

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2016) 40: 657 – 664 © TÜBİTAK doi:10.3906/mat-1410-63

Research Article

Point-wise slant submanifolds in almost contact geometry

Mohammad Bagher KAZEMI BALGESHIR*

Department of Mathematics, University of Zanjan, Zanjan, Iran

Received: 28.10.2014 •	Accepted/Published Online: 12.10.2015	٠	Final Version: 08.04.2016
-------------------------------	---------------------------------------	---	---------------------------

Abstract: In this paper, we introduce point-wise slant submanifolds of almost contact and almost contact 3-structure manifolds. We characterize them, give some examples, and obtain necessary and sufficient conditions for a point-wise slant submanifold of a 3-Sasakian manifold to be a slant submanifold. Moreover, we show that there exist no proper Sasakian point-wise 3-slant submanifolds.

Key words: Sasakian manifold, point-wise slant submanifold

1. Introduction

Chen [4] generalized the notion of totally real and holomorphic submanifolds in complex geometry by introducing slant submanifolds. In [11], Lotta studied slant submanifolds of contact manifolds that were the generalization of invariant and anti-invariant submanifolds. Since then, many authors have obtained important and interesting results about slant submanifolds of complex [13, 14, 16, 17] and almost contact [1, 3, 8, 12] manifolds.

On the other hand, Etayo [6] has extended this type of submanifold by defining quasi-slant submanifolds. In such submanifolds, at any given point, the slant angle is independent of the choice of any nonzero vector field of submanifold. Later, Chen and Garay [5] studied and characterized these submanifolds under the name pointwise slant submanifolds. Recently, Sahin showed [15] the existence of warped product point-wise semislant submanifolds of Kaehler manifolds, contrary to the semislant case. He and Lee [10] also investigated point-wise slant submersion from almost Hermitian manifolds.

The importance of slant submanifolds in almost contact geometry motivated us to define point-wise slant submanifolds of an almost contact and an almost contact 3-structure manifold. We characterized them and obtained necessary and sufficient conditions for a point-wise slant submanifold of a 3-Sasakian to have constant slant function.

This paper is organized as follows. In Section 2, we review some basic information about almost contact and 3-structure manifolds. In Section 3, we define and characterize point-wise slant submanifolds of almost contact and 3-structure manifolds. In Section 4, some properties of point-wise slant submanifolds of Sasakian and 3-Sasakian manifolds are studied. Moreover, it is shown that Sasakian point-wise 3-slant submanifolds are 3-slant.

^{*}Correspondence: mbkazemi@znu.ac.ir

²⁰¹⁰ AMS Mathematics Subject Classification: 53C15, 53C40.

KAZEMI BALGESHIR/Turk J Math

2. Almost contact metric 3-structure manifolds

Let \overline{M} be a (2m+1) dimensional manifold and ϕ , ξ , and η be a tensor field of type (1,1), a vector field, and a 1-form on \overline{M} , respectively. If ϕ , ξ , and η satisfy

$$\eta(\xi) = 1$$

$$\phi^2(X) = -X + \eta(X)\xi \tag{1}$$

for any vector field X on \overline{M} , then \overline{M} is said to have an almost contact structure (ϕ, ξ, η) . If g is a compatible Riemannian metric on \overline{M} such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{2}$$

then $(\overline{M}, \xi, \eta, \phi, g)$ is called an almost contact metric structure. Eqs. (1) and (2) imply $\phi \xi = 0$ and $\eta o \phi = 0$ [2].

