Turk J Math
(2016) 40: $641-646$
(C) TÜBITTAK
doi:10.3906/mat-1503-58

Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions

Sevtap SÜMER EKER*
Department of Mathematics, Faculty of Science, Dicle University, Diyarbakır, Turkey

Received: 18.03.2015 • Accepted/Published Online: 10.10.2015 \quad - Final Version: 08.04.2016

Abstract

In this study, we introduce and investigate two new subclasses of the bi-univalent functions; both $f(z)$ and $f^{-1}(z)$ are m-fold symmetric analytic functions. Among other results, upper bounds for the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ are found in this investigation.

Key words: Univalent functions, bi-univalent functions, m-fold symmetric bi-univalent functions

1. Introduction

A function is said to be univalent (or schlicht) if it never takes the same value twice: $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ if $z_{1} \neq z_{2}$.
Let \mathcal{A} denote the class of functions $f(z)$ that are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Moreover, let \mathcal{S} denote the subclass of functions in \mathcal{A} that are univalent in \mathbb{U} (for details, see [5]).
The Koebe one quarter theorem (e.g., see [5]) ensures that the image of \mathbb{U} under every univalent function $f(z) \in \mathcal{A}$ contains the disk of radius $1 / 4$. Thus every univalent function f has an inverse f^{-1} satisfying

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function f^{-1} is given by

$$
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. We denote by Σ the class of all bi-univalent functions in \mathbb{U} given by the Taylor-Maclaurin series expansion (1.1).

For a brief history and examples of functions in the class Σ, see [11] (see also [3, 8, 9, 14]).

[^0]In fact, the aforecited work by Srivastava et al. [11] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was followed by such works as those by Ali et al. [2], Srivastava et al. [12], and Jahangiri and Hamidi [7](see also [1, 4, 6, 10], and the references cited in each of them).

Let $m \in \mathbb{N}$. A domain E is said to be m-fold symmetric if a rotation of E about the origin through an angle $2 \pi / m$ carries E on itself. It follows that a function $f(z)$ analytic in \mathbb{U} is said to be m-fold symmetric $(m \in \mathbb{N})$ if

$$
f\left(e^{2 \pi i / m} z\right)=e^{2 \pi i / m} f(z)
$$

In particular, every $f(z)$ is 1 -fold symmetric and every odd $f(z)$ is 2 -fold symmetric. We denote by \mathcal{S}_{m} the class of m-fold symmetric univalent functions in \mathbb{U}.

A simple argument shows that $f \in \mathcal{S}_{m}$ is characterized by having a power series of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in \mathbb{U}, m \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

In [13] Srivastava et al. defined m-fold symmetric bi-univalent function analogues to the concept of m fold symmetric univalent functions. They gave some important results, such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each $m \in \mathbb{N}$, in their study. Furthermore, for the normalized form of f given by (1.2), they obtained the series expansion for f^{-1} as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \tag{1.3}\\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots
\end{align*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in \mathbb{U}.
The object of the present paper is to introduce new subclasses of the function class bi-univalent functions in which both f and f^{-1} are m-fold symmetric analytic functions and obtain coefficient bounds for $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in each of these new subclasses.

2. Coefficient estimates for the function class $\mathcal{A}_{\Sigma, m}^{\alpha, \lambda}$

We begin by introducing the function class $\mathcal{A}_{\Sigma, m}^{\alpha, \lambda}$ by means of the following definition.

Definition 1 A function $f(z)$ given by (1.2) is said to be in the class $\mathcal{A}_{\Sigma, m}^{\alpha, \lambda}(0<\alpha \leq 1, \lambda \geq 0, m \in \mathbb{N})$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma_{m} \text { and }\left|\arg (1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg (1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

where the function $g(w)$ is given by (1.3).

