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Abstract: The well-known Taylor polynomial is used to construct the identities coming from Popoviciu type inequalities

for convex functions via the Green function. The bounds for the new identities are found using the Čebyšev functional

to develop the Grüss and Ostrowski type inequalities. Further, more exponential convexity together with Cauchy means

is presented for linear functionals associated with the obtained inequalities.
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1. Introduction and preliminary results

The theory of convex functions has experienced a rapid development. This can be attributed to several causes:

first, so many areas in modern analysis directly or indirectly involve the application of convex functions;

second, convex functions are closely related to the theory of inequalities and many important inequalities

are consequences of the applications of convex functions (see [10]). Divided differences are found to be very

helpful when we are dealing with functions having different degrees of smoothness. The following definition of

divided difference is given in [10, p. 14].

Definition 1 The m th-order divided difference of a function f : [a, b] → R at mutually distinct points

x0, ..., xm ∈ [a, b] is defined recursively by

[xi; f ] = f (xi) , i = 0, . . . ,m,

[x0, . . . , xm; f ] =
[x1, . . . , xm; f ]− [x0, . . . , xm−1; f ]

xm − x0
. (1)

It is easy to see that (1) is equivalent to

[x0, . . . , xm; f ] =
m∑
i=0

f (xi)

q′ (xi)
, where q (x) =

m∏
j=0

(x− xj) .
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The following definition of a real valued convex function is characterized by mth-order divided difference (see

[10, p. 15]).

Definition 2 A function f : [a, b] → R is said to be m-convex (m ≥ 0) if and only if for all choices of (m+ 1)

distinct points x0, . . . , xm ∈ [a, b] , [x0, . . . , xm; f ] ≥ 0 holds.

If this inequality is reversed, then f is said to be m-concave. If the inequality is strict, then f is said to be a

strictly m-convex (m-concave) function.

Remark 1.1 Note that 0-convex functions are nonnegative functions, 1-convex functions are increasing func-

tions, and 2-convex functions are simply the convex functions.

The following theorem gives an important criterion to examine the m -convexity of a function f (see [10, p.

16]).

Theorem 1.2 If f (m) exists, then f is m-convex if and only if f (m) ≥ 0 .

In 1965, Popoviciu introduced a characterization of convex functions [11]. In 1976, Vasić and Stanković [12]

(see also [10, p. 173]) gave the weighted version. In recent years that inequality of Popoviciu was studied in

[3, 6, 7, 8, 9].

Theorem 1.3 Let n, k ∈ N , n ≥ 3 , 2 ≤ k ≤ n − 1 , [α, β] ⊂ R , x = (x1, ..., xn) ∈ [α, β]n , p = (p1, ..., pn) be

a positive n-tuple such that
∑n

i=1 pi = 1 . Also let f : [α, β] → R be a convex function. Then

pk,n(x,p; f) ≤
n− k

n− 1
p1,n(x,p; f) +

k − 1

n− 1
pn,n(x,p; f), (2)

where

pk,n(x,p; f) = pk,n(x,p; f(x)) :=
1

Cn−1
k−1

∑
1≤i1<...<ik≤n

 k∑
j=1

pij

 f


k∑

j=1

pijxij

k∑
j=1

pij


is the linear functional with respect to f .

By inequality (2), we write

Υ(x,p; f) :=
n− k

n− 1
p1,n(x,p; f) +

k − 1

n− 1
pn,n(x,p; f)− pk,n(x,p; f). (3)

Remark 1.4 It is important to note that under the assumptions of Theorem 1.3, if the function f is convex

then Υ(x,p; f) ≥ 0 and Υ(x,p; f) = 0 for f(x) = x or f is a constant function.

Consider the Green function G defined on [α, β]× [α, β] by

G(t, s) =

{
(t−β)(s−α)

β−α , α ≤ s ≤ t;
(s−β)(t−α)

β−α , t ≤ s ≤ β.
(4)
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The function G is convex in s , it is symmetric, and so it is also convex in t . The function G is continuous in

s and continuous in t .

For any function ϕ : [α, β] → R , ϕ ∈ C2([α, β]) , we can easily show by integrating by parts that the

following is valid:

ϕ(x) =
β − x

β − α
ϕ(α) +

x− α

β − α
ϕ(β) +

∫ β

α

G(x, s)ϕ′′(s)ds, (5)

where the function G is defined as above in (4) [13].

The well-known Taylor formula is as follows:

Let m be a positive integer and ϕ : [α, β] → R be such that ϕ(m−1) is absolutely continuous, and then

for all x ∈ [α, β] , the Taylor formula at point c ∈ [α, β] is

ϕ(x) = Tm−1(ϕ; c, x) +Rm−1(ϕ; c, x) (6)

where Tm−1(ϕ; c, x) is a Taylor polynomial of degree m− 1, i.e.