A Sasakian manifold is an important type of this structure and is defined as follows. Let $\overline{\nabla}$ be the Levi-Civita connection of \overline{M} . An almost contact metric manifold $(\overline{M}, \xi, \eta, \phi, g)$ is called a Sasakian manifold, if $\forall X, Y \in T\overline{M}$

$$(\overline{\nabla}_X \phi)Y = g(X, Y)\xi - \eta(Y)X \text{ and } \overline{\nabla}_X \xi = -\phi X.$$
(3)

Definition 1 [9] Let there exist three almost contact metric structures $(\xi_i, \eta_i, \phi_i, g)$, i = 1, 2, 3, on \overline{M} such that

$$\eta_i(\xi_j) = 0, \quad \phi_i \xi_j = -\phi_j \xi_i = \xi_k, \quad \eta_i o \phi_j = -\eta_j o \phi_i = \eta_k, \tag{4}$$

$$\phi_i o \phi_j - \eta_j \otimes \xi_i = -\phi_j o \phi_i + \eta_i \otimes \xi_j = \phi_k, \tag{5}$$

$$g(\phi_i X, \phi_i Y) = g(X, Y) - \eta_i(X)\eta_i(Y), \ \forall X, Y \in T\overline{M},$$
(6)

where (i, j, k) is a cyclic permutation of (1, 2, 3). Then $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1, 2, 3\}}$ is said to be an almost contact metric 3-structure manifold.

In such manifolds we have

$$g(\phi_i X, Y) = -g(X, \phi_i Y). \tag{7}$$

Moreover, if

$$(\overline{\nabla}_X \phi_i) Y = g(X, Y) \xi_i - \eta_i(Y) X, \ \forall X, Y \in T\overline{M} \text{ and } \overline{\nabla}_X \xi_i = -\phi_i X,$$
(8)

then $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$ is called a 3-Sasakian manifold. It is well known that 3-Sasakian manifolds are Einstein manifolds [7] and so are important manifolds in mathematical physics.

KAZEMI BALGESHIR/Turk J Math

Let M be an immersed submanifold of almost contact metric 3-structure manifold $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$. We denote its Levi-Civita connection and normal bundle by ∇ and $(TM)^{\perp}$, respectively. The Gauss and Weingarten formulas are given by

$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y) \text{ and } \overline{\nabla}_X V = D_X V - A_V X,$$
(9)

for $X, Y \in TM$ and $V \in (TM)^{\perp}$, where D, B, and A are the connection in the normal bundle, the second fundamental form, and the shape operator, respectively.

Moreover, for any $X \in TM$ and $V \in (TM)^{\perp}$ we decompose the $\phi_i X$ and $\phi_i V$ as the following equations:

$$\phi_i X = T_i X + N_i X \text{ and } \phi_i V = t_i V + n_i V, \tag{10}$$

where T_i and t_i are tangential components of ϕ_i , and N_i and n_i are normal components of ϕ_i . If M is a submanifold of an almost contact metric manifold $(\overline{M}, \xi, \eta, \phi, g)$, in such a way, the decomposition of ϕ to tangential components T and t, and normal components N and n implies

$$\phi X = TX + NX \text{ and } \phi V = tV + nV.$$
(11)

3. Point-wise slant submanifolds of almost contact manifolds

Let M be a submanifold of an almost contact metric manifold $(\overline{M}, \xi, \eta, \phi, g)$. Then M is said to be a slant submanifold if the angle between ϕX and $T_p M$ is constant at any point $p \in M$ and for any X linearly independent of ξ [3, 11].

The author and Malek introduced 3-slant submanifolds of an almost contact metric 3-structure manifold $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$ [12]. On these submanifolds for all i = 1, 2, 3, at any point $p \in M$ the angle between $\phi_i X$ and $T_p M$ is constant for each $X \in T_p M$ linearly independent of ξ_i . In both previous definitions the angle is independent of the choice of p and X. Now we introduce the notion of point-wise slant submanifolds of almost contact manifolds by following the approach of [5] in almost Hermitian manifolds.

Definition 2 Let M be a submanifold of an almost contact metric manifold \overline{M} . We say that M is a point-wise slant submanifold with slant angle $\Theta_p(X)$ if at any point $p \in M$ the Wirtinger angle between ϕX and T_pM is constant for each nonzero $X \in T_pM$ linearly independent of ξ . It means that the function $\Theta_p(X)$ does not depend on the choice of X.

