condition at t = 0 and a condition at t = ∞ .

Key words: Quadratic eigenvalue problem, eigenvalues, eigenvectors

1. Introduction

For various types of infinite interval problems we refer to the book [1] by Agarwal and O’Regan.

In this paper, we deal with the existence and uniqueness and the explicit form of solution u(t) to the

problem

C
d2u(t)

dt2
= J

du(t)

dt
+Ru(t), 0 ≤ t <∞, (1)

u(0) = f, lim
t→∞

u(t) = 0, (2)

where

u(t) =


u0(t)
u1(t)
...

uN−1(t)

 , f =


f0
f1
...

fN−1

 ,

C =


c0 0 0 · · · 0
0 c1 0 · · · 0
...

...
...

...
0 0 0 · · · cN−1

 , R =


r0 0 0 · · · 0
0 r1 0 · · · 0
...

...
...

...
0 0 0 · · · rN−1

 ,

J =



b0 a0 0 0 0 · · · 0 0 0
a0 b1 a1 0 0 · · · 0 0 0
0 a1 b2 a2 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · aN−3 bN−2 aN−2

0 0 0 0 0 · · · 0 aN−2 bN−1 − haN−1


.
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We also consider conditions of the form

lim
t→∞

u(t) = v

and

lim
t→∞

[u(t)− (v + tw)] = 0

instead of the second condition in (2), where v and w are constant vectors.

Let us seek a nontrivial solution of Eq. (1), which has the form

u(t) = eλty, (3)

where λ is a complex number and y = {yn}N−1
n=0 is a nonzero constant vector in CN . Substituting (3) into (1),

we get

(λ2C − λJ −R)y = 0. (4)

A complex number λ0 is said to be an eigenvalue of Eq. (4) if there exists a nonzero vector y0 ∈ CN

satisfying Eq. (4) for y = y0 and λ = λ0 . This vector y0 is called an eigenvector of Eq. (4) corresponding to

the eigenvalue λ0 .

Thus, the vector-function u(t) in (3) is a nontrivial solution of Eq. (1) if and only if λ is an eigenvalue

and y is a corresponding eigenvector of Eq. (4).

Note that Eq. (4) is equivalent to the boundary value problem:

λan−1yn−1 + (λbn + rn)yn + λanyn+1 = λ2cnyn, (5)

n = 0, 1, · · · , N − 1,

y−1 = 0, yN + hyN−1 = 0. (6)

Namely, if {yn}Nn=−1 is a solution of problem (5), (6), then the vector y = {yn}N−1
n=0 satisfies Eq. (4), and,

conversely, if the vector y = {yn}N−1
n=0 is a solution of Eq. (4), then {yn}Nn=−1 with y−1 = 0 and yN = −hyN−1

is a solution of problem (5), (6).

We denote all the eigenvalues of Eq. (4) by λ1, · · · , λm and the corresponding eigenvectors by y(1), · · · , y(m) .

Since Eq. (1) is linear, the vector-function

u(t) =
m∑
j=1

αje
λjty(j) (7)

is a solution of Eq. (1), where α1, · · · , αm are arbitrary constants. Next we have to choose the constants

α1, · · · , αm so that (7) satisfies the conditions in (2):

m∑
j=1

αjy
(j) = f, lim

t→∞

m∑
j=1

αje
λjty(j) = 0. (8)
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In this paper we show that such a choice of the constants αj is possible and we indicate a way in which one

can realize this choice.

Problem (1), (2) was earlier solved in [7] under the conditions

an, bn, cn, h ∈ R, an ̸= 0, cn > 0 (0 ≤ n ≤ N − 1), (9)

rn > 0 (0 ≤ n ≤ N − 1). (10)

In the present paper, we replace condition (10) by the condition

r0 = 0, rn > 0 (1 ≤ n ≤ N − 1), (11)

allowing one of the rn ’s to be zero, and study the consequences of the condition r0 = 0. It turns out that if

r0 = 0, then λ = 0 is an eigenvalue of Eq. (4), and, moreover, this eigenvalue is defective if b0 = 0. For solving

the problem (1), (2) it will also be important to investigate the sign properties of the nonzero eigenvalues.

