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Abstract: The Jungck–Khan iterative scheme for a pair of nonself operators contains as a special case Jungck–Ishikawa

and Jungck–Mann iterative schemes. In this paper, we establish improved results about convergence, stability, and data

dependence for the Jungck–Khan iterative scheme.
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1. Introduction

The case of nonself mappings is much more complicated than that of self ones and therefore it is not considered

in many situations. Inspired by the work of Khan [7], here we tackle this problem in the context of two nonself

operators.

Definition 1 [5] Let X be a set and S , T : X → X be mappings.

1. A point x in X is called:

(i) coincidence point of S and T if Sx = Tx ,

(ii) common fixed point of S and T if x = Sx = Tx .

2. If w = Sx = Tx for some x in X , then w is called a point of coincidence of S and T .

3. A pair (S, T ) is said to be:

(i) commuting if TSx = STx for all x ∈ X ,

(ii) weakly compatible if they commute at their coincidence points, i.e. STx = TSx whenever Sx = Tx .

Let X be a Banach space, Y be an arbitrary set, and S ,T : Y → X be two nonself operators such that

T (Y ) ⊆ S (Y ).

Definition 2 ([15]) We say that the sequences {Sxn}∞n=0 and {Syn}∞n=0 in X are S−equivalent if

lim
n−→∞

∥Sxn − Syn∥ = 0.
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Definition 3 Let S ,T : Y → X be two nonself operators on an arbitrary set Y such that T (Y ) ⊆ S (Y ) ,

p be a coincidence point of S and T , and {Sxn}∞n=0 ⊂ X be an iterative sequence generated by the general

algorithm of form {
x0 ∈ Y ,
Sxn+1 = f (T, xn) , n ∈ N,

where x0 is an initial approximation and f is a function. Suppose that {Sxn}∞n=0 converges to p .

1. ( [11]) Let {Syn}∞n=0 ⊂ X be an arbitrary sequence. Then {Sxn}∞n=0 is said to be stable with respect to

(S, T ) if and only if limn−→∞ ∥Syn+1 − f (T, yn)∥ = 0 implies that limn−→∞ Syn = p .

2. ( [15], [16]) Let {Syn}∞n=0 ⊂ X be an S−equivalent sequence of {Sxn}∞n=0 ⊂ X . Then {Sxn}∞n=0 is said

to be weak w2−stable with respect to (S, T ) if and only if limn−→∞ ∥Syn+1 − f (T, yn)∥ = 0 implies that

limn−→∞ Syn = p .

Recently, Khan et al. [8] defined the Jungck–Khan iterative scheme as
x0 ∈ Y ,

Sxn+1 = (1− αn − βn)Sxn + αnTyn + βnTxn,
Syn = (1− bn − cn)Sxn + bnTzn + cnTxn,
Szn = (1− an)Sxn + anTxn, n ∈ N,

(1)

where {αn}∞n=0 , {βn}∞n=0 , {an}∞n=0 , {bn}∞n=0 , and {cn}∞n=0 ⊂ [0, 1] are real sequences satisfying αn + βn ,

bn + cn ∈ [0, 1] for all n ∈ N .

The following definitions and lemmas will be needed in proving our main results.

Definition 4 ([9])The pair of operators S ,T : Y → X is contractive if there exist a real number δ ∈ [0, 1) and

a monotone increasing function φ : R+ → R+ such that φ (0) = 0 and for all x , y ∈ Y , we have

∥Tx− Ty∥ ≤ δ ∥Sx− Sy∥+ φ (∥Sx− Tx∥) . (2)

Definition 5 ([1]) Let T , T̃ : X → X be two operators. We say that T̃ is an approximate operator of T if for

all x ∈ X and for a fixed ε > 0 , we have ∥∥∥Tx− T̃ x
∥∥∥ ≤ ε.

Lemma 1 ([17]) Let {σn}∞n=0 and {ρn}∞n=0 be nonnegative real sequences satisfying the following inequality:

σn+1 ≤ (1− λn)σn + ρn,

where λn ∈ (0, 1) , for all n ≥ n0 ,
∑∞

n=1 λn = ∞ , and ρn

λn
→ 0 as n → ∞ . Then limn→∞ σn = 0 .