Definition 3 Let M be a submanifold of an almost contact metric 3-structure manifold $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$. M is a point-wise 3-slant submanifold if at any point $p \in M$ and for each nonzero $X \in T_p M$ linearly independent of ξ_i , the Wirtinger angle between $\phi_i X$ and $T_p M$ is constant for all $i \in \{1,2,3\}$. In fact, the angle $\Theta_p(X)$ between $\phi_i X$ and $T_j X$ only depends on the choice of p and it is independent of the choice of X and i, j.

On these submanifolds $\Theta(X)$ can be considered a function called a slant function. If at a point $p \in M$, $\Theta_p = 0$ or $N_i = 0$ (resp. $\Theta_p = \frac{\pi}{2}$ or $T_i = 0$) then p is called invariant point (resp. anti-invariant point). M is an invariant submanifold if $\Theta_p = 0$ and an anti-invariant submanifold if $\Theta_p = \frac{\pi}{2}$ for any $p \in M$. Otherwise, M

is a proper point-wise 3-slant submanifold.

As trivial examples, the slant and 3-slant submanifolds are point-wise slant submanifolds and their slant angles are constant on all points of the submanifolds. In the next nontrivial examples we show the existence of point-wise slant and 3-slant submanifolds.

Example 1 Consider the following cosymplectic structure on $\overline{M} = \mathbb{R}^5$:

$$\eta = dt, \xi = \partial t, g = \sum_{i=1}^{2} (dx_i \otimes dx_i + dy_i \otimes dy_i) + dt \otimes dt,$$
$$\phi(x_1, x_2, y_1, y_2, t) = (-y_1, -y_2, x_1, x_2, 0).$$

Let $M(u,v) = (u, u, v \cos f, v \sin f, t)$, where f is a real value function on \overline{M} . Then M is a point-wise slant submanifold with slant function $\Theta = \cos^{-1}(\frac{\cos f + \sin f}{\sqrt{2}})$.

Example 2 Let $\overline{M} = \mathbb{R}^{11}$ and $g = \sum_{i=1}^{11} dx_i \otimes dx_i$. Let

$$\begin{split} \phi_1((x_i)_{i=\overline{1,11}}) &= (-x_3, x_4, x_1, -x_2, -x_7, x_8, x_5, -x_6, 0, -x_{11}, x_{10}), \\ \phi_2((x_i)_{i=\overline{1,11}}) &= (-x_4, -x_3, x_2, x_1, -x_8, -x_7, x_6, x_5, x_{11}, 0, -x_9), \\ \phi_3((x_i)_{i=\overline{1,11}}) &= (-x_2, x_1, -x_4, x_3, -x_6, x_5, -x_8, x_7, -x_{10}, x_9, 0), \\ \xi_1 &= \partial x_9, \xi_2 &= \partial x_{10}, \xi_3 &= \partial x_{11} \text{ and } \eta_1 = dx_9, \eta_2 = dx_{10}, \eta_3 = dx_{11}. \end{split}$$

It can be verified that $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$ is an almost contact metric 3-structure manifold. Now we consider a submanifold M of $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$ given by the following equations:

$$x_1 = v \sin f, \ x_2 = x_3 = x_4 = x_9 = x_{10} = x_{11} = 0,$$

 $x_5 = x_6 = x_7 = ku \sin f, \ x_8 = v \cos f,$

for $k \in \mathbb{R}^+$ and $f : \mathbb{R}^{11} \to \mathbb{R}$. By some computations, one can see that M is a point-wise 3-slant submanifold of \overline{M} with slant function $\Theta = \cos^{-1}(\frac{\cos f}{k\sqrt{3}})$.