Tm−1(ϕ; c, x) =
m−1∑
k=0

ϕ(k)(c)

k!
(x− c)k,

and the remainder is given by

Rm−1(ϕ; c, x) =
1

(m− 1)!

∫ x

c

ϕ(m)(t)(x− t)m−1dt.

The mean value theorems and exponential convexity of the linear functional Υ(x,p; f) are given in [6]

for a positive n-tuple p . Some special classes of convex functions are considered to construct the exponential

convexity of Υ(x,p; f) in [6]. In [7] (see also [3]), the results related to Υ(x,p; f) are generalized for real

n -tuple p with the help of the Green function and m-exponential convexity is proved in a more general setting.

In Section 2 of this paper, we use Taylor’s formula and the Green function to generalize the Popoviciu

inequality. In Section 3, the Čebyšev functional is used to find the bounds for new identities. Grüss and

Ostrowski type inequalities related to generalized Popoviciu inequalities are constructed. In Section 4, higher

order convexity is used to produce exponential convexity of positive linear functionals coming from Section 2.

The last section is devoted to the respective Cauchy means. We employ a similar method as adopted in [5] for

Steffensen’s inequality.

2. Generalization of the Popoviciu inequality

Motivated by identity (3), we construct the following new identities with the help of Taylor’s formula.

Theorem 2.1 Let n, k,m be positive integers such that n ≥ 3 , 2 ≤ k ≤ n − 1 , x = (x1, ..., xn) ∈ [α, β]n for

real interval [α, β] , and let p = (p1, ..., pn) be a positive n-tuple such that
∑n

i=1 pi = 1 . Consider ϕ : [α, β] → R
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to be a function such that ϕ(m−1) is absolutely continuous. Then we have the following identities:

Υ(x,p;ϕ(x)) =

β∫
α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(α)(s− α)
z−2

(z − 2)!

)
ds

+
1

(m− 3)!

β∫
α

ϕ(m)(t)

 β∫
t

Υ(x,p;G(x, s))(s− t)
m−3

ds

 dt, (7)

and

Υ(x,p;ϕ(x)) =

β∫
α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(β)(s− β)
z−2

(z − 2)!

)
ds

− 1

(m− 3)!

β∫
α

ϕ(m)(t)

 t∫
α

Υ(x,p;G(x, s))(s− t)
m−3

ds

 dt. (8)

Proof Using (5) in (3) and by linearity of Υ(x,p; ·) we get

Υ(x,p;ϕ(x)) =

β∫
α

Υ(x,p;G(x, s))ϕ′′(s)ds. (9)

Using Taylor’s formula (6) on the function ϕ′′ at the point α and replacing m by m−2 (m ≥ 3) or differentiating

(6) twice and taking c = α , we get

ϕ′′(s) =
m−1∑
z=2

ϕ(z)(α)

(z − 2)!
(s− α)z−2 +

1

(m− 3)!

s∫
α

ϕ(m)(t)(s− t)
m−3

dt, (10)

and for c = β , we get

ϕ′′(s) =
m−1∑
z=2

ϕ(z)(β)

(z − 2)!
(s− β)z−2 − 1

(m− 3)!

β∫
s

ϕ(m)(t)(s− t)
m−3

dt. (11)

Now, using (10) in (9), we get

Υ(x,p;ϕ(x)) =

m−1∑
z=2

ϕ(z)(α)

(z − 2)!

β∫
α

Υ(x,p;G(x, s))(s− α)
z−2

ds

+
1

(m− 3)!

β∫
α

Υ(x,p;G(x, s))

 s∫
α

ϕ(m)(t)(s− t)
m−3

dt

 ds,

and then applying Fubini’s theorem on the last term, we get (7).

Similarly, using (11) in (9) and applying Fubini’s theorem, we get (8). 2

In the following theorem we obtain generalizations of Popoviciu’s inequality for m -convex functions.
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Theorem 2.2 Let all the assumptions of Theorem 2.1 be satisfied.

(i) If ϕ is an m-convex function and

β∫
t

Υ(x,p;G(x, s))(s− t)
m−3

ds ≥ 0, t ∈ [α, β], (12)

then

Υ(x,p;ϕ(x)) ≥
β∫

α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(α)(s− α)
z−2

(z − 2)!

)
ds. (13)

(ii) If ϕ is an m-convex function and

t∫
α

Υ(x,p;G(x, s))(s− t)
m−3

ds ≤ 0, t ∈ [α, β], (14)

then

Υ(x,p;ϕ(x)) ≥
β∫

α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(β)(s− β)
z−2

(z − 2)!

