Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тüвітак
Research Article
Turk J Math
(2016) 40: $657-664$
(C) TÜBITTAK
doi:10.3906/mat-1410-63

Point-wise slant submanifolds in almost contact geometry

Mohammad Bagher KAZEMI BALGESHIR*
Department of Mathematics, University of Zanjan, Zanjan, Iran

| Received: 28.10 .2014 | Accepted/Published Online: 12.10 .2015 | Final Version: 08.04 .2016 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper, we introduce point-wise slant submanifolds of almost contact and almost contact 3-structure manifolds. We characterize them, give some examples, and obtain necessary and sufficient conditions for a point-wise slant submanifold of a 3-Sasakian manifold to be a slant submanifold. Moreover, we show that there exist no proper Sasakian point-wise 3-slant submanifolds.

Key words: Sasakian manifold, point-wise slant submanifold

1. Introduction

Chen [4] generalized the notion of totally real and holomorphic submanifolds in complex geometry by introducing slant submanifolds. In [11], Lotta studied slant submanifolds of contact manifolds that were the generalization of invariant and anti-invariant submanifolds. Since then, many authors have obtained important and interesting results about slant submanifolds of complex $[13,14,16,17]$ and almost contact $[1,3,8,12]$ manifolds.
On the other hand, Etayo [6] has extended this type of submanifold by defining quasi-slant submanifolds. In such submanifolds, at any given point, the slant angle is independent of the choice of any nonzero vector field of submanifold. Later, Chen and Garay [5] studied and characterized these submanifolds under the name pointwise slant submanifolds. Recently, Sahin showed [15] the existence of warped product point-wise semislant submanifolds of Kaehler manifolds, contrary to the semislant case. He and Lee [10] also investigated point-wise slant submersion from almost Hermitian manifolds.
The importance of slant submanifolds in almost contact geometry motivated us to define point-wise slant submanifolds of an almost contact and an almost contact 3-structure manifold. We characterized them and obtained necessary and sufficient conditions for a point-wise slant submanifold of a 3-Sasakian to have constant slant function.
This paper is organized as follows. In Section 2, we review some basic information about almost contact and 3-structure manifolds. In Section 3, we define and characterize point-wise slant submanifolds of almost contact and 3 -structure manifolds. In Section 4, some properties of point-wise slant submanifolds of Sasakian and 3-Sasakian manifolds are studied. Moreover, it is shown that Sasakian point-wise 3 -slant submanifolds are 3-slant.

[^0]
KAZEMI BALGESHIR/Turk J Math

2. Almost contact metric 3 -structure manifolds

Let \bar{M} be a $(2 m+1)$ dimensional manifold and ϕ, ξ, and η be a tensor field of type $(1,1)$, a vector field, and a 1 -form on \bar{M}, respectively. If ϕ, ξ, and η satisfy

$$
\begin{gather*}
\eta(\xi)=1 \\
\phi^{2}(X)=-X+\eta(X) \xi \tag{1}
\end{gather*}
$$

for any vector field X on \bar{M}, then \bar{M} is said to have an almost contact structure (ϕ, ξ, η).
If g is a compatible Riemannian metric on \bar{M} such that

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2}
\end{equation*}
$$

then $(\bar{M}, \xi, \eta, \phi, g)$ is called an almost contact metric structure. Eqs. (1) and (2) imply $\phi \xi=0$ and $\eta o \phi=0$ [2].

A Sasakian manifold is an important type of this structure and is defined as follows. Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M}. An almost contact metric manifold $(\bar{M}, \xi, \eta, \phi, g)$ is called a Sasakian manifold, if $\forall X, Y \in T \bar{M}$

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X \text { and } \bar{\nabla}_{X} \xi=-\phi X \tag{3}
\end{equation*}
$$

Definition 1 [9] Let there exist three almost contact metric structures $\left(\xi_{i}, \eta_{i}, \phi_{i}, g\right), i=1,2,3$, on \bar{M} such that

$$
\begin{gather*}
\eta_{i}\left(\xi_{j}\right)=0, \quad \phi_{i} \xi_{j}=-\phi_{j} \xi_{i}=\xi_{k}, \quad \eta_{i} o \phi_{j}=-\eta_{j} o \phi_{i}=\eta_{k} \tag{4}\\
\phi_{i} o \phi_{j}-\eta_{j} \otimes \xi_{i}=-\phi_{j} o \phi_{i}+\eta_{i} \otimes \xi_{j}=\phi_{k} \tag{5}\\
g\left(\phi_{i} X, \phi_{i} Y\right)=g(X, Y)-\eta_{i}(X) \eta_{i}(Y), \forall X, Y \in T \bar{M} \tag{6}
\end{gather*}
$$

where (i, j, k) is a cyclic permutation of $(1,2,3)$. Then $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is said to be an almost contact metric 3-structure manifold.