Theorem 1 Let M be a submanifold of almost contact metric 3-structure $(\overline{M}, \xi_i, \eta_i, \phi_i, g)$ such that ξ_i 's are normal to M for i = 1, 2, 3. Then M is a point-wise 3-slant submanifold if and only if there exists a real function Θ on M such that

$$T_i T_j X = -\cos^2 \Theta X, \ \forall X \in TM, \ \forall i, j \in \{1, 2, 3\}.$$

$$(12)$$

Proof Let M be a point-wise 3-slant submanifold and Θ be the angle between $\phi_i X$ and $T_p M$. Then from (6) and (7) we have

$$\cos\Theta = \frac{g(\phi_i X, T_j X)}{|\phi_i X| |T_j X|} = -\frac{g(X, \phi_i T_j X)}{|X| |T_j X|} = -\frac{g(X, T_i T_j X)}{|X| |T_j X|}$$
(13)

660

On the other hand,

$$\cos\Theta = \frac{|T_j X|}{|X|},\tag{14}$$

and so (13) and (14) imply

$$\cos^2\Theta = -\frac{g(X, T_i T_j X)}{|X|^2},\tag{15}$$

and it follows (12). Conversely, we suppose that α and β are the angles $\phi_i \widehat{X, T_i} X$ and $\phi_i \widehat{X, T_j} X$, respectively, in the point $p \in M$. Thus, $\cos \alpha = \frac{|T_i X|}{|X|}$ and $\cos \beta = \frac{|T_j X|}{|X|}$. Moreover,

$$\cos\alpha = \frac{g(\phi_i X, T_i X)}{|\phi_i X| |T_i X|} = -\frac{g(X, T_i T_i X)}{|X| |T_i X|} = -\frac{g(X, T_i T_i X)}{|X|^2 \cos\alpha},$$
(16)

$$\cos\beta = \frac{g(\phi_i X, T_j X)}{|\phi_i X||T_j X|} = -\frac{g(X, T_i T_j X)}{|X||T_j X|} = -\frac{g(X, T_i T_j X)}{|X|^2 \cos\beta}.$$
(17)

In the account of (12), (16) and (17) imply that the angles are equal and do not depend on the choice of X. This means that M is a point-wise 3-slant submanifold.

The proof of the following proposition is the same as Theorem 1.

Proposition 1 Let M be a point-wise 3-slant submanifold of almost contact metric 3-structure $(\overline{M}, \xi_i, \eta_i, \phi_i, g)$ with slant function Θ . Then for all $X \in TM \setminus \langle \xi_i \rangle$

$$T_i T_j X = -\cos^2 \Theta X, \ \forall i, j \in \{1, 2, 3\}.$$
 (18)

By using (7) and Proposition 1 immediately we have the following proposition.

Proposition 2 Let M be a point-wise 3-slant submanifold of almost contact metric 3-structure $(\overline{M}, \xi_i, \eta_i, \phi_i, g)$ with slant function Θ . Then $\forall X, Y \in TM \setminus \langle \xi_i \rangle$ and $\forall i, j \in \{1, 2, 3\}$

$$g(T_iY, T_jX) = \cos^2\Theta g(Y, X), \tag{19}$$

$$g(N_iY, N_jX) = \sin^2\Theta g(Y, X).$$
⁽²⁰⁾

Moreover, when the structure of \overline{M} is almost contact metric, Proposition 1 can be stated as follows.

Proposition 3 Let M be a point-wise slant submanifold of almost contact metric manifold $(\overline{M}, \xi, \eta, \phi, g)$ with slant function Θ . Then

$$T^{2}X = -\cos^{2}\Theta X, \ \forall X \in TM \setminus \langle \xi \rangle.$$

$$\tag{21}$$

661

4. Point-wise slant submanifolds of 3-Sasakian manifolds

Lemma 1 Let M be a point-wise 3-slant submanifold of $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$ with slant function Θ . Then, for any unit vector field $X \in TM \setminus \langle \xi_1, \xi_2, \xi_3 \rangle$, we have

$$T_i X = \cos \Theta Z, \tag{22}$$

where Z is a unit vector field in TM and orthogonal to X.