To fix the terminology used in the paper let us recall some concepts related to the quadratic eigenvalue

problems.

Let N be a positive integer and M , L , and K be N × N complex matrices. The quadratic matrix

polynomial (quadratic matrix pencil)

Q(λ) = λ2M + λL+K (12)

is called regular when detQ(λ) is not identically zero for all values of λ , and nonregular otherwise. We assume

that Q(λ) is regular. By the quadratic eigenvalue problem (QEP) is meant the equation

Q(λ)y := (λ2M + λL+K)y = 0.

The complex scalar λ and the corresponding nonzero vector y ∈ CN are respectively called the eigenvalue and

the eigenvector of the quadratic pencil Q(λ). The general theory of the linear second-order differential equation

M
d2u(t)

dt2
+ L

du(t)

dt
+Ku(t) = 0, 0 ≤ t <∞,

is based on the theory of matrix pencil (12); see [6, 9, 10].

Let λ0 be an eigenvalue of the quadratic pencil Q(λ). We say that the vectors y(0), y(1), · · · , y(m) in CN

form a Jordan chain of length m+ 1 for Q(λ) associated with the eigenvalue λ0 if

Q(λ0)y
(0) = 0,

Q(λ0)y
(1) +Q′(λ0)y

(0) = 0,

Q(λ0)y
(2) +Q′(λ0)y

(1) +
1

2
Q′′(λ0)y

(0) = 0,

...

Q(λ0)y
(m) +Q′(λ0)y

(m−1) +
1

2
Q′′(λ0)y

(m−2) = 0,
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where Q′(λ0) = 2λ0M + L , Q′′(λ0) = 2M . The vector y(0) is an eigenvector and the subsequent vectors

y(1), · · · , y(m) are called the generalized eigenvectors (associated with the eigenvector y(0) ).

The eigenvalue λ0 is called simple if there is only one linearly independent eigenvector y(0) corresponding

to λ0 and there is no generalized eigenvector associated with y(0) . The eigenvalue λ0 is called semisimple if

there is no generalized eigenvectors associated with the eigenvectors corresponding to λ0 (there may exist more

than one linearly independent eigenvector corresponding to λ0 ). A defective eigenvalue is an eigenvalue that is

not semisimple (therefore, for a defective eigenvalue, there are one or more generalized eigenvectors).

The quadratic pencil (12) is called self-adjoint if M , L , and K are self-adjoint matrices. The eigenvalues

of a self-adjoint pencil Q(λ) are real or arise in complex conjugate pairs.

A self-adjoint pencil (12) is said to be weakly hyperbolic (hyperbolic) if M > 0 and all roots of the

polynomial (Q(λ)x, x) are real (real and distinct) for any x ̸= 0, where (. , .) stands for the standard inner

product in CN . Since the roots of (Q(λ)x, x) are given by

λ =
−(Lx, x)±

√
(Lx, x)2 − 4(Mx, x)(Kx, x)

2(Mx, x)
,

we see that Q(λ) is weakly hyperbolic if

(Lx, x)2 ≥ 4(Mx, x)(Kx, x)

for all x ∈ CN , and hyperbolic if

(Lx, x)2 > 4(Mx, x)(Kx, x)

for all nonzero x ∈ CN .

The hyperbolic and weakly hyperbolic QEPs have been thoroughly analyzed [4, 5, 10]. In particular,

Duffin showed that the eigenvalues of hyperbolic QEPs are not only real but also semisimple (i.e. there is no

generalized eigenvector associated with the eigenvectors). It turns out that the length of any Jordan chain for

a weakly hyperbolic pencil Q(λ) associated with the any eigenvalue does not exceed 2 (see [10]).

We see that our quadratic pencil in (4) is hyperbolic under conditions (9) and (10), and weakly hyperbolic

under conditions (9) and (11). A distinguishing feature of our quadratic pencil in (4) from general weakly

hyperbolic quadratic pencils is that, due to the special structure of the coefficient matrices C , J , and R ,

the eigenvalue problem (4) is equivalent to the three-term recursion relation (second-order linear difference

equation) (5) with the boundary conditions (6). This allows, using techniques from the theory of three-term

linear difference equations [3], to develop a thorough analysis of eigenvalue problem (4) to get more specific

results.