In such manifolds we have

$$
\begin{equation*}
g\left(\phi_{i} X, Y\right)=-g\left(X, \phi_{i} Y\right) \tag{7}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi_{i}\right) Y=g(X, Y) \xi_{i}-\eta_{i}(Y) X, \forall X, Y \in T \bar{M} \text { and } \bar{\nabla}_{X} \xi_{i}=-\phi_{i} X \tag{8}
\end{equation*}
$$

then $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is called a 3-Sasakian manifold. It is well known that 3-Sasakian manifolds are Einstein manifolds [7] and so are important manifolds in mathematical physics.

Let M be an immersed submanifold of almost contact metric 3 -structure manifold $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$. We denote its Levi-Civita connection and normal bundle by ∇ and $(T M)^{\perp}$, respectively. The Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \text { and } \bar{\nabla}_{X} V=D_{X} V-A_{V} X \tag{9}
\end{equation*}
$$

for $X, Y \in T M$ and $V \in(T M)^{\perp}$, where D, B, and A are the connection in the normal bundle, the second fundamental form, and the shape operator, respectively.
Moreover, for any $X \in T M$ and $V \in(T M)^{\perp}$ we decompose the $\phi_{i} X$ and $\phi_{i} V$ as the following equations:

$$
\begin{equation*}
\phi_{i} X=T_{i} X+N_{i} X \text { and } \phi_{i} V=t_{i} V+n_{i} V \tag{10}
\end{equation*}
$$

where T_{i} and t_{i} are tangential components of ϕ_{i}, and N_{i} and n_{i} are normal components of ϕ_{i}. If M is a submanifold of an almost contact metric manifold $(\bar{M}, \xi, \eta, \phi, g)$, in such a way, the decomposition of ϕ to tangential components T and t, and normal components N and n implies

$$
\begin{equation*}
\phi X=T X+N X \text { and } \phi V=t V+n V \tag{11}
\end{equation*}
$$

3. Point-wise slant submanifolds of almost contact manifolds

Let M be a submanifold of an almost contact metric manifold $(\bar{M}, \xi, \eta, \phi, g)$. Then M is said to be a slant submanifold if the angle between ϕX and $T_{p} M$ is constant at any point $p \in M$ and for any X linearly independent of $\xi[3,11]$.

The author and Malek introduced 3-slant submanifolds of an almost contact metric 3-structure manifold $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ [12]. On these submanifolds for all $i=1,2,3$, at any point $p \in M$ the angle between $\phi_{i} X$ and $T_{p} M$ is constant for each $X \in T_{p} M$ linearly independent of ξ_{i}. In both previous definitions the angle is independent of the choice of p and X. Now we introduce the notion of point-wise slant submanifolds of almost contact manifolds by following the approach of [5] in almost Hermitian manifolds.

Definition 2 Let M be a submanifold of an almost contact metric manifold \bar{M}. We say that M is a point-wise slant submanifold with slant angle $\Theta_{p}(X)$ if at any point $p \in M$ the Wirtinger angle between ϕX and $T_{p} M$ is constant for each nonzero $X \in T_{p} M$ linearly independent of ξ. It means that the function $\Theta_{p}(X)$ does not depend on the choice of X.

Definition 3 Let M be a submanifold of an almost contact metric 3-structure manifold $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$. M is a point-wise 3-slant submanifold if at any point $p \in M$ and for each nonzero $X \in T_{p} M$ linearly independent of ξ_{i}, the Wirtinger angle between $\phi_{i} X$ and $T_{p} M$ is constant for all $i \in\{1,2,3\}$. In fact, the angle $\Theta_{p}(X)$ between $\phi_{i} X$ and $T_{j} X$ only depends on the choice of p and it is independent of the choice of X and i, j.