Lemma 2 ([14]) Let {σn}∞n=0 be a nonnegative sequence of real numbers. Assume there exists n0 ∈ N , such

that for all n ≥ n0 one has the inequality

σn+1 ≤ (1− µn)σn + µnγn,
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where µn ∈ (0, 1) , for all n ∈ N ,
∞∑

n=0
µn = ∞ and γn ≥ 0 , ∀n ∈ N . Then the following inequality holds:

0 ≤ lim sup
n→∞

σn ≤ lim sup
n→∞

γn.

2. Convergence and stability results

For the sake of simplicity, we make the following assumptions in the rest of the paper: S ,T : Y → X satisfies

contractive condition (2), where T (Y ) ⊆ S (Y ), S (Y ) is a complete subspace of X and C(S, T ) denotes the

set of coincidence points of S and T .

Theorem 1 Let {Sxn}∞n=0 be the Jungck–Khan iterative scheme (1) with
∞∑

n=0
αn = ∞ . Suppose that there

exists a z ∈ C(S, T ) such that Sz = Tz = p (say). Then {Sxn}∞n=0 converges strongly to p . Moreover, p is

the unique common fixed point of the pair (S, T ) provided Y = X , and S and T are weakly compatible.

Proof. It follows from (1) and (2) that

∥Sxn+1 − p∥ ≤ (1− αn − βn) ∥Sxn − p∥+ αn ∥Tyn − p∥+ βn ∥Txn − p∥ , (3)

∥Txn − p∥ ≤ δ ∥Sxn − p∥ , (4)

∥Szn − p∥ ≤ [1− an (1− δ)] ∥Sxn − p∥ , (5)

∥Tzn − p∥ ≤ δ [1− an (1− δ)] ∥Sxn − p∥ , (6)

and
∥Tyn − p∥ ≤ δ {(1− bn − cn) + bnδ [1− an (1− δ)] + cnδ} ∥Sxn − p∥ . (7)

Combining (3)–(7), we get

∥Sxn+1 − p∥ ≤ {1− αn − βn + αnδ {1− bn − cn + bnδ [1− an (1− δ)] + cnδ}+ βnδ} ∥Sxn − p∥ , (8)

Since 1− an (1− δ) ≤ 1 and 1− (bn + cn) (1− δ) ≤ 1, (8) becomes

∥Sxn+1 − p∥ ≤ {1− αn − βn + αnδ [1− (bn + cn) (1− δ)] + βnδ} ∥Sxn − p∥

≤ [1− (αn + βn) (1− δ)] ∥Sxn − p∥ . (9)

Since αk ≤ αk + βk for all k ∈ N , therefore we get

k∑
n=0

αn ≤
k∑

n=0

(αn + βn) ,

which implies when k → ∞ ,
∞∑

n=0

αn ≤
∞∑

n=0

(αn + βn) .
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Thus assumption
∞∑

n=0
αn = ∞ implies

∞∑
n=0

(αn + βn) = ∞ . Now it can be seen easily that inequality (9) fulfills

all the conditions of Lemma 1. An application of Lemma 1 to (9) gives limn→∞ ∥Sxn − p∥ = 0.

Now we prove p is a unique common fixed point of S and T , when Y = X .

Assume there exists another coincidence point q of the pair (S, T ). Then there exists z∗ ∈ X such that

Sz∗ = Tz∗ = q . However,

0 ≤ ∥p− q∥ ≤ ∥Tz − Tz∗∥ ≤ δ ∥Sz − Sz∗∥+ φ (∥Sz − Tz∥) = δ ∥p− q∥ ,

which implies p = q as δ ∈ [0, 1). Since S and T are weakly compatible and Sz = Tz = p , so Tp = TTz =

TSz = STz and hence Tp = Sp . Therefore, Tp is a point of coincidence of S , T and as the point of coincidence

is unique so Tp = p . Thus Tp = Sp = p and therefore p is unique common fixed point of S and T .

We now prove that Jungk–Khan iterative scheme (1) is weak w2−stable with respect to (S, T ).