SÜMER EKER/Turk J Math

Theorem 1 Let $f \in \mathcal{A}_{\Sigma, m}^{\alpha, \lambda}(0<\alpha \leq 1, \lambda \geq 0, m \in \mathbb{N})$ be given by (1.2). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{(1+m \lambda)^{2}+\alpha m\left(1+2 m \lambda-m \lambda^{2}\right)}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}(m+1)}{(1+m \lambda)^{2}}+\frac{2 \alpha}{1+2 m \lambda} \tag{2.4}
\end{equation*}
$$

Proof From (2.1) and (2.2) we have

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and for its inverse map, $g=f^{-1}$, we have

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(z)=[q(w)]^{\alpha} \tag{2.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ are in familiar Caratheodory class \mathcal{P} (see for details [5]) and have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots . \tag{2.8}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.5) and (2.6) yields

$$
\begin{gather*}
(1+m \lambda) a_{m+1}=\alpha p_{m} \tag{2.9}\\
(1+2 m \lambda) a_{2 m+1}=\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2} \tag{2.10}\\
-(1+m \lambda) a_{m+1}=\alpha q_{m} \tag{2.11}\\
(1+2 m \lambda)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} \tag{2.12}
\end{gather*}
$$

From (2.9) and (2.11), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1+m \lambda)^{2} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{2.14}
\end{equation*}
$$

Moreover, from (2.10), (2.12), and (2.14), we get

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{(1+m \lambda)^{2}+\alpha m\left(1+2 m \lambda-m \lambda^{2}\right)} . \tag{2.15}
\end{equation*}
$$

SÜMER EKER/Turk J Math

Note that, according to the Caratheodory Lemma (see [5]), $\left|p_{m}\right| \leq 2$ and $\left|q_{m}\right| \leq 2$ for $m \in \mathbb{N}$. Now taking the absolute value of (2.15) and applying the Caratheodory Lemma for coefficients $p_{2 m}$ and $q_{2 m}$ we obtain

$$
\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{(1+m \lambda)^{2}+\alpha m\left(1+2 m \lambda-m \lambda^{2}\right)}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted (2.3).
Next, in order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.12) from (2.10), we get

$$
2(1+2 m \lambda) a_{2 m+1}-(1+2 m \lambda)(m+1) a_{m+1}^{2}=\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right)
$$

Upon substituting the value of a_{m+1}^{2} from (2.14) and observing that $p_{m}^{2}=q_{m}^{2}$, it follows that

$$
\begin{equation*}
a_{2 m+1}=\frac{\alpha^{2}(m+1) p_{m}^{2}}{2(1+m \lambda)^{2}}+\frac{\alpha\left(p_{2 m}-q_{2 m}\right)}{2(1+2 m \lambda)} \tag{2.16}
\end{equation*}
$$

Taking the absolute value of (2.16) and applying the Caratheodory Lemma again for coefficients $p_{m}, p_{2 m}$, and $q_{2 m}$ we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}(m+1)}{(1+m \lambda)^{2}}+\frac{2 \alpha}{1+2 m \lambda}
$$

This completes the proof of Theorem 1.

3. Coefficient estimates for the function class $\mathcal{A}_{\Sigma, m}^{\lambda}(\beta)$

Definition $2 A$ function $f(z)$ given by (1.2) is said to be in the class $\mathcal{A}_{\Sigma, m}^{\lambda}(\beta)(0<1, \lambda \geq 0,0 \leq \beta<1, m \in$ \mathbb{N}) if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma_{m} \text { and } \operatorname{Re}\left\{(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right\}>\beta \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right\}>\beta \quad(w \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

where the function $g(w)$ is given by (1.3).

Theorem 2 Let $f \in \mathcal{A}_{\Sigma, m}^{\lambda}(\beta)(0<1, \lambda \geq 0,0 \leq \beta<1, m \in \mathbb{N})$ be given by (1.2). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq 2 \sqrt{\frac{1-\beta}{(1+2 m \lambda)(m+1)}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2(1-\beta)^{2}(m+1)}{(1+m \lambda)^{2}}+\frac{2(1-\beta)}{1+2 m \lambda} \tag{3.4}
\end{equation*}
$$

SÜMER EKER/Turk J Math

Proof It follows from (3.1) and (3.2) that

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and (3.6) yields

$$
\begin{gather*}
(1+m \lambda) a_{m+1}=(1-\beta) p_{m} \tag{3.7}\\
(1+2 m \lambda) a_{2 m+1}=(1-\beta) p_{2 m} \tag{3.8}\\
-(1+m \lambda) a_{m+1}=(1-\beta) q_{m} \tag{3.9}\\
(1+2 m \lambda)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=(1-\beta) q_{2 m} . \tag{3.10}
\end{gather*}
$$