2. The form of general solution

In [2], we proved that under conditions (9) and (11) the eigenvalues are all real and λ = 0 is an eigenvalue of

Eq. (4). The number of the nonzero eigenvalues depends on whether b0 (the first element of the matrix J ) is

zero or not:

(i) If b0 ̸= 0, then Eq. (4) has, besides the zero eigenvalue, precisely 2N−1 distinct nonzero real eigenvalues.
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(ii) If b0 = 0, then Eq. (4) has, besides the zero eigenvalue, precisely 2N −2 distinct nonzero real eigenvalues

so that in this case the zero eigenvalue is defective (there is a generalized eigenvector associated with the

eigenvector corresponding to the zero eigenvalue).

Moreover, in [2], we proved that if b0 ̸= 0, the vectors

Θ = [θ, 0], Φj = [φ(j), λjφ
(j)], j = 1, · · · , 2N − 1,

form a basis of CN × CN , where

θ = (1, 0, · · · , 0)T

(T denotes the transpose) is the eigenvector corresponding to the zero eigenvalue, Rθ = 0, λ1 < λ2 < · · · <
λ2N−1 are the nonzero eigenvalues, and φ(1), φ(2), · · · , φ(2N−1) are the corresponding eigenvectors of Eq. (4).

It follows that we can write the general solution of differential equation (1) in the form

u(t) = αθ +

2N−1∑
j=1

αje
λjtφ(j), (13)

where α, α1, · · · , α2N−1 are arbitrary constants.

In the case of b0 = 0, the vector

ψ = (0,−a0
r1
, 0, · · · , 0)T

satisfies

Jθ +Rψ = 0

and hence ψ is a generalized eigenvector associated with the eigenvector θ . In [2], we showed that then the

vectors

Θ = [θ, 0], Ψ = [ψ, θ], Φj = [φ(j), λjφ
(j)], j = 1, · · · , 2N − 2

form a basis of CN ×CN . In this case we can write the general solution of differential equation (1) in the form

u(t) = αθ + β(ψ + tθ) +

2N−2∑
j=1

αje
λjtφ(j), (14)

where α, β, α1, · · · , α2N−2 are arbitrary constants.

Denote by {φn(λ)}Nn=−1 the solution of Eq. (5) satisfying the initial conditions

φ−1(λ) = 0, φ0(λ) = 1

so that the first condition in (6) is satisfied for this solution for all λ . Therefore, from the second condition

in (6) we get that each nonzero eigenvalue λj of Eq. (4) is a zero of the function (characteristic function)

χ(λ) = φN (λ) + hφN−1(λ) and the vector φ(j) = {φn(λj)}N−1
n=0 is an eigenvector of Eq. (4) corresponding to

λj .

For easy reference let us formulate here the following two theorems proved in [2].
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Theorem 2.1 Suppose (9), (11), and b0 ̸= 0 . Then the eigenvectors θ = (1, 0, · · · , 0)T and φ(j) = {φn(λj)}N−1
n=0 ,

j = 1, · · · , 2N − 1 of Eq. (4) form a two-fold basis of CN ; that is, for arbitrary vectors f and g belonging to

CN the expansions

f = αθ +
2N−1∑
j=1

αjφ
(j) , g =

2N−1∑
j=1

αjλjφ
(j) (15)

hold, where the coefficients αj and α are determined by

αj =
1

ρj

N−1∑
k=0

(rkfk + λjckgk)φk(λj), j = 1, · · · , 2N − 1, (16)

ρj =

N−1∑
k=0

(rk + λ2jck)φ
2
k(λj), j = 1, · · · , 2N − 1, (17)

α = f0 −
2N−1∑
j=1

αj . (18)

Theorem 2.2 Suppose (9), (11), and b0 = 0 . Then the eigenvectors θ = (1, 0, · · · , 0)T and φ(j) = {φn(λj)}N−1
n=0 ,

j = 1, · · · , 2N − 2 including the associated vector ψ = (0,−a0/r1, 0, · · · , 0)T of Eq. (4) form a two-fold basis

of CN in the sense that for arbitrary vectors f and g belonging to CN the expansions

f = αθ + βψ +
2N−2∑
j=1

αjφ
(j) , g = βθ +

2N−2∑
j=1

αjλjφ
(j) (19)

hold, where the coefficients αj , β and α are determined by

αj =
1

ρj

N−1∑
k=0

(rkfk + λjckgk)φk(λj), j = 1, · · · , 2N − 2, (20)