Theorem 2 Let {Sxn}∞n=0 be the Jungck–Khan iterative scheme (1) with
∞∑

n=0
αn = ∞ . Suppose that there

exists a z ∈ C(S, T ) such that Sz = Tz = p (say) and {Sxn}∞n=0 converges strongly to p . Let {Sun}∞n=0 ⊂ X

be an S−equivalent sequence of {Sxn}∞n=0 ⊂ X . Set

 εn = ∥Sun+1 − (1− αn − βn)Sun − αnTvn − βnTun∥ ,
Svn = (1− bn − cn)Sun + bnTwn + cnTun,
Swn = (1− an)Sun + anTun, for all n ∈ N,

(10)

Then {Sxn}∞n=0 is weak w2−stable with respect to (S, T ) .

Proof. The sequence {Sxn}∞n=0 will be weak w2−stable with respect to (S, T ) if limn→∞ Sun = p . Let

limn→∞ εn = 0.

It follows from (1), (2), and (10) that

∥Sun+1 − p∥ ≤ ∥Sun+1 − Sxn+1∥+ ∥Sxn+1 − p∥

≤ ∥Sun+1 − (1− αn − βn)Sun − αnTvn − βnTun∥

+(1− αn − βn) ∥Sxn − Sun∥+ αn ∥Tyn − Tvn∥

+βn ∥Txn − Tun∥+ ∥Sxn+1 − p∥ , (11)

∥Txn − Tun∥ ≤ δ ∥Sxn − Sun∥+ φ (∥Sxn − Txn∥) , (12)

∥Tyn − Tvn∥ ≤ δ ∥Syn − Svn∥+ φ (∥Syn − Tyn∥) , (13)

∥Syn − Svn∥ ≤ (1− bn − cn) ∥Sxn − Sun∥

+bn ∥Tzn − Twn∥+ cn ∥Txn − Tun∥ , (14)

∥Tzn − Twn∥ ≤ δ ∥Szn − Swn∥+ φ (∥Szn − Tzn∥) , (15)

634



KHAN et al./Turk J Math

∥Szn − Swn∥ ≤ (1− an) ∥Sxn − Sun∥+ an ∥Txn − Tun∥ , (16)

Combining (11)–(16), we get

∥Sun+1 − p∥ ≤ εn + {1− αn − βn + αnδ (1− bn − cn)

+ αnbnδ
2 [1− an (1− δ)] + αncnδ

2 + βnδ
}
∥Sxn − Sun∥

+
{
βn + αnanbnδ

2 + αnδcn
}
φ (∥Sxn − Txn∥)

+αnφ (∥Syn − Tyn∥) + αnδbnφ (∥Szn − Tzn∥) + ∥Sxn+1 − p∥ . (17)

Since 1− an (1− δ) ≤ 1 and 1− (bn + cn) (1− δ) ≤ 1, (17) becomes

∥Sun+1 − p∥ ≤ εn + [1− (αn + βn) (1− δ)] ∥Sxn − Sun∥

+ [βn + αnδ (anbnδ + cn)]φ (∥Sxn − Txn∥)

+αnφ (∥Syn − Tyn∥) + αnbnδφ (∥Szn − Tzn∥) + ∥Sxn+1 − p∥ . (18)

Now we have

∥Sxn − Txn∥ ≤ (1 + δ) ∥Sxn − p∥ ,

∥Syn − Tyn∥ ≤ (1 + δ) [1− (bn + cn) (1− δ)] ∥Sxn − p∥ ,

∥Szn − Tzn∥ ≤ (1 + δ) [1− an (1− δ)] ∥Sxn − p∥ .

It follows from the assumption limn→∞ ∥Sxn − p∥ = 0 that

lim
n→∞

∥Sxn − Txn∥ = lim
n→∞

∥Syn − Tyn∥ = lim
n→∞

∥Szn − Tzn∥ = 0.

As φ is continuous, so we have

lim
n→∞

φ (∥Sxn − Txn∥) = lim
n→∞

φ (∥Syn − Tyn∥) = lim
n→∞

φ (∥Szn − Tzn∥) = 0. (19)

Since {Sun}∞n=0 , {Sxn}∞n=0 ⊂ X are S−equivalent sequences, therefore we have

lim
n→∞

∥Sxn − Sun∥ = 0. (20)

Now taking the limit on both sides of (18) and then using limn→∞ ∥Sxn − p∥ = 0, (19), and (20) lead to

limn→∞ ∥Sun+1 − p∥ = 0. Thus {Sxn}∞n=0 is weak w2−stable with respect to (S, T ).