)
ds. (15)

Proof Since ϕ(m−1) is absolutely continuous on [α, β] , ϕ(m)(x) exists almost everywhere. As ϕ is m-convex,

applying Theorem 1.2, we have ϕ(m)(x) ≥ 0 for all x ∈ [α, β] . Hence, we can apply Theorem 2.1 to obtain (13)

and (15), respectively. 2

Corollary 2.3 Let all the assumptions of Theorem 2.1 be satisfied for the m-convex function (m ≥ 3) and in

addition let p = (p1, ..., pm) be a positive m-tuple such that
∑m

i=1 pi = 1 . Then:

(i) (13) is valid for m = 3, 4, . . . . Moreover, if

m−1∑
z=2

ϕ(z)(α)(s− α)
z−2

(z − 2)!
≥ 0, (16)

then
Υ(x,p;ϕ(x)) ≥ 0. (17)

(ii) If m is even, then (15) holds. Moreover, if

m−1∑
z=2

ϕ(z)(β)(s− β)
z−2

(z − 2)!
≥ 0, (18)

then (17) is valid, too.

Proof By using Theorem 2.2 and Remark 1.4. 2
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3. Bounds for identities related to generalization of the Popoviciu inequality

For two Lebesgue integrable functions f, h : [α, β] → R , we consider the Čebyšev functional

∆(f, h) =
1

β − α

∫ β

α

f(t)h(t)dt− 1

β − α

∫ β

α

f(t)dt.
1

β − α

∫ β

α

h(t)dt.

In [2], the authors proved the following theorems:

Theorem 3.1 Let f : [α, β] → R be a Lebesgue integrable function and h : [α, β] → R be an absolutely

continuous function with (.− α)(β − .)[h′]2 ∈ L[α, β]. Then we have the inequality

|∆(f, h)| ≤ 1√
2
[∆(f, f)]

1
2

1√
β − α

(∫ β

α

(x− α)(β − x)[h′(x)]2dx

) 1
2

. (19)

The constant 1√
2
in (19) is the best possible.

Theorem 3.2 Assume that h : [α, β] → R is monotonic nondecreasing on [α, β] and f : [α, β] → R is

absolutely continuous with f ′ ∈ L∞[α, β]. Then we have the inequality

|∆(f, h)| ≤ 1

2(β − α)
||f ′||∞

∫ β

α

(x− α)(β − x)dh(x). (20)

The constant 1
2 in (20) is the best possible.

In the sequel, we consider the above theorems to derive generalizations of the results proved in the previous

section. In order to avoid many notions let us denote

R(t) =

β∫
t

Υ(x,p;G(x, s))(s− t)
m−3

ds, t ∈ [α, β], (21)

R̂(t) =

t∫
α

Υ(x,p;G(x, s))(s− t)
m−3

ds, t ∈ [α, β]. (22)

Consider the Čebyšev functionals ∆(R,R) and ∆(R̂, R̂) given by:

∆(R,R) =
1

β − α

∫ β

α

R2(t)dt−
(

1

β − α

∫ β

α

R(t)dt

)2

, (23)

∆(R̂, R̂) =
1

β − α

∫ β

α

R̂2(t)dt−
(

1

β − α

∫ β

α

R̂(t)dt

)2

. (24)
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Theorem 3.3 Let m ≥ 3 be a positive integer, let ϕ : [α, β] → R be such that ϕ(m) is absolutely continuous with

(.−α)(β− .)[ϕ(m+1)]2 ∈ L[α, β] , and let n, k ∈ N , n ≥ 3 , 2 ≤ k ≤ n− 1 , [α, β] ⊂ R , x = (x1, ..., xn) ∈ [α, β]n ,

p = (p1, ..., pn) be a real n-tuple such that
∑k

j=1 pij ̸= 0 for any 1 ≤ i1 < ... < ik ≤ n and
∑n

i=1 pi = 1 . Also

let

k∑
j=1

pij
xij

k∑
j=1

pij

∈ [α, β] for any 1 ≤ i1 < ... < ik ≤ n and R , R̂ be defined by (21) , (22) , respectively . Then

(i)

Υ(x,p;ϕ(x)) =

β∫
α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(α)(s− α)
z−2

(z − 2)!

)
ds

+
ϕ(m−1)(β)− ϕ(m−1)(α)

(β − α)(m− 3)!

∫ β

α

R(t)dt+ K1
m(α, β;ϕ), (25)

where the remainder K1
m(α, β;ϕ) satisfies the bound

|K1
m(α, β;ϕ)| ≤

√
β − α√

2(m− 3)!
[∆(R,R)]

1
2

∣∣∣∣ ∫ β

α

(t− α)(β − t)[ϕ(m+1)(t)]2dt

∣∣∣∣ 12 . (26)

(ii)

Υ(x,p;ϕ(x)) =

β∫
α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(β)(s− β)
z−2

(z − 2)!