ρj =
N−1∑
k=0

(rk + λ2jck)φ
2
k(λj), j = 1, · · · , 2N − 2, (21)

β =
1

ρ
(c0g0 − a0f1), (22)

ρ =
a20
r1

+ c0, (23)

α = f0 −
2N−2∑
j=1

αj . (24)
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3. Determination of the negative and positive eigenvalues

We investigate Eq. (4) in the space of CN with the inner product

(y, z) =
N−1∑
j=0

yj z̄j , (25)

where the bar denotes complex conjugation.

We know that there exist one zero eigenvalue and 2N − 1 nonzero distinct real eigenvalues provided that

r0 = 0, rj > 0 for j = 1, · · · , N − 1 and b0 ̸= 0; see [2]. We denote the nonzero eigenvalues by

λ1 < · · · < λ2N−1. (26)

Lemma 3.1 If b0 < 0 , the first N eigenvalues in (26) are negative and the remaining N − 1 eigenvalues are

positive. If b0 > 0 , the first N − 1 eigenvalues are negative and the remaining N eigenvalues are positive.

Proof If

R(ϵ) =


ϵ 0 0 · · · 0
0 r1 0 · · · 0
...

...
...

...
0 0 0 · · · rN−1

 ,

for all ϵ > 0, it is proved in [7] that there exist 2N nonzero distinct eigenvalues of the problem (λ2C −
λJ − R(ϵ))y = 0. When ϵ = 0 (b0 ̸= 0), we know from [2] that zero is an eigenvalue, and besides there are

2N − 1 nonzero eigenvalues λ1 < · · · < λ2N−1 . When we include the parameter ϵ > 0 into the problem these

eigenvalues λj become functions of ϵ : λj = λj(ϵ) and the zero eigenvalue is deformed to a nonzero eigenvalue.

It is denoted by µ(ϵ). The eigenvector θ = (1, 0, · · · , 0)T corresponding to the zero eigenvalue turns out to be

θ(ϵ) corresponding to µ(ϵ). Since µ(ϵ) is an analytic function depending on ϵ (see [8], Chapter 2), its Taylor

expansion gives

µ(ϵ) = µ(0) + µ′(0)ϵ+O(ϵ2) (ϵ→ 0).

Let us denote µ′(0) = a . Since µ(0) = 0,

µ(ϵ) = aϵ+O(ϵ2). (27)

The eigenvector θ(ϵ) satisfies the equation

(µ2(ϵ)C − µ(ϵ)J −R(ϵ))θ(ϵ) = 0. (28)

Since the eigenvector θ(ϵ) is an analytic function depending on ϵ (see [8], Chapter 2), its Taylor expansion

gives

θ(ϵ) = θ(0) + θ′(0)ϵ+O(ϵ2) (ϵ→ 0).
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Let us denote θ′(0) = θ(1) . Then we have

θ(ϵ) = θ + θ(1)ϵ+O(ϵ2). (29)

In equation (28), R(ϵ) = R+ ϵT , where

T =


1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

 .
Note that since

(µ(ϵ))2 = (aϵ+O(ϵ2))2 = O(ϵ2),

Eq. (28) gives

µ(ϵ)Jθ(ϵ) +R(ϵ)θ(ϵ) = O(ϵ2), ∀ϵ > 0. (30)

Substituting (27) and (29) in (30) and using Rθ = 0, we get

ϵ(aJθ +Rθ(1) + Tθ) = O(ϵ2). (31)

Dividing both sides of (31) by ϵ and then passing to the limit as ϵ→ 0, we obtain

aJθ +Rθ(1) + Tθ = 0. (32)

To find the number a , multiply (32) in the sense of the inner product by θ :

a(Jθ, θ) + (Rθ(1), θ) + (Tθ, θ) = 0. (33)

It is easily seen that

(Jθ, θ) = b0, (Rθ(1), θ) = 0, (Tθ, θ) = 1,

where b0 ̸= 0 is the first element of the matrix J . It follows from (33) that

a = − 1

b0
.