On these submanifolds $\Theta(X)$ can be considered a function called a slant function. If at a point $p \in M, \Theta_{p}=0$ or $N_{i}=0$ (resp. $\Theta_{p}=\frac{\pi}{2}$ or $T_{i}=0$) then p is called invariant point (resp. anti-invariant point). M is an invariant submanifold if $\Theta_{p}=0$ and an anti-invariant submanifold if $\Theta_{p}=\frac{\pi}{2}$ for any $p \in M$. Otherwise, M

KAZEMI BALGESHIR/Turk J Math

is a proper point-wise 3 -slant submanifold.
As trivial examples, the slant and 3-slant submanifolds are point-wise slant submanifolds and their slant angles are constant on all points of the submanifolds. In the next nontrivial examples we show the existence of point-wise slant and 3 -slant submanifolds.

Example 1 Consider the following cosymplectic structure on $\bar{M}=\mathbb{R}^{5}$:

$$
\begin{gathered}
\eta=d t, \xi=\partial t, g=\sum_{i=1}^{2}\left(d x_{i} \otimes d x_{i}+d y_{i} \otimes d y_{i}\right)+d t \otimes d t \\
\phi\left(x_{1}, x_{2}, y_{1}, y_{2}, t\right)=\left(-y_{1},-y_{2}, x_{1}, x_{2}, 0\right)
\end{gathered}
$$

Let $M(u, v)=(u, u, v \cos f, v \sin f, t)$, where f is a real value function on \bar{M}. Then M is a point-wise slant submanifold with slant function $\Theta=\cos ^{-1}\left(\frac{\cos f+\sin f}{\sqrt{2}}\right)$.

Example 2 Let $\bar{M}=\mathbb{R}^{11}$ and $g=\sum_{i=1}^{11} d x_{i} \otimes d x_{i}$. Let

$$
\begin{aligned}
& \phi_{1}\left(\left(x_{i}\right)_{i=\overline{1,11}}\right)=\left(-x_{3}, x_{4}, x_{1},-x_{2},-x_{7}, x_{8}, x_{5},-x_{6}, 0,-x_{11}, x_{10}\right) \\
& \phi_{2}\left(\left(x_{i}\right)_{i=\overline{1,11}}\right)=\left(-x_{4},-x_{3}, x_{2}, x_{1},-x_{8},-x_{7}, x_{6}, x_{5}, x_{11}, 0,-x_{9}\right) \\
& \phi_{3}\left(\left(x_{i}\right)_{i=\overline{1,11}}\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3},-x_{6}, x_{5},-x_{8}, x_{7},-x_{10}, x_{9}, 0\right) \\
& \xi_{1}=\partial x_{9}, \xi_{2}=\partial x_{10}, \xi_{3}=\partial x_{11} \text { and } \eta_{1}=d x_{9}, \eta_{2}=d x_{10}, \eta_{3}=d x_{11}
\end{aligned}
$$

It can be verified that $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ is an almost contact metric 3-structure manifold. Now we consider a submanifold M of $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ given by the following equations:

$$
\begin{gathered}
x_{1}=v \sin f, x_{2}=x_{3}=x_{4}=x_{9}=x_{10}=x_{11}=0 \\
x_{5}=x_{6}=x_{7}=k u \sin f, x_{8}=v \cos f
\end{gathered}
$$

for $k \in \mathbb{R}^{+}$and $f: \mathbb{R}^{11} \rightarrow \mathbb{R}$. By some computations, one can see that M is a point-wise 3-slant submanifold of \bar{M} with slant function $\Theta=\cos ^{-1}\left(\frac{\cos f}{k \sqrt{3}}\right)$.

Theorem 1 Let M be a submanifold of almost contact metric 3-structure $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)$ such that ξ_{i} 's are normal to M for $i=1,2,3$. Then M is a point-wise 3-slant submanifold if and only if there exists a real function Θ on M such that

$$
\begin{equation*}
T_{i} T_{j} X=-\cos ^{2} \Theta X, \forall X \in T M, \forall i, j \in\{1,2,3\} \tag{12}
\end{equation*}
$$

Proof Let M be a point-wise 3-slant submanifold and Θ be the angle between $\phi_{i} X$ and $T_{p} M$. Then from (6) and (7) we have

$$
\begin{equation*}
\cos \Theta=\frac{g\left(\phi_{i} X, T_{j} X\right)}{\left|\phi_{i} X\right|\left|T_{j} X\right|}=-\frac{g\left(X, \phi_{i} T_{j} X\right)}{|X|\left|T_{j} X\right|}=-\frac{g\left(X, T_{i} T_{j} X\right)}{|X|\left|T_{j} X\right|} \tag{13}
\end{equation*}
$$