)
ds

+
ϕ(m−1)(β)− ϕ(m−1)(α)

(α− β)(m− 3)!

∫ β

α

R̂(t)dt− K2
m(α, β;ϕ), (27)

where the remainder K2
m(α, β;ϕ) satisfies the bound

|K2
m(α, β;ϕ)| ≤

√
β − α√

2(m− 3)!
[∆(R̂, R̂)]

1
2

∣∣∣∣ ∫ β

α

(t− α)(β − t)[ϕ(m+1)(t)]2dt

∣∣∣∣ 12 . (28)

Proof (i) If we apply Theorem 3.1 for f 7→ R and h 7→ ϕ(m) , we get

∣∣∣∣ 1

β − α

∫ β

α

R(t)ϕ(m)(t)dt− 1

β − α

∫ β

α

R(t)dt.
1

β − α

∫ β

α

ϕ(m)(t)dt

∣∣∣∣
≤ 1√

2
[∆(R,R)]

1
2

1√
β − α

∣∣∣∣ ∫ β

α

(t− α)(β − t)[ϕ(m+1)(t)]2dt

∣∣∣∣ 12 .
Hence, we have

1

(m− 3)!

∫ β

α

R(t)ϕ(m)(t)dt =
ϕ(m−1)(β)− ϕ(m−1)(α)

(β − α)(m− 3)!

∫ β

α

R(t)dt+ K1
m(α, β;ϕ),
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where the remainder K1
m(α, β;ϕ) satisfies the estimation (26). Now from identity (7), we obtain (25).

(ii) Similar to the above part. 2

The following Grüss type inequalities can be obtained by using Theorem 3.2.

Theorem 3.4 Let m ≥ 3 be a positive integer, let ϕ : [α, β] → R be such that ϕ(m) is an absolutely continuous

function and ϕ(m+1) ≥ 0 on [α, β] , and let the functions R , R̂ be defined by (21) , (22) , respectively. Then we

have:

(i) the representation (25) and the remainder K1
m(α, β;ϕ) satisfies the estimation

|K1
m(α, β;ϕ)| ≤ β − α

(m− 3)!
||R′||∞

[
ϕ(m−1)(β) + ϕ(m−1)(α)

2
− ϕ(m−2)(β)− ϕ(m−2)(α)

β − α

]
. (29)

(ii) The representation (27) and the remainder K2
m(α, β;ϕ) satisfies the estimation

|K2
m(α, β;ϕ)| ≤ β − α

(m− 3)!
||R̂′||∞

[
ϕ(m−1)(β) + ϕ(m−1)(α)

2
− ϕ(m−2)(β)− ϕ(m−2)(α)

β − α

]
. (30)

Proof (i) Applying Theorem 3.2 for f 7→ R and h 7→ ϕ(m) , we get

∣∣∣∣ 1

β − α

∫ β

α

R(t)ϕ(m)(t)dt− 1

β − α

∫ β

α

R(t)dt.
1

β − α

∫ β

α

ϕ(m)(t)dt

∣∣∣∣
≤ 1

2(β − α)
||R′||∞

∫ β

α

(t− α)(β − t)ϕ(m+1)(t)dt. (31)

Since

∫ β

α

(t− α)(β − t)ϕ(m+1)(t)dt =

∫ β

α

[2t− (α+ β)]ϕ(m)(t)dt

= (β − α)
[
ϕ(m−1)(β) + ϕ(m−1)(α)

]
− 2
(
ϕ(m−2)(β)− ϕ(m−2)(α)

)
,

therefore, using identity (7) and the inequality (31), we deduce (29).

(ii) Similar to the above proof. 2

Now we intend to give the Ostrowski type inequalities related to generalizations of Popoviciu’s inequality.

Theorem 3.5 Suppose all the assumptions of Theorem 2.1 hold. Moreover, assume that (p, q) is a pair of

conjugate exponents; that is, 1 ≤ p, q ≤ ∞ , 1/p+1/q = 1 . Let |ϕ(m)|p : [α, β] → R be an R-integrable function

for some m ≥ 3 . Then we have

(i)

∣∣∣∣∣∣Υ(x,p;ϕ(x))−
β∫

α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(α)(s− α)
z−2

(z − 2)!

)
ds

∣∣∣∣∣∣
≤ 1

(m− 3)!
||ϕ(m)||p||

β∫
t

Υ(x,p;G(x, s))(s− t)
m−3

ds||q. (32)
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The constant on the R.H.S. of (32) is sharp for 1 < p ≤ ∞ and the optimal for p = 1 .