Example 1 Let X = [0, 1] be endowed with the usual metric. Define two operators T , S : [0, 1] → [0, 1] by

Tx = x
4 and Sx = x with a coincide point p = 0 . It is clear that T ([0, 1]) ⊆ S ([0, 1]) , and S ([0, 1]) = [0, 1]

is a complete subspace of [0, 1] . Now we show that the pair (S, T ) satisfies condition (2) with δ = 1
4 . To do

this, define φ by φ (t) = t
4 . Now φ is increasing, continuous, and φ (0) = 0 . Therefore, for all x, y ∈ [0, 1] ,

we have

|Tx− Ty| =
∣∣∣x
4
− y

4

∣∣∣ ≤ 1

4

∣∣∣x− x

4

∣∣∣+ 1

4
|x− y| ,
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or equivalently

0 ≤
∣∣∣x− x

4

∣∣∣ ,
which holds for all x ∈ [0, 1] . Thus the pair (S, T ) satisfies condition (2).

Let {Sxn}∞n=0 be the sequence defined by Jungck–Khan iterative scheme (1) with αn = βn = an = bn =

cn = 1
n+2 and x0 ∈ [0, 1] . Then we have

zn = Szn =

(
1− 1

n+ 2

)
xn +

1

n+ 2

xn

4
=

(
1− 3

4 (n+ 2)

)
xn, (21)

yn = Syn =

(
1− 2

n+ 2

)
xn +

1

n+ 2

zn
4

+
1

n+ 2

xn

4
, (22)

xn+1 = Sxn+1 =

(
1− 2

n+ 2

)
xn +

1

n+ 2

yn
4

+
1

n+ 2

xn

4
, ∀n ∈ N. (23)

Combining (21)–(23), we get that

xn+1 = Sxn+1 =

(
1− 3

2

(
1

n+ 2
+

1

4 (n+ 2)
2 +

1

32 (n+ 2)
3

))
xn, ∀n ∈ N. (24)

Let tn = 3
2

(
1

n+2 + 1
4(n+2)2

+ 1
32(n+2)3

)
. It is easy to see that tn ∈ (0, 1) for all n ∈ N and

∞∑
n=0

tn = ∞ . Hence

an application of Lemma 1 to (24) leads to limn→∞ xn = 0 = S (0) = T (0) .

To show that Jungck–Khan iterative scheme (1) is weak w2−stable with respect to (S, T ) , we use the

sequence {Syn} defined by Syn = 1
n+3 . It is clear that the sequence {Syn} is an approximate of {Sxn} . Then

εn = |Syn+1 − f (T, yn)|

=

∣∣∣∣∣yn+1 −

(
1− 3

2

(
1

n+ 2
+

1

4 (n+ 2)
2 +

1

32 (n+ 2)
3

))
yn

∣∣∣∣∣
=

∣∣∣∣∣ 1

n+ 4
−

(
1− 3

2

(
1

n+ 2
+

1

4 (n+ 2)
2 +

1

32 (n+ 2)
3

))
1

n+ 3

∣∣∣∣∣
=

32n3 + 408n2 + 1299n+ 1228

64 (n+ 3) (n+ 4) (n+ 2)
3 .

Clearly, limn→∞ εn = 0 . Therefore, Jungck–Khan iterative scheme (1) is weak w2−stable with respect to

(S, T ) .

3. Data dependency

The study of data dependence of fixed points in a normed space setting has become a new trend (see [2–

4,6,8,10,12–14] and references therein). For data dependency of fixed points, the reader is referred to the book

by Berinde [1].
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Definition 6 Let (S, T ) ,
(
S̃, T̃

)
: Y → X be nonself operator pairs on an arbitrary set Y such that T (Y ) ⊆

S (Y ) and T̃ (Y ) ⊆ S̃ (Y ) . We say that the pair
(
S̃, T̃

)
is an approximate operator pair of (S, T ) if for all

x ∈ X and for fixed ε1 > 0 and ε2 > 0 , we have∥∥∥Tx− T̃ x
∥∥∥ ≤ ε1,

∥∥∥Sx− S̃x
∥∥∥ ≤ ε2.