Therefore, (27) takes the form

µ(ϵ) = − 1

b0
ϵ+O(ϵ2). (34)

There are two possible cases: b0 is either negative or positive.

If b0 < 0, then from (34), µ(ϵ) > 0 for very small values of ϵ . On the other hand, we know from [7] that

there exist 2N nonzero eigenvalues of the problem (λ2C − λJ −R(ϵ))y = 0, and furthermore, the first half of

them are negative and the other half are positive. Hence, we have

λ1(ϵ) < · · · < λN (ϵ) < 0 < µ(ϵ) < λN+1(ϵ) < · · · < λ2N−1(ϵ).
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Passing here to the limit as ϵ→ 0 and taking into account that the eigenvalues at ϵ = 0 are simple, we get

λ1 < · · · < λN < 0 < λN+1 < · · · < λ2N−1.

If b0 > 0, then from (34), µ(ϵ) < 0 for small enough values of ϵ . We know from [7] that the first half of

nonzero 2N eigenvalues are negative and the other half are positive:

λ1(ϵ) < · · · < λN−1(ϵ) < µ(ϵ) < 0 < λN (ϵ) < · · · < λ2N−1(ϵ).

Passing here to the limit as ϵ→ 0, and taking into account that the eigenvalues at ϵ = 0 are simple, we get

λ1 < · · · < λN−1 < 0 < λN < · · · < λ2N−1.

The lemma is proved. 2

Suppose that r0 = 0, rj > 0, for j = 1, · · · , N −1 and b0 = 0. In this case, we know from [2] that there

exist one zero eigenvalue and 2N − 2 nonzero distinct real eigenvalues. We denote the nonzero eigenvalues by

λ1 < · · · < λ2N−2. (35)

Lemma 3.2 Suppose that b0 = 0 . Then, in (35), the first N − 1 eigenvalues are negative and the other N − 1

eigenvalues are positive.

Proof Consider the eigenvalue problem (4) with the variable b0 = γ < 0 under conditions (9) and (11). In

this case, our problem turns out to be the one in Lemma 3.1. Therefore, we have

λ1(γ) < · · · < λN−1(γ) < µ(γ) < 0 < λN (γ) < · · · < λ2N−2(γ).

Passing to the limit as γ → 0 and taking into account that the eigenvalues at γ = 0 are simple, we obtain that

λ1 < · · · < λN−1 < 0 < λN < · · · < λ2N−2.

2

We summarize the results obtained so far in the following theorem:

Theorem 3.3 (i) Suppose (9), (11), and b0 ̸= 0 . Then Eq. (4) has precisely one zero eigenvalue and 2N − 1

nonzero distinct real eigenvalues. If b0 < 0 , then the first N nonzero eigenvalues λj (j = 1, · · · , 2N − 1) are

negative and the other N − 1 are positive. If b0 > 0 , the first N − 1 nonzero eigenvalues are negative and

the other N are positive. To the zero eigenvalue there corresponds the eigenvector θ = (1, 0, · · · , 0)T , and to

each nonzero eigenvalue λj there corresponds a single, up to a scalar factor, eigenvector that can be taken as

φ(j) = {φn(λj)}N−1
n=0 .

(ii) Suppose (9), (11), and b0 = 0 . Then Eq. (4) has precisely one zero eigenvalue and 2N − 2 nonzero

distinct real eigenvalues. The first N − 1 of nonzero eigenvalues λj (j = 1, · · · , 2N − 2) are negative and the

other N − 1 are positive. To the zero eigenvalue there corresponds the eigenvector θ = (1, 0, · · · , 0)T , and to

each nonzero eigenvalue λj there corresponds a single, up to a scalar factor, eigenvector that can be taken as

φ(j) = {φn(λj)}N−1
n=0 . Moreover, Jθ+Rψ = 0 , where ψ = (0,−a0/r1, 0, · · · , 0)T forms a generalized eigenvector

associated with the eigenvector θ .
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4. Bases consisting of half of the eigenvectors

We will make use of Theorem 2.1 and Theorem 2.2 given above in Section 2 and proved in [2].