(ii)

∣∣∣∣∣∣Υ(x,p;ϕ(x))−
β∫

α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(β)(s− β)
z−2

(z − 2)!

)
ds

∣∣∣∣∣∣
≤ 1

(m− 3)!
||ϕ(m)||p||

t∫
α

Υ(x,p;G(x, s))(s− t)
m−3

ds||q. (33)

The constant on the R.H.S. of (33) is sharp for 1 < p ≤ ∞ and the best possible for p = 1 .

Proof (i) Let us denote

V =
1

(m− 3)!

β∫
t

Υ(x,p;G(x, s))(s− t)
m−3

ds, t ∈ [α, β].

Using identity (7) and applying Hölder’s inequality, we obtain

∣∣∣∣∣∣Υ(x,p;ϕ(x))−
β∫

α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(α)(s− α)
z−2

(z − 2)!

)
ds

∣∣∣∣∣∣
=

∣∣∣∣ ∫ β

α

V(t)ϕ(m)(t)dt

∣∣∣∣ ≤ ||ϕ(m)||p||V(t)||q,

where

||f ||q :=


(

β

∫
α
|f(t)|qdt

) 1
q

; 1 ≤ q <∞,

sup
t∈[α,β]

|f(t)| ; q = ∞.

For the proof of the sharpness of the constant ||V(t)||q , let us define the function ϕ for which the equality in

(32) is obtained.

For 1 < p ≤ ∞ take ϕ to be such that

ϕ(m)(t) = sgnV(t)|V(t)|
1

p−1 .

For p = ∞ take ϕ(m)(t) = sgnV(t).

For p = 1, we prove that

∣∣∣∣ ∫ β

α

V(t)ϕ(m)(t)dt

∣∣∣∣ ≤ max
t∈[α,β]

|V(t)|
(∫ β

α

ϕ(m)(t)dt

)
(34)
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is the best possible inequality. Suppose that |V(t)| attains its maximum at t0 ∈ [α, β] . To start with, first we

assume that V(t0) > 0. For δ small enough we define ϕδ(t) by

ϕδ(t) =


0 , α ≤ t ≤ t0 ,
1

δm! (t− t0)
m , to ≤ t ≤ t0 + δ ,

1
m! (t− t0)

m−1 , t0 + δ ≤ t ≤ β .

Then for δ small enough: ∣∣∣∣ ∫ β

α

V(t)ϕ(m)(t)dt

∣∣∣∣ = ∣∣∣∣ ∫ t0+δ

t0

V(t)
1

δ
dt

∣∣∣∣ = 1

δ

∫ t0+δ

t0

V(t)dt.

Now, from inequality (34), we have

1

δ

∫ t0+δ

t0

V(t)dt ≤ V(t0)

∫ t0+δ

t0

1

δ
dt = V(t0).

Since

lim
δ→0

1

δ

∫ t0+δ

t0

V(t)dt = V(t0),

the statement follows. For the case when V(t0) < 0, we define ϕδ(t) by

ϕδ(t) =


1
m! (t− t0 − δ)m−1 , α ≤ t ≤ t0 ,
−1
δm! (t− t0 − δ)m , to ≤ t ≤ t0 + δ ,

0 , t0 + δ ≤ t ≤ β ,

and rest of the proof is the same as above.

(ii) Similar to first part. 2

4. Mean value theorems and m-exponential convexity

We recall some definitions and basic results from [1, 4, 5] that are required in the sequel.

Definition 3 A function ϕ : I → R is m-exponentially convex in the Jensen sense on I if

m∑
i,j=1

ξiξj ϕ

(
xi + xj

2

)
≥ 0

holds for all choices ξ1, . . . , ξm ∈ R and all choices x1, . . . , xm ∈ I . A function ϕ : I → R is m-exponentially

convex if it is m−exponentially convex in the Jensen sense and continuous on I .

Definition 4 A function ϕ : I → R is exponentially convex in the Jensen sense on I if it is m-exponentially

convex in the Jensen sense for all m ∈ N .

A function ϕ : I → R is exponentially convex if it is exponentially convex in the Jensen sense and

continuous.

342



BUTT et al./Turk J Math

Proposition 4.1 If ϕ : I → R is m-exponentially convex in the Jensen sense, then the matrix
[
ϕ
(

xi+xj

2

) ]n
i,j=1

is a positive semidefinite matrix for all n ∈ N, n ≤ m . Particularly,

det

[
ϕ

(
xi + xj

2

)]n
i,j=1

≥ 0

for all n ∈ N , n = 1, 2, ...,m .