Proof For any unit vector field $X \in TM \setminus \langle \xi_1, \xi_2, \xi_3 \rangle$, we have $|T_iX| = \cos\Theta |\phi_iX| = \cos\Theta |X| = \cos\Theta$. Now let $Z = \frac{T_iX}{|T_iX|}$ be the unit vector field in the direction of T_iX . Then $T_iX = \cos\Theta Z$. Moreover, since $g(\phi_iX, X) = 0$ and $g(\phi_iX, X) = g(T_iX + N_iX, X) = g(T_iX, X)$, we conclude that Z is orthogonal to X. \Box

Theorem 2 Let M be a point-wise 3-slant submanifold of a 3-Sasakian manifold $(\overline{M}, \xi_i, \eta_i, \phi_i, g)_{i \in \{1,2,3\}}$. Then, the slant function Θ is constant if and only if $A_{N_iX}T_iX = A_{N_iT_iX}X$.

Proof Since \overline{M} is a 3-Sasakian manifold, from (8) and the Gauss formula, for any unit vector field $X \in TM \setminus \langle \xi_1, \xi_2, \xi_3 \rangle$ and $Y \in TM$, we have

$$g(X,Y)\xi_i = (\overline{\nabla}_Y \phi_i)X = \nabla_Y T_i X + B(T_i X, Y) + D_Y N_i X - A_{N_i X} Y - T_i \nabla_Y X - t_i B(X,Y) - N_i \nabla_Y X - n_i B(X,Y).$$

$$(23)$$

By taking the tangential part of (23), we get

$$g(X,Y)\xi_i = \nabla_Y T_i X - A_{N_i X} Y - T_i \nabla_Y X - t_i B(X,Y).$$
⁽²⁴⁾

By using (22), Eq. (24) implies

$$g(X,Y)\xi_i = Y\cos\Theta Z + \cos\Theta\nabla_Y Z - A_{N_iX}Y - T_i\nabla_Y X - t_iB(X,Y) = -\sin\Theta Y(\Theta)Z + \cos\Theta\nabla_Y Z - A_{N_iX}Y - T_i\nabla_Y X - t_iB(X,Y).$$
(25)

We apply g(Z, .) to (25). Since

$$g(Z, \nabla_Y Z) = \frac{1}{2} \nabla_Y g(Z, Z) = 0,$$

and

$$g(Z, T_i \nabla_Y X) = -g(T_i Z, \nabla_Y X) = \cos^2 \Theta \frac{1}{2} \nabla_Y g(X, X) = 0,$$

we get

$$0 = -\sin\Theta Y(\Theta) - g(Z, A_{N_i X}Y) - g(Z, t_i B(X, Y)).$$
⁽²⁶⁾

Thus, Θ is constant if and only if

 $-g(Z, A_{N_iX}Y) - g(Z, t_iB(X, Y)) = 0,$

or

$$g(Y, A_{N_i X} Z) = g(N_i Z, B(X, Y)) = g(Y, A_{N_i Z} X).$$

Therefore, the slant function Θ is constant if and only if $A_{N_iX}Z = A_{N_iZ}X$.

Using the approach of the proof of Theorem 2, for a point-wise slant submanifold of a Sasakian manifold, implies the following theorem.

Theorem 3 Let M be a point-wise slant submanifold of a Sasakian manifold $(\overline{M}, \xi_i, \eta_i, \phi_i, g)$. Then the slant function Θ is constant if and only if $A_{NX}Z = A_{NZ}X$.

As an analogue of a Kaehlerian slant submanifold of quaternion manifolds, Sasakian 3-slant submanifolds of 3-structure manifolds have been defined in [12]. Let M be a point-wise 3-slant submanifold of an almost contact metric 3-structure manifold $(\overline{M}, \xi_i, \eta_i, \phi_i, g)$ which the vector structures are in TM. The submanifold M is called a Sasakian point-wise 3-slant submanifold if

$$(\nabla_Y T_i)X = g(X, Y)\xi_i - \eta_i(X)Y, \ \forall X, Y \in TM.$$
(27)

Now we show that these submanifolds cannot be a proper point-wise slant submanifold.