Theorem 3 Let
(
S̃, T̃

)
: Y → X be an approximate operator pair of the pair (S, T ) : Y → X satisfying

contractive condition (2). Suppose that S̃ (Y ) is a complete subspace of X . Let z ∈ C(S, T ) and z̃ ∈ C(S̃, T̃ )

be the coincidence points of S , T and S̃ , T̃ respectively, that is, Sz = Tz = p and S̃z = T̃ z = p̃ . Let

{Sxn}∞n=0 be the Jungck–Khan iterative scheme (1) with
∞∑

n=0
αn = ∞ and

{
S̃x̃n

}∞

n=0
a sequence defined by


x̃0 ∈ X,

S̃x̃n+1 = (1− αn − βn) S̃x̃n + αnT̃ ỹn + βnT̃ x̃n,

S̃ỹn = (1− bn − cn) S̃x̃n + bnT̃ z̃n + cnT̃ x̃n,

S̃z̃n = (1− an) S̃x̃n + anT̃ x̃n, n ∈ N.

(25)

Assume that {Sxn}∞n=0 and
{
S̃x̃n

}∞

n=0
converge to p and p̃ , respectively. Then we have

∥p− p̃∥ ≤ 8ε

1− δ
,

where ε = max {ε1, ε2} .

Proof. Using the same arguments as in the proof of ([8], Theorem 4.1), we have

∥∥∥Sxn+1 − S̃x̃n+1

∥∥∥ ≤ (1− αn − βn)
∥∥∥Sxn − S̃x̃n

∥∥∥
+αn

∥∥∥Tyn − T̃ ỹn

∥∥∥+ βn

∥∥∥Txn − T̃ x̃n

∥∥∥ , (26)

∥∥∥Tyn − T̃ ỹn

∥∥∥ ≤ δ ∥Syn − Sỹn∥+ φ (∥Syn − Tyn∥) + ε1, (27)

∥∥∥Txn − T̃ x̃n

∥∥∥ ≤ δ
∥∥∥Sxn − S̃x̃n

∥∥∥+ φ (∥Sxn − Txn∥) + δε2 + ε1, (28)

∥Syn − Sỹn∥ ≤ (1− bn − cn)
∥∥∥Sxn − S̃x̃n

∥∥∥
+bn

∥∥∥Tzn − T̃ z̃n

∥∥∥+ cn

∥∥∥Txn − T̃ x̃n

∥∥∥+ ε2, (29)

∥∥∥Tzn − T̃ z̃n

∥∥∥ ≤ δ ∥Szn − Sz̃n∥+ φ (∥Szn − Tzn∥) + ε1, (30)
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∥Szn − Sz̃n∥ ≤ [1− an (1− δ)]
∥∥∥Sxn − S̃x̃n

∥∥∥
+anφ (∥Sxn − Txn∥) + an (δε2 + ε1) + ε2. (31)

Combining (26)–(31), we get

∥∥∥Sxn+1 − S̃x̃n+1

∥∥∥ ≤ {1− αn − βn + βnδ + αnδ (1− bn − cn)

+ αnδ
2 (cn + bn [1− an (1− δ)])

}∥∥∥Sxn − S̃x̃n

∥∥∥
+αnδbnφ (∥Szn − Tzn∥) + αnφ (∥Syn − Tyn∥)

+
[
αnδ

2bnan + αnδcn + βn

]
φ (∥Sxn − Txn∥)

+
[
αnδ

2bnan + αnδbn + αnδcn + αn + βn

]
(δε2 + ε1) . (32)

As αn , βn , an , bn , cn , αn + βn , bn + cn ∈ [0, 1] for all n ∈ N , and δ ∈ [0, 1), so we have


1− an (1− δ) < 1,

1− (bn + cn) (1− δ) < 1,
αn ≤ αn + βn,
βn ≤ αn + βn,[

δ2bnan + δbn + δcn + 1
]
(δε2 + ε1) < 4 (ε2 + ε1) .