Remark 4.2 It is known that ϕ : I → R is log-convex in the Jensen sense if and only if

α2ϕ(x) + 2αβϕ

(
x+ y

2

)
+ β2ϕ(y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I . It follows that a positive function is log-convex in the Jensen sense if

and only if it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

Remark 4.3 By virtue of Theorem 2.2, we define the positive linear functionals with respect to m-convex

function ϕ as follows:

Γ1(ϕ) := Υ(x,p;ϕ(x))−
β∫

α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(α)(s− α)
z−2

(z − 2)!

)
ds ≥ 0, (35)

Γ2(ϕ) := Υ(x,p;ϕ(x))−
β∫

α

Υ(x,p;G(x, s))

(
m−1∑
z=2

ϕ(z)(β)(s− β)
z−2

(z − 2)!

)
ds ≥ 0. (36)

Lagrange and Cauchy type mean value theorems related to defined functionals are given in the following

theorems.

Theorem 4.4 Let ϕ : [α, β] → R be such that ϕ ∈ Cm[α, β] . If the inequalities in (12) (i = 1) and (14)

(i = 2) hold, then there exist ξi ∈ [α, β] such that

Γi(ϕ) = ϕ(m)(ξi)Γi(φ), i = 1, 2 (37)

where φ(x) = xm

m! and Γi(·) (i = 1, 2) are defined by (35) and (36).

Proof Similar to the proof of Theorem 4.1 in [5]. 2

Theorem 4.5 Let ϕ, ψ : [α, β] → R be such that ϕ, ψ ∈ Cm[α, β] . If the inequalities in (12) (i = 1) and (14)

(i = 2) hold, then there exist ξi ∈ [α, β] such that

Γi(ϕ)

Γi(ψ)
=
ϕ(m)(ξi)

ψ(m)(ξi)
, i = 1, 2 (38)

provided that the denominators are nonzero and Γi(·) (i = 1, 2) are defined by (35) and (36).
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Proof Similar to the proof of Corollary 4.2 in [5]. 2

Theorem 4.5 enables us to define Cauchy means, because if

ξi =

(
ϕ(m)

ψ(m)

)−1(
Γi(ϕ)

Γi(ψ)

)
, i = 1, 2

it means that ξi (i = 1, 2) are means for given functions ϕ and ψ .

Next we construct the nontrivial examples of m-exponentially and exponentially convex functions from

positive linear functionals Γi(·) (i = 1, 2). In the sequel I and J are intervals in R .

Theorem 4.6 Let Ω = {ϕt : t ∈ J} , where J is an interval in R , be a family of functions defined on an

interval I in R such that the function t 7→ [x0, . . . , xm;ϕt] is m-exponentially convex in the Jensen sense on

J for every (m+1) mutually different points x0, . . . , xm ∈ I . Then for the linear functionals Γi(ϕt) (i = 1, 2)

as defined by (35) and (36) , the following statements are valid:

(i) The function t→ Γi(ϕt) is m-exponentially convex in the Jensen sense on J and the matrix [Γi(ϕ tj+tl
2

)]nj,l=1

is positive semidefinite for all n ∈ N, n ≤ m , t1, .., tn ∈ J . Particularly,

det[Γi(ϕ tj+tl
2

)]nj,l=1 ≥ 0 for all n ∈ N , n = 1, 2, ...,m .

(ii) If the function t→ Γi(ϕt) is continuous on J , then it is m-exponentially convex on J .

Proof (i) For ξj ∈ R and tj ∈ J , j = 1, . . . ,m , we define the function

h(x) =
m∑

j,l=1

ξjξlϕ tj+tl
2

(x).

Using the assumption that the function t 7→ [x0, . . . , xm;ϕt] is m -exponentially convex in the Jensen sense, we

have

[x0, . . . , xm, h] =
m∑

j,l=1

ξjξl[x0, . . . , xm;ϕ tj+tl
2

] ≥ 0,

which in turn implies that h is an m -convex function on J , and therefore from Remark 4.3 we have Γi(h) ≥ 0,

i = 1, 2. The linearity of Γi(·) gives
m∑

j,l=1

ξjξlΓi(ϕ tj+tl
2

) ≥ 0.

We conclude that the function t 7→ Γi(ϕt) is m -exponentially convex on J in the Jensen sense.

The remaining part follows from Proposition 4.1.

(ii) If the function t→ Γi(ϕt) is continuous on J , then it is m-exponentially convex on J by definition. 2

The following corollary is an immediate consequence of the above theorem.