From (3.7) and (3.9) we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1+m \lambda)^{2} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{3.12}
\end{equation*}
$$

Moreover, from (3.8) and (3.10), we obtain

$$
\begin{equation*}
(1+2 m \lambda)(m+1) a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right) \tag{3.13}
\end{equation*}
$$

Thus we have

$$
\begin{gathered}
\left|a_{m+1}^{2}\right| \leq \frac{(1-\beta)}{(1+2 m \lambda)(m+1)}\left(\left|p_{2 m}\right|+\left|q_{2 m}\right|\right) \\
=\frac{4(1-\beta)}{(1+2 m \lambda)(m+1)}
\end{gathered}
$$

which is the bound on $\left|a_{m+1}\right|$ as given in Theorem 2.
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.10) from (3.8), we get

$$
2(1+2 m \lambda) a_{2 m+1}=(1-\beta)\left(p_{2 m}-q_{2 m}\right)+(1+2 m \lambda)(m+1) a_{m+1}^{2}
$$

or equivalently

$$
a_{2 m+1}=\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2(1+2 m \lambda)}+\frac{(m+1)}{2} a_{m+1}^{2}
$$

Upon substituting the value of a_{m+1}^{2} from (3.12), we get

$$
a_{2 m+1}=\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2(1+2 m \lambda)}+\frac{(m+1)(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4(1+m \lambda)^{2}}
$$

Applying the Caratheodory Lemma for the coefficients $p_{m}, q_{m}, p_{2 m}$, and $q_{2 m}$, we find

$$
\left|a_{2 m+1}\right| \leq \frac{2(1-\beta)^{2}(m+1)}{(1+m \lambda)^{2}}+\frac{2(1-\beta)}{1+2 m \lambda}
$$

which is the bound on $\left|a_{2 m+1}\right|$ as asserted in Theorem 2.
Remark For 1-fold symmetric bi-univalent functions, Theorem 1 and Theorem 2 reduce to results given by Frasin and Aouf [6]. In addition, for 1-fold symmetric bi-univalent functions, if we put $\lambda=1$ in our Theorems, we obtain the results given by Srivastava et al.[11]. Furthermore, for m-fold symmetric bi-univalent functions, if we put $\lambda=1$ in Theorem 1 and Theorem 2, we obtain to results which were given by Srivastava et al. [13].

References

[1] Akın G, Sümer Eker S. Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative. Comptes Rendus Mathematique 2014; 352: 1005-1010.
[2] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters 2012; 25: 344-351.
[3] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Mazhar SM, Hamoui A, Faour NS, editors. Mathematical Analysis and Its Applications, Kuwait; 18-21 February 1985, in: KFAS Proceedings Series, Pergamon Press, Elsevier Science Limited, Oxford, 1988; 3: 53-60. See also Studia Univ. Babeş-Bolyai Math. 1986; 31: 70-77.
[4] Deniz E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J Class Anal 2013; 2: 49-60.
[5] Duren PL. Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, NY, USA: Springer-Verlag, 1983.
[6] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Applied Mathematics Letters 2011; 24: 1569-1573.
[7] Jahangiri JM, Hamidi SG. Coefficient estimates for certain classes of bi-univalent functions. International Journal of Mathematics and Mathematical Sciences 2013; Article ID 190560: 1-4.
[8] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[9] Netanyahu ME. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch Rational Mech Anal 1969; 32: 100-112.
[10] Srivastava HM. Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions. In: Pardalos PM, Georgiev PG, Srivastava HM, editors. Nonlinear Analysis: Stability; Approximation; and Inequalities, Springer Series on Optimization and Its Applications, Vol., Berlin: Springer-Verlag, 2012; 68: 607-630.
[11] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Letters 2010; 23: 1188-1192.
[12] Srivastava HM, Sümer Eker S, Ali RM. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015; 29: 1839-1845.
[13] Srivastava HM, Sivasubramanian S, Sivakumar R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Mathematical Journal 2014; 7: 1-10.
[14] Taha TS. Topics in Univalent Function Theory. PhD, University of London, London, UK, 1981.

[^0]: *Correspondence: sevtaps@dicle.edu.tr
 2010 AMS Mathematics Subject Classification: 30C45, 30C50.