Theorem 4.1 Suppose (9), (11), and b0 ̸= 0 . Then:

(i) If b0 < 0 , then the eigenvectors θ = (1, 0, · · · , 0)T and φ(j) for j = N + 1, · · · , 2N − 1 (corresponding to

the positive eigenvalues) form a basis of CN . Also, the eigenvectors φ(j) for j = 1, · · · , N (corresponding

to the negative eigenvalues) form a basis of CN .

(ii) If b0 > 0 , then the eigenvectors θ = (1, 0, · · · , 0)T and φ(j) , for j = 1, · · · , N − 1 (corresponding

to the negative eigenvalues), form a basis of CN . Also, the eigenvectors φ(j) for j = N, · · · , 2N − 1

(corresponding to the positive eigenvalues) form a basis of CN .

Proof

(i) Let x = {xn}N−1
n=0 ∈ CN . We assume that (x, θ) = 0 and (x, φ(j)) = 0, for j = N + 1, · · · , 2N − 1.

We need to show that then x = 0. Applying (15), (16), (17), and (18) to the vectors f = 0 and g = C−1x , we

get

0 = αθ +
2N−1∑
j=1

αjφ
(j) , C−1x =

2N−1∑
j=1

αjλjφ
(j) , (36)

where

αj =
1

ρj
λj(x, φ

(j)) , j = 1, · · · , 2N − 1. (37)

Since (x, φ(j)) = 0 for j = N + 1, · · · , 2N − 1, it follows from (37) that αj = 0 for j = N + 1, · · · , 2N − 1.

Therefore, equations in (36) can be rewritten as

0 = αθ +

N∑
j=1

αjφ
(j), (38)

C−1x =

N∑
j=1

αjλjφ
(j). (39)

Taking the inner product of (38) with x , we obtain that

0 = α(θ, x) +

N∑
j=1

αj(φ
(j), x). (40)

Since

(φ(j), x) = ρj
1

λj
ᾱj for j = 1, · · · , N
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from (37), and (x, θ) = 0, (40) takes the form:

0 =

N∑
j=1

ρj
1

λj
|αj |2.

Since ρj > 0 by (17) and λj < 0, j = 1, · · · , N , we have from the latter equality that αj = 0 for j = 1, · · · , N .

Hence, C−1x = 0 by (39), and so x = 0.

Now we show that the eigenvectors φ(j) for j = 1, · · · , N corresponding to the negative eigenvalues also

form a basis of CN . Reasoning similarly, let x = {xn}N−1
n=0 ∈ CN and assume that (x, φ(j)) = 0, j = 1, · · · , N .

We must show that x = 0. Again applying (15), (16), (17), and (18) to the vectors f = 0 and g = C−1x , we

have (36) and (37). Since (x, φ(j)) = 0 for j = 1, · · · , N , from (37), we get αj = 0, j = 1 · · · , N . Equations in

(36) take the form:

0 = αθ +
2N−1∑
j=N+1

αjφ
(j), (41)

C−1x =
2N−1∑
j=N+1

αjλjφ
(j). (42)

We have proved above that the eigenvectors {θ, φ(N+1), · · · , φ(2N−1)} form a basis of CN . It follows from (41)

that α = αN+1 = · · · = α2N−1 = 0. Then from (42), we get C−1x = 0. Hence, x = 0.

(ii) Let x = {xn}N−1
n=0 ∈ CN and assume that (x, θ) = 0 and (x, φ(j)) = 0, for j = 1, · · · , N−1. We must

show that x = 0. Applying (15), (16), (17), and (18) to the vectors f = 0 and g = C−1x , we get equations

(36) and (37). Since (x, φ(j)) = 0 for j = 1, · · · , N − 1, it follows from (37) that αj = 0 for j = 1, · · · , N − 1.

Therefore, equations in (36) can be rewritten as

0 = αθ +

2N−1∑
j=N

αjφ
(j), (43)

C−1x =
2N−1∑
j=N

αjλjφ
(j). (44)

Taking the inner product of (43) with x , we obtain that

0 = α(θ, x) +

2N−1∑
j=N

αj(φ
(j), x). (45)

Since (x, θ) = 0 and

(φ(j), x) = ρj
1

λj
ᾱj for j = N, · · · , 2N − 1
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by (37), Eq. (45) gives

0 =

2N−1∑
j=N

αjρj
1

λj
ᾱj =

2N−1∑
j=N

ρj
1

λj
|αj |2. (46)

Since ρj > 0 by (17) and λj > 0, j = N, · · · , 2N − 1, we have from (46) that αj = 0 for j = N, · · · , 2N − 1.