Corollary 4.7 Let Ω = {ϕt : t ∈ J} , where J is an interval in R , be a family of functions defined on an

interval I in R , such that the function t 7→ [x0, . . . , xm;ϕt] is exponentially convex in the Jensen sense on J

for every (m + 1) mutually different points x0, . . . , xm ∈ I . Then for the linear functionals Γi(ϕt) (i = 1, 2)

as defined by (35) and (36) , the following statements hold:
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(i) The function t→ Γi(ϕt) is exponentially convex in the Jensen sense on J and the matrix [Γi(ϕ tj+tl
2

)]nj,l=1

is positive semidefinite for all n ∈ N, n ≤ m , t1, .., tn ∈ J . Particularly,

det[Γi(ϕ tj+tl
2

)]nj,l=1 ≥ 0 for all n ∈ N , n = 1, 2, ...,m .

(ii) If the function t→ Γi(ϕt) is continuous on J , then it is exponentially convex on J .

Corollary 4.8 Let Ω = {ϕt : t ∈ J} , where J is an interval in R , be a family of functions defined on an

interval I in R , such that the function t 7→ [x0, . . . , xm;ϕt] is 2-exponentially convex in the Jensen sense on

J for every (m+ 1) mutually different points x0, . . . , xm ∈ I . Let Γi(·) , i = 1, 2 be linear functionals defined

by (35) and (36) . Then the following statements hold:

(i) If the function t 7→ Γi(ϕt) is continuous on J , then it is a 2-exponentially convex function on J . If

t 7→ Γi(ϕt) is additionally strictly positive, then it is also log-convex on J . Furthermore, the following

inequality holds true:

[Γi(ϕs)]
t−r ≤ [Γi(ϕr)]

t−s
[Γi(ϕt)]

s−r
, i = 1, 2

for every choice r, s, t ∈ J , such that r < s < t .

(ii) If the function t 7→ Γi(ϕt) is strictly positive and differentiable on J, then for every p, q, u, v ∈ J , such

that p ≤ u and q ≤ v , we have

µp,q(Γi,Ω) ≤ µu,v(Γi,Ω), (39)

where

µp,q(Γi,Ω) =


(

Γi(ϕp)
Γi(ϕq)

) 1
p−q

, p ̸= q,

exp

(
d
dpΓi(ϕp)

Γi(ϕp)

)
, p = q,

(40)

for ϕp, ϕq ∈ Ω .

Proof

(i) This is an immediate consequence of Theorem 4.6 and Remark 4.2.

(ii) Since p 7→ Γi(ϕt) is positive and continuous, by (i) we have that t 7→ Γi(ϕt) is log-convex on J ; that is,

the function t 7→ log Γi(ϕt) is convex on J . Hence, we get

log Γi(ϕp)− log Γi(ϕq)

p− q
≤ log Γi(ϕu)− log Γi(ϕv)

u− v
, (41)

for p ≤ u, q ≤ v, p ̸= q, u ̸= v . Thus, we conclude that

µp,q(Γi,Ω) ≤ µu,v(Γi,Ω).

Cases p = q and u = v follow from (41) as limit cases.

2
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5. Applications to Cauchy means

In this section, we present some families of functions that fulfill the conditions of Theorem 4.6, Corollary 4.7,

and Corollary 4.8. This enables us to construct large families of functions that are exponentially convex. An

explicit form of this function is obtained after we calculate the explicit action of functionals on a given family.

Example 5.1 Let us consider a family of functions

Ω1 = {ϕt : R → R : t ∈ R}

defined by

ϕt(x) =

{
etx

tm , t ̸= 0,
xm

m! , t = 0.

Since dmϕt

dxm (x) = etx > 0 , the function ϕt is m-convex on R for every t ∈ R and t 7→ dmϕt

dxm (x) is ex-

ponentially convex by definition. Using analogous arguing as in the proof of Theorem 4.6 we also have that

t 7→ [x0, . . . , xm;ϕt] is exponentially convex (and so exponentially convex in the Jensen sense). Now, using

Corollary 4.7, we conclude that t 7→ Γi(ϕt) (i = 1, 2) are exponentially convex in the Jensen sense. It is easy

to verify that this mapping is continuous (although the mapping t 7→ ϕt is not continuous for t = 0), so it is

exponentially convex. For this family of functions, µt,q(Γi,Ω1) (i = 1, 2), from (40), becomes

µt,q(Γi,Ω1) =


(

Γi(ϕt)
Γi(ϕq)

) 1
t−q

, t ̸= q,

exp
(

Γi(id·ϕt)
Γi(ϕt)

− m
t

)
, t = q ̸= 0,

exp
(

1
m+1

Γi(id·ϕ0)
Γi(ϕ0)

)
, t = q = 0,

where “id” is the identity function. By Corollary 4.8 µt,q(Γi,Ω1) (i = 1, 2) are monotone functions in

parameters t and q .

Since (
dmft
dxm

dmfq
dxm

) 1
t−q

(log x) = x,

using Theorem 4.5 it follows that:

Mt,q(Γi,Ω1) = log µt,q(Γi,Ω1), i = 1, 2

satisfies

α ≤Mt,q(Γi,Ω1) ≤ β, i = 1, 2.