KAZEMI BALGESHIR/Turk J Math

On the other hand,

$$
\begin{equation*}
\cos \Theta=\frac{\left|T_{j} X\right|}{|X|} \tag{14}
\end{equation*}
$$

and so (13) and (14) imply

$$
\begin{equation*}
\cos ^{2} \Theta=-\frac{g\left(X, T_{i} T_{j} X\right)}{|X|^{2}} \tag{15}
\end{equation*}
$$

and it follows (12). Conversely, we suppose that α and β are the angles $\phi_{i} \widehat{X, T_{i}} X$ and $\phi_{i} \widehat{X, T_{j}} X$, respectively, in the point $p \in M$. Thus, $\cos \alpha=\frac{\left|T_{i} X\right|}{|X|}$ and $\cos \beta=\frac{\left|T_{j} X\right|}{|X|}$. Moreover,

$$
\begin{align*}
& \cos \alpha=\frac{g\left(\phi_{i} X, T_{i} X\right)}{\left|\phi_{i} X\right|\left|T_{i} X\right|}=-\frac{g\left(X, T_{i} T_{i} X\right)}{|X|\left|T_{i} X\right|}=-\frac{g\left(X, T_{i} T_{i} X\right)}{|X|^{2} \cos \alpha} \tag{16}\\
& \cos \beta=\frac{g\left(\phi_{i} X, T_{j} X\right)}{\left|\phi_{i} X\right|\left|T_{j} X\right|}=-\frac{g\left(X, T_{i} T_{j} X\right)}{|X|\left|T_{j} X\right|}=-\frac{g\left(X, T_{i} T_{j} X\right)}{|X|^{2} \cos \beta} \tag{17}
\end{align*}
$$

In the account of (12), (16) and (17) imply that the angles are equal and do not depend on the choice of X. This means that M is a point-wise 3-slant submanifold.

The proof of the following proposition is the same as Theorem 1.

Proposition 1 Let M be a point-wise 3-slant submanifold of almost contact metric 3-structure $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)$ with slant function Θ. Then for all $X \in T M \backslash<\xi_{i}>$

$$
\begin{equation*}
T_{i} T_{j} X=-\cos ^{2} \Theta X, \forall i, j \in\{1,2,3\} \tag{18}
\end{equation*}
$$

By using (7) and Proposition 1 immediately we have the following proposition.

Proposition 2 Let M be a point-wise 3-slant submanifold of almost contact metric 3-structure $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)$ with slant function Θ. Then $\forall X, Y \in T M \backslash<\xi_{i}>$ and $\forall i, j \in\{1,2,3\}$

$$
\begin{align*}
& g\left(T_{i} Y, T_{j} X\right)=\cos ^{2} \Theta g(Y, X) \tag{19}\\
& g\left(N_{i} Y, N_{j} X\right)=\sin ^{2} \Theta g(Y, X) \tag{20}
\end{align*}
$$

Moreover, when the structure of \bar{M} is almost contact metric, Proposition 1 can be stated as follows.

Proposition 3 Let M be a point-wise slant submanifold of almost contact metric manifold $(\bar{M}, \xi, \eta, \phi, g)$ with slant function Θ. Then

$$
\begin{equation*}
T^{2} X=-\cos ^{2} \Theta X, \forall X \in T M \backslash<\xi> \tag{21}
\end{equation*}
$$

KAZEMI BALGESHIR/Turk J Math

4. Point-wise slant submanifolds of 3-Sasakian manifolds

Lemma 1 Let M be a point-wise 3-slant submanifold of $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$ with slant function Θ. Then, for any unit vector field $X \in T M \backslash<\xi_{1}, \xi_{2}, \xi_{3}>$, we have

$$
\begin{equation*}
T_{i} X=\cos \Theta Z \tag{22}
\end{equation*}
$$

where Z is a unit vector field in $T M$ and orthogonal to X.
Proof For any unit vector field $X \in T M \backslash<\xi_{1}, \xi_{2}, \xi_{3}>$, we have $\left|T_{i} X\right|=\cos \Theta\left|\phi_{i} X\right|=\cos \Theta|X|=\cos \Theta$. Now let $Z=\frac{T_{i} X}{\left|T_{i} X\right|}$ be the unit vector field in the direction of $T_{i} X$. Then $T_{i} X=\cos \Theta Z$. Moreover, since $g\left(\phi_{i} X, X\right)=0$ and $g\left(\phi_{i} X, X\right)=g\left(T_{i} X+N_{i} X, X\right)=g\left(T_{i} X, X\right)$, we conclude that Z is orthogonal to X.