Hence, C−1x = 0 by (44), and so x = 0. Now, we will show that eigenvectors φ(j) for j = N, · · · , 2N − 1

(corresponding to the positive eigenvalues) also form a basis of CN . Let x = {xn}N−1
n=0 ∈ CN and assume that

(x, φ(j)) = 0, j = N, · · · , 2N − 1. We must show that x = 0. Applying (15), (16), (17), and (18) to the vectors

f = 0 and g = C−1x , we get (36) and (37). Since (x, φ(j)) = 0 for j = N, · · · , 2N − 1, we have from (37) that

αj = 0, j = N · · · , 2N − 1. Therefore, equations in (36) take the form:

0 = αθ +
N−1∑
j=1

αjφ
(j), (47)

C−1x =

N−1∑
j=1

αjλjφ
(j). (48)

Above, we have showed that the eigenvectors {θ, φ(1), · · · , φ(N−1)} form a basis of CN . Then it follows from

(47) that α = α1 = · · · = αN−1 = 0. Therefore, (48) implies C−1x = 0. Hence, we obtain that x = 0. This

completes the proof of the theorem. 2

Theorem 4.2 Suppose (9), (11), and b0 = 0 . Then each of the systems {φ(1), · · · , φ(N−1), θ} and {φ(N), · · · ,
φ(2N−2), θ} forms a basis of CN .

Proof Let us show that the system {φ(1), · · · , φ(N−1), θ} forms a basis of CN . Let x = {xn}N−1
n=0 ∈ CN and

assume that (x, φ(j)) = 0 for j = 1, · · · , N − 1 and (x, θ) = 0. We need to show that x = 0.

Applying (19), (20), (21), (22), (23), and (24) to the vectors f = 0 and g = C−1x , we get

0 = αθ + βψ +
2N−2∑
j=1

αjφ
(j) , C−1x = βθ +

2N−2∑
j=1

αjλjφ
(j) , (49)

where

αj =
1

ρj
λj(x, φ

(j)) , j = 1, · · · , 2N − 2. (50)

Since (x, φ(j)) = 0 for j = 1, · · · , N − 1, it follows from (50) that αj = 0 for j = 1, · · · , N − 1. Therefore,

equations in (49) can be rewritten as

0 = αθ + βψ +
2N−2∑
j=N

αjφ
(j), (51)
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C−1x = βθ +

2N−2∑
j=N

αjλjφ
(j). (52)

Taking the inner product of (51) with x , we obtain that

0 = α(θ, x) + β(ψ, x) +
2N−2∑
j=N

αj(φ
(j), x). (53)

Since (x, θ) = 0, it follows that

0 = β(ψ, x) +
2N−2∑
j=N

αj(φ
(j), x). (54)

Putting the vectors f = 0 and g = C−1x into (22) and taking into account (θ, x) = 0, we get β = 0. Now by

(50), Eq. (54) gives

0 =
2N−2∑
j=N

αjρj
1

λj
ᾱj =

2N−2∑
j=N

ρj
1

λj
|αj |2. (55)

Since ρj > 0 and λj > 0 for j = N, · · · , 2N − 2, we obtain from (55) that αj = 0 for j = N, · · · , 2N − 2.

Therefore, from Eq. (52), we get C−1x = 0. It follows that x = 0.

Now we show that the system {φ(N), · · · , φ(2N−2), θ} also forms a basis of CN . Let x = {xn}N−1
n=0 ∈ CN

and assume that (x, φ(j)) = 0 for j = N, · · · , 2N − 2 and (x, θ) = 0. We need to show that x = 0.

We apply (19), (20), (21), (22), (23), and (24) to the vectors f = 0 and g = C−1x , to get equations (49)

and (50). Since (x, φ(j)) = 0 for j = N, · · · , 2N − 2, it follows from (50) that αj = 0 for j = N, · · · , 2N − 2.