Hence, Mt,q(Γi,Ω1) (i = 1, 2) are monotonic means.

Example 5.2 Let us consider a family of functions

Ω2 = {gt : (0,∞) → R : t ∈ R}

defined by

gt(x) =

{
xt

t(t−1)···(t−m+1) , t /∈ {0, 1, . . . ,m− 1},
xj log x

(−1)m−1−jj!(m−1−j)! , t = j ∈ {0, 1, . . . ,m− 1}.
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Since dmgt
dxm (x) = xt−m > 0 , the function gt is m-convex for x > 0 and t 7→ dmgt

dxm (x) is exponentially convex by

definition. Arguing as in Example 5.1, we get that the mappings t 7→ Γi(gt) (i = 1, 2) are exponentially convex.

Hence, for this family of functions µp,q(Γi,Ω2) (i = 1, 2), from (40), are equal to

µt,q(Γi,Ω2) =



(
Γi(gt)
Γi(gq)

) 1
t−q

, t ̸= q,

exp

(
(−1)m−1(m− 1)!Γi(g0gt)

Γi(gt)
+

m−1∑
k=0

1
k−t

)
, t = q /∈ {0, 1, . . . ,m− 1},

exp

(−1)m−1(m− 1)!Γi(g0gt)
2Γi(gt)

+
m−1∑
k=0
k ̸=t

1
k−t

 , t = q ∈ {0, 1, . . . ,m− 1}.

Again, using Theorem 4.5, we conclude that

α ≤
(
Γi(gt)

Γi(gq)

) 1
t−q

≤ β, i = 1, 2. (42)

Hence, µt,q(Γi,Ω2) (i = 1, 2) are means and their monotonicity is followed by (39).

Example 5.3 Let

Ω3 = {ζt : (0,∞) → R : t ∈ (0,∞)}

be a family of functions defined by

ζt(x) =

{
t−x

(− log t)m , t ̸= 1;
xm

(m)! , t = 1.

Since dmζt
dxm (x) = t−x is the Laplace transform of a nonnegative function (see [13]) it is exponentially convex.

Obviously ζt are m-convex functions for every t > 0 .

For this family of functions, µt,q (Γi,Ω3) (i = 1, 2), in this case for [α, β] ⊂ R+ , from (40) becomes

µt,q (Γi,Ω3) =


(

Γi(ζt)
Γi(ζq)

) 1
t−q

, t ̸= q;

exp
(
−Γi(id.ζt)

tΓi(ζt)
− m

t log t

)
, t = q ̸= 1;

exp
(
− 1

m+1
Γi(id.ζ1)
Γi(ζ1)

)
, t = q = 1,

where id is the identity function. By Corollary 4.8 µp,q(Γi,Ω3) (i = 1, 2) are monotone functions in parameters

t and q .

Using Theorem 4.5 it follows that

Mt,q (Γi,Ω3) = −L(t, q)logµt,q (Γi,Ω3) ; i = 1, 2

satisfy

α ≤Mt,q (Γi,Ω3) ≤ β; i = 1, 2.

This shows that Mt,q (Γi,Ω3) (i = 1, 2) are means. Because of inequality (39), these means are monotonic.

L(t, q) is a logarithmic mean defined by

L(t, q) =


t−q

log t−log q , t ̸= q;

t, t = q.

347



BUTT et al./Turk J Math

Example 5.4 Let

Ω4 = {γt : (0,∞) → R : t ∈ (0,∞)}

be a family of functions defined by

γt(x) =
e−x

√
t(

−
√
t
)m .

Since dmγt

dxm (x) = e−x
√
t is the Laplace transform of a nonnegative function (see [13]) it is exponentially convex.

Obviously γt are m-convex function for every t > 0 .

For this family of functions, µt,q (Γi,Ω4) (i = 1, 2), in this case for [α, β] ⊂ R+ , from (40) becomes

µt,q (Γi,Ω4) =


(

Γi(γt)
Γi(γq)

) 1
t−q

, t ̸= q;

exp
(
− Γi(id.γt)

2
√
tΓi(γt)

− m
2t

)
, t = q;

i = 1, 2.

By Corollary 4.8, these are monotone functions in parameters t and q .

Using Theorem 4.5 it follows that

Mt,q (Γi,Ω4) = −
(√

t+
√
q
)
lnµt,q (Γi,Ω4) ; i = 1, 2

satisfy

α ≤Mt,q (Γi,Ω4) ≤ β; i = 1, 2.

This shows that Mt,q (Γi,Ω4) (i = 1, 2) are means. Because of the above inequality (39), these means are

monotonic.
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