Theorem 4 Any Sasakian point-wise 3-slant submanifolds are 3-slant submanifolds.

Proof Let M be a Sasakian point-wise 3-slant submanifold of $(\overline{M}, \xi_i, \eta_i, \phi_i, g)$ and X be a unit vector field in $TM \setminus \langle \xi_i \rangle$. From (22) and (27) for any $Y \in TM$, we have

$$g(X,Y)\xi_{i} = (\nabla_{Y}T_{i})X = \nabla_{Y}T_{i}X - T_{i}(\nabla_{Y}X)$$

$$= \nabla_{Y}cos\Theta Z - T_{i}(\nabla_{Y}X)$$

$$= Y(cos\Theta)Z + cos\Theta\nabla_{Y}Z - T_{i}(\nabla_{Y}X)$$

$$= sin\Theta Y(\Theta)Z + cos\Theta\nabla_{Y}Z - T_{i}(\nabla_{Y}X).$$
(28)

Since Z is orthogonal to X and ξ_i , by applying g(Z, .) to (28), we obtain

$$0 = \sin\Theta Y(\Theta),\tag{29}$$

which means Θ is constant.

Acknowledgment

The author is thankful to the referees for their valuable comments and suggestions.

References

- [1] Atçeken M. Warped product semi-slant submanifolds in Kenmotsu manifolds. Turk J Math 2010; 34: 425-433.
- Blair DE. Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics 203, Basel, Switzerland: Birkhäuser, 2002.
- [3] Cabrerizo JL, Carriazo A, Fernández LM, Fernández M. Slant submanifolds in Sasakian manifolds. Glasg Math J 2000; 42: 125–138.
- [4] Chen BY. Geometry of Slant Submanifolds. Leuven, Belgium: K.U. Leuven, 1990.
- [5] Chen BY, Garay OJ. Pointwise slant submanifolds in almost Hermitian manifolds. Turk J Math 2012; 36: 630-640.
- [6] Etayo F. On quasi-slant submanifolds of an almost Hermitian manifold. Publ Math Debrecen 1998; 53: 217-223.
- [7] Kashiwada T. A note on a Riemannian space with Sasakian 3-structure. Natur Sci Rep Ochanomizu Univ 1971; 22: 1-2.
- [8] Khan VA, Khan MA, Khan KA. Slant and semi-slant submanifolds of a Kenmotsu manifold. Math Slovaca 2007; 57: 483–494.

KAZEMI BALGESHIR/Turk J Math

- [9] Kuo YY. On almost contact 3-structure. Tóhoku Math J 1970; 22: 325-332.
- [10] Lee JW, Sahin B. Pointwise slant submersions. Bull Korean Math Soc 2014; 51: 1115-1126.
- [11] Lotta A. Slant submanifolds in contact geometry. Bull Math Soc Sci Math Roumanie (N.S.) 1996; 39: 183-198.
- [12] Malek F, Kazemi Balgeshir MB. Slant submanifolds of almost contact metric 3-structure manifolds. Mediterr J Math 2013; 10: 1023-1033.
- [13] Papaghiuc N. Semi-slant submanifolds of a Kaehlerian manifold. An Stiint Al I Cuza Univ Iasi 1994; 40: 55-61.
- [14] Sahin B. Slant submanifolds of quaternion Kaehler manifolds. Commun Korean Math Soc 2007; 22: 123-135.
- [15] Sahin B. Warped product pointwise semi-slant submanifolds of Kaehler manifolds. Port Math 2013; 70: 251-268.
- [16] Shahid MH, Al-Solamy FR. Ricci tensor of slant submanifolds in a quaternion projective space. C R Math 2011; 349: 571-573.
- [17] Vîlcu GE. Slant submanifolds of quaternionic space forms. Publ Math Debrecen 2012; 81: 397-413.