Theorem 2 Let M be a point-wise 3-slant submanifold of a 3-Sasakian manifold $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)_{i \in\{1,2,3\}}$. Then, the slant function Θ is constant if and only if $A_{N_{i} X} T_{i} X=A_{N_{i} T_{i} X} X$.

Proof Since \bar{M} is a 3-Sasakian manifold, from (8) and the Gauss formula, for any unit vector field $X \in$ $T M \backslash<\xi_{1}, \xi_{2}, \xi_{3}>$ and $Y \in T M$, we have

$$
\begin{gather*}
g(X, Y) \xi_{i}=\left(\bar{\nabla}_{Y} \phi_{i}\right) X=\nabla_{Y} T_{i} X+B\left(T_{i} X, Y\right)+D_{Y} N_{i} X-A_{N_{i} X} Y- \\
T_{i} \nabla_{Y} X-t_{i} B(X, Y)-N_{i} \nabla_{Y} X-n_{i} B(X, Y) \tag{23}
\end{gather*}
$$

By taking the tangential part of (23), we get

$$
\begin{equation*}
g(X, Y) \xi_{i}=\nabla_{Y} T_{i} X-A_{N_{i} X} Y-T_{i} \nabla_{Y} X-t_{i} B(X, Y) \tag{24}
\end{equation*}
$$

By using (22), Eq. (24) implies

$$
\begin{align*}
& g(X, Y) \xi_{i}=Y \cos \Theta Z+\cos \Theta \nabla_{Y} Z-A_{N_{i} X} Y-T_{i} \nabla_{Y} X-t_{i} B(X, Y)= \\
& \quad-\sin \Theta Y(\Theta) Z+\cos \Theta \nabla_{Y} Z-A_{N_{i} X} Y-T_{i} \nabla_{Y} X-t_{i} B(X, Y) \tag{25}
\end{align*}
$$

We apply $g(Z,$.$) to (25). Since$

$$
g\left(Z, \nabla_{Y} Z\right)=\frac{1}{2} \nabla_{Y} g(Z, Z)=0
$$

and

$$
g\left(Z, T_{i} \nabla_{Y} X\right)=-g\left(T_{i} Z, \nabla_{Y} X\right)=\cos ^{2} \Theta \frac{1}{2} \nabla_{Y} g(X, X)=0
$$

we get

$$
\begin{equation*}
0=-\sin \Theta Y(\Theta)-g\left(Z, A_{N_{i} X} Y\right)-g\left(Z, t_{i} B(X, Y)\right) \tag{26}
\end{equation*}
$$

Thus, Θ is constant if and only if

$$
-g\left(Z, A_{N_{i} X} Y\right)-g\left(Z, t_{i} B(X, Y)\right)=0
$$

or

$$
g\left(Y, A_{N_{i} X} Z\right)=g\left(N_{i} Z, B(X, Y)\right)=g\left(Y, A_{N_{i} Z} X\right)
$$

Therefore, the slant function Θ is constant if and only if $A_{N_{i} X} Z=A_{N_{i} Z} X$.
Using the approach of the proof of Theorem 2, for a point-wise slant submanifold of a Sasakian manifold, implies the following theorem.

KAZEMI BALGESHIR/Turk J Math

Theorem 3 Let M be a point-wise slant submanifold of a Sasakian manifold $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)$. Then the slant function Θ is constant if and only if $A_{N X} Z=A_{N Z} X$.

As an analogue of a Kaehlerian slant submanifold of quaternion manifolds, Sasakian 3-slant submanifolds of 3 -structure manifolds have been defined in [12]. Let M be a point-wise 3 -slant submanifold of an almost contact metric 3 -structure manifold ($\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g$) which the vector structures are in $T M$. The submanifold M is called a Sasakian point-wise 3 -slant submanifold if

$$
\begin{equation*}
\left(\nabla_{Y} T_{i}\right) X=g(X, Y) \xi_{i}-\eta_{i}(X) Y, \forall X, Y \in T M \tag{27}
\end{equation*}
$$

Now we show that these submanifolds cannot be a proper point-wise slant submanifold.