Therefore, equations in (49) can be rewritten as

0 = αθ + βψ +
N−1∑
j=1

αjφ
(j), (56)

C−1x = βθ +

N−1∑
j=1

αjλjφ
(j). (57)

Taking the inner product of (56) with x , we obtain that

0 = α(θ, x) + β(ψ, x) +
N−1∑
j=1

αj(φ
(j), x). (58)

Since (x, θ) = 0, it follows that

0 = β(ψ, x) +

N−1∑
j=1

αj(φ
(j), x). (59)
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Putting the vectors f = 0 and g = C−1x into (22) and using (θ, x) = 0, we find β = 0. Now by (50), Eq. (59)

yields

0 =
N−1∑
j=1

αjρj
1

λj
ᾱj =

N−1∑
j=1

ρj
1

λj
|αj |2. (60)

Since ρj > 0 and λj < 0 for j = 1, · · · , N−1, we obtain from (60) that αj = 0 for j = 1, · · · , N−1. Therefore,

from Eq. (57), we get C−1x = 0. It follows that x = 0. This finishes the proof of the theorem. 2

5. Application

In this section, we give some applications of the results obtained above.

Theorem 5.1 Assume (9), (11), and b0 ̸= 0 .

(i) If b0 < 0 , then for an arbitrary vector f = {fn}N−1
n=0 ∈ CN Eq. (1) has a unique solution u(t) that

satisfies the conditions

u(0) = f, lim
t→∞

u(t) = 0. (61)

(ii) If b0 > 0 , then for an arbitrary vector f = {fn}N−1
n=0 ∈ CN Eq. (1) has a unique solution u(t) that

satisfies the conditions

u(0) = f, lim
t→∞

u(t) = σθ, (62)

where θ = (1, 0, · · · , 0)T and σ is defined by means of expansion (63) below.

Proof

(i) The function

u(t) =
N∑
j=1

σje
λjtφ(j)

is a solution of problem (1), (61), where λ1, · · · , λN are negative eigenvalues of Eq. (4) and σ1, · · · , σN are

defined by means of the expansion

f =

N∑
j=1

σjφ
(j).

Such numbers σj exist and are determined uniquely by Theorem 4.1 (i).

To prove the uniqueness of the solution, note that the general solution of Eq. (1) has the form (13). It

follows from (13) and the second condition in (61) that α = αN+1 = · · · = α2N−1 = 0. Setting now t = 0 in

(13), we obtain that αj = σj , for j = 1, · · · , N . This finishes the proof of the part (i) of the theorem.
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(ii) By Theorem 4.1 (ii), the function

u(t) = σθ +

N−1∑
j=1

σje
λjtφ(j)

is a solution of problem (1), (61), where λ1, · · · , λN−1 are negative eigenvalues of Eq. (4) and σ1, · · · , σN−1

and σ are defined by means of the expansion

f = σθ +
N−1∑
j=1

σjφ
(j). (63)

The proof of the uniqueness is similar to that given in the part (i). 2

Theorem 5.2 Assume (9), (11), and b0 = 0 . Then for an arbitrary vector f = {fn}N−1
n=0 ∈ CN and an

arbitrary number σ∗ Eq. (1) has a unique solution u(t) that satisfies the conditions

u(0) = f, lim
t→∞

|u(t)− σθ − σ∗(ψ + tθ)| = 0, (64)

where σ is defined by means of expansion (65) below.

Proof The function

u(t) = σθ + σ∗(ψ + tθ) +
N−1∑
j=1

σje
λjtφ(j),

is a solution of problem (1) and (64), where λ1, · · · , λN−1 are negative eigenvalues of Eq. (4), and σ1, · · · , σN−1

and σ are defined by means of the expansion

f − σ∗ψ = σθ +
N−1∑
j=1

σjφ
(j). (65)

Such numbers σ and σj exist and are determined uniquely by Theorem 4.2.

To prove the uniqueness of the solution, note that the general solution of Eq. (1) has the form (14). It

follows from (14) and the second condition in (64) that αN = · · · = α2N−2 = 0 and β = σ∗ . Setting now t = 0

in (14), we obtain that α = σ and αj = σj for j = 1, · · · , N − 1. This finishes the proof. 2
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