(33)

An application of inequalities in (33) to (32) gives

∥∥∥Sxn+1 − S̃x̃n+1

∥∥∥ ≤ [1− (αn + βn) (1− δ)]
∥∥∥Sxn − S̃x̃n

∥∥∥
+(αn + βn) {δbnφ (∥Szn − Tzn∥) + φ (∥Syn − Tyn∥)

+
[
δ2bnan + δcn + 1

]
φ (∥Sxn − Txn∥) + 4 (ε2 + ε1)

}
. (34)

Define

σn =
∥∥∥Sxn − S̃x̃n

∥∥∥ ,
µn = (αn + βn) (1− δ) ∈ (0, 1) ,

γn =

[
δbnφ (∥Szn − Tzn∥) + φ (∥Syn − Tyn∥)

+
[
δ2bnan + δcn + 1

]
φ (∥Sxn − Txn∥) + 4 (ε2 + ε1)

]
1− δ

Thus, (34) becomes

σn+1 ≤ (1− µn)σn + µnγn. (35)

As in the proof of Theorem 1, the assumption
∞∑

n=0
αn = ∞ implies

∞∑
n=0

(αn + βn) = ∞ . It is easy to check that

σn , µn , and γn satisfy all the conditions of Lemma 2. Also as in the proof of Theorem 2, we have

lim
n→∞

φ (∥Sxn − Txn∥) = lim
n→∞

φ (∥Syn − Tyn∥) = lim
n→∞

φ (∥Szn − Tzn∥) = 0.
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Hence an application of Lemma 2 to (35) leads to

∥p− p̃∥ ≤ 8ε

1− δ
,

where ε = max {ε1, ε2} .

Remark 1 In this revisit of [8], we have:

1. Proved Theorem 1 in a slightly different way than Theorem 2.1;

2. Established ([8], Theorem 4.1) without the condition βn ≤ αn for all n ∈ N in Theorem 3.

Remark 2 In the definition of stability, the sequence {Syn}n∈N is taken as an arbitrary sequence, say Syn =

n
n+1 . Now using Syn = n

n+1 in place of Syn = 1
n+3 in Example 1, we obtain

εn = |Syn+1 − f (T, yn)|

=

∣∣∣∣∣yn+1 −

(
1− 3

2

(
1

n+ 2
+

1

4 (n+ 2)
2 +

1

32 (n+ 2)
3

))
yn

∣∣∣∣∣
=

∣∣∣∣∣n+ 1

n+ 2
−

(
1− 3

2

(
1

n+ 2
+

1

4 (n+ 2)
2 +

1

32 (n+ 2)
3

))
n

n+ 1

∣∣∣∣∣ ,
which implies εn → 0 as n → ∞ . However, limn→∞ Syn = limn→∞

n
n+1 = 1 . Therefore, limn→∞ εn = 0 does

not imply limn→∞ Syn = 0 for an arbitrary sequence {Syn}n∈N . Thus the Jungck–Khan iterative scheme (1)

is not stable.

Here we have improved the stability result in [8] for weakly w2−stability. The new result is supported by

a numerical example.
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[6] Karakaya V, Gürsoy F, Doğan K, Ertürk M. Data dependence results for multistep and CR iterative schemes in

the class of contractive-like operators. Abstr Appl Anal 2013; 2013: 1-7.

[7] Khan AR. On modified Noor iterations for asymptotically nonexpansive mappings. Bull Belg Math Soc Simon

Stevin 2010; 17: 127-140.

639

http://dx.doi.org/10.1016/j.jmaa.2006.02.058


KHAN et al./Turk J Math

[8] Khan AR, Kumar V, Hussain N. Analytical and numerical treatment of Jungck-type iterative schemes. Appl Math

Comput 2014; 231: 521-535.

[9] Olatinwo MO. Some stability and strong convergence results for the Jungck-Ishikawa iteration process. Creative

Math. & Inf 2008; 17: 33-42.

[10] Öztürk Çeliker F. Convergence analysis for a modified SP iterative method. The Scientific World Journal 2014;

2014: 5 pages.

[11] Singh SL, Bhatnagar C, Mishra SN. Stability of Jungck-type iterative procedures. Int J Math Math Sci 2005; 19:

3035-3043.
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