Theorem 4 Any Sasakian point-wise 3-slant submanifolds are 3-slant submanifolds.
Proof Let M be a Sasakian point-wise 3-slant submanifold of $\left(\bar{M}, \xi_{i}, \eta_{i}, \phi_{i}, g\right)$ and X be a unit vector field in $T M \backslash<\xi_{i}>$. From (22) and (27) for any $Y \in T M$, we have

$$
\begin{align*}
g(X, Y) \xi_{i} & =\left(\nabla_{Y} T_{i}\right) X=\nabla_{Y} T_{i} X-T_{i}\left(\nabla_{Y} X\right) \\
& =\nabla_{Y} \cos \Theta Z-T_{i}\left(\nabla_{Y} X\right) \\
& =Y(\cos \Theta) Z+\cos \Theta \nabla_{Y} Z-T_{i}\left(\nabla_{Y} X\right) \\
& =\sin \Theta Y(\Theta) Z+\cos \Theta \nabla_{Y} Z-T_{i}\left(\nabla_{Y} X\right) \tag{28}
\end{align*}
$$

Since Z is orthogonal to X and ξ_{i}, by applying $g(Z,$.$) to (28), we obtain$

$$
\begin{equation*}
0=\sin \Theta Y(\Theta) \tag{29}
\end{equation*}
$$

which means Θ is constant.

Acknowledgment

The author is thankful to the referees for their valuable comments and suggestions.

References

[1] Atçeken M. Warped product semi-slant submanifolds in Kenmotsu manifolds. Turk J Math 2010; 34: 425-433.
[2] Blair DE. Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics 203, Basel, Switzerland: Birkhäuser, 2002.
[3] Cabrerizo JL, Carriazo A, Fernández LM, Fernández M. Slant submanifolds in Sasakian manifolds. Glasg Math J 2000; 42: 125-138.
[4] Chen BY. Geometry of Slant Submanifolds. Leuven, Belgium: K.U. Leuven, 1990.
[5] Chen BY, Garay OJ. Pointwise slant submanifolds in almost Hermitian manifolds. Turk J Math 2012; 36: 630-640.
[6] Etayo F. On quasi-slant submanifolds of an almost Hermitian manifold. Publ Math Debrecen 1998; 53: 217-223.
[7] Kashiwada T. A note on a Riemannian space with Sasakian 3-structure. Natur Sci Rep Ochanomizu Univ 1971; 22: 1-2.
[8] Khan VA, Khan MA, Khan KA. Slant and semi-slant submanifolds of a Kenmotsu manifold. Math Slovaca 2007; 57: 483-494.

KAZEMI BALGESHIR/Turk J Math

[9] Kuo YY. On almost contact 3-structure. Tóhoku Math J 1970; 22: 325-332.
[10] Lee JW, Sahin B. Pointwise slant submersions. Bull Korean Math Soc 2014; 51: 1115-1126.
[11] Lotta A. Slant submanifolds in contact geometry. Bull Math Soc Sci Math Roumanie (N.S.) 1996; 39: 183-198.
[12] Malek F, Kazemi Balgeshir MB. Slant submanifolds of almost contact metric 3-structure manifolds. Mediterr J Math 2013; 10: 1023-1033.
[13] Papaghiuc N. Semi-slant submanifolds of a Kaehlerian manifold. An Stiint Al I Cuza Univ Iasi 1994; 40: 55-61.
[14] Sahin B. Slant submanifolds of quaternion Kaehler manifolds. Commun Korean Math Soc 2007; 22: 123-135.
[15] Sahin B. Warped product pointwise semi-slant submanifolds of Kaehler manifolds. Port Math 2013; 70: 251-268.
[16] Shahid MH, Al-Solamy FR. Ricci tensor of slant submanifolds in a quaternion projective space. C R Math 2011; 349: 571-573.
[17] Vîlcu GE. Slant submanifolds of quaternionic space forms. Publ Math Debrecen 2012; 81: 397-413.

[^0]: *Correspondence: mbkazemi@znu.ac.ir
 2010 AMS Mathematics Subject Classification: 53C15, 53C40.

