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Abstract: In this paper the reversibility problem of a family of two-dimensional cellular automata is completely resolved.

It is well known that the reversibility problem is a very difficult one in general. In order to determine whether a cellular

automaton is reversible or not the reversibility of its rule matrix is studied via linear algebraic tools. However, in this

particular study the authors consider a novel approach. By observing the algebraic structures of rule matrices that

represent these families and associating them with polynomials in two variables in a quotient ring, the solution to the

reversibility problem is simplified greatly. Hence, this approach not only drastically decreases the computational time

for determining the reversibility of these families but also provides an explicit construction of reverse cellular automata

in the case of the existence of their inverses. The paper concludes with a consideration of the rule matrices of these

families in obtaining linear codes over group rings, which are referred to as zero-divisor codes.
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1. Introduction

Complex structures are generally divided into small pieces that are called cells and are studied accordingly.

Observations have shown that the evolution of dynamical systems depends on the interactions among their

neighboring cells. Due to this reason, dynamic structures are studied by cellular automata (CAs) that are

composed of cells that interact with each other with respect to some local rules. Cellular automata have proven

to be one of the best tools to model such dynamical systems. The first and successful attempt on modeling

dynamical systems by cellular automata was presented by Ulam and von Neumann [26]. In this particular study,

it is shown that even by assuming simple local rules among the neighboring cells one obtains very complicated

dynamical systems after a reasonable number of steps. On the other hand, having represented a dynamical

system by a CA, it is also important to be able to trace the configuration back to a particular stage. Such

CAs that enjoy this property are called reversible or shortly RCAs. RCAs are deterministic in both directions

of time [16]. RCAs have found applications in many diverse areas such as physics, cryptography (generating

pseudo-random numbers), computer science, chemistry, image processing ([25]), analysis of universal model of

computations ([19]), and coding theory, which is a partial but not an exhaustive list [1, 5, 9, 14, 15, 22, 20].

The reversibility problem of CA and Garden of Eden (for short GOE) configurations are closely related

and both are important concepts. In [18], Moore showed that the existence of mutually erasable configurations in

a two-dimensional (2D) tessellation space is sufficient for the existence of GOE configurations. In [3], Amoroso
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et al. established a necessary and sufficient condition for the existence of GOE configurations with finitely

many configurations. In [8], Hartman and Heule demonstrated how quantified Boolean formula (QBF) and

satisfiability (SAT) techniques can be used to find GOE in Conway’s Game of Life.

In [2], the authors studied the reversibility of 2D CAs defined by a local rule, which they called the

nearest neighborhoods and prolonged next nearest neighborhoods (briefly, NPNN ), over the field Zp with null

boundary, and further they characterized these CAs with some of their important characteristics. Recently,

studies on the reversibility problem of some families of CAs are also presented in [21, 22, 24]. Some further and

related studies on this direction can be found in [4, 7, 12, 13].

In the present paper, we restudy the reversibility problem of 2D CAs with respect to the rule NPNN

([23]) with periodic boundary condition (PBC) via a novel algebraic approach. In [23], originally the problem

was studied for a subfamily and it was solved by using classical algorithmic rank computations. Here, we

construct a one to one correspondence between the rule matrices of NPNN and the elements of a quotient ring

of polynomials with two indeterminates. By means of this correspondence, we are able to relate the reversibility

of CA with the inverse problem of two variable polynomials in the quotient ring.

The rest of the paper is organized as follows: in Section 2, we present some related basic definitions

and concepts. In Section 3, we present the rule matrix that represents a 2-D finite CA with PBC generated

by the local rule NPNN over the field Zp . In Section 4, the reversibility problem is presented and solved

by transforming the problem into a quotient ring of two variables. Here the problem becomes equivalent to

determining the units of this ring and further by finding the inverses of the elements in the ring we are able to

give explicitly the inverse matrix of the rule matrix. In Section 5, we present an example of zero-divisor codes

by using this family of CAs and then finally we conclude the paper.

2. Preliminaries

2.1. Cellular automata basics

In this section, we introduce a family of 2D CAs over the finite field with p (prime) elements Zp = {0, 1, 2, . . . , p−
1} by using some local rules. First, we recall the definition of a 2D CA. We consider the 2-dimensional integer

lattice Z2 and the configuration space Ω = ZZ2

p with elements

σ : Z2 → Zp.

σv as usual denotes the value of σ at a point v ∈ Z2 . Let u1, . . . , us ∈ Z2 be a finite set of distinct

elements in the lattice and F : Zs
p → Zp be a function. A CA with the local rule F is defined as a pair (Ω, TF ),

where the global transition map UF : Ω → Ω is given by

(UFσ)v = F (σv+u1
, . . . , σv+us

), v ∈ Z2.

2D CAs can be viewed locally as matrices of size m×n over Zp. The entries of these matrices, called cells,

are assigned values referred to as configurations. As time evolves, the configurations change. If the transition

is linear as in our case, then this is called the local rule matrix of CA. The local rule matrix determines the

transition of the states from time t to next time (t + 1) modulo p. In a 2D CA (see Figure) the closest cells

to the center cell, excluding itself, of radius one and two are the four and the eight neighbors (see [4, 6, 7] for

further details). 2D CAs are defined and studied with respect to their active neighbors, i.e. the neighbors that

are assumed to affect the cell in the center. In general, it is well known that the closest cells to the center are
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more effective. There are some classical types of neighborhoods, but in this work we only restrict ourselves

to the nearest neighborhood and prolonged next nearest neighborhood (briefly, NPNN ), which consists of

cells with radius two or less. These cells are located at the main directions North, South, East, and West (see

Figure). As mentioned above, the relation among the cells is assumed to be linear and hence one can define the

(t+ 1)st state of the (i, j)st cell as follows:

x
(t+1)
(i,j) = ax

(t)
(i−1,j)+bx

(t)
(i,j+1)+cx

(t)
(i+1,j)+dx

(t)
(i,j−1)+ex

(t)
(i−2,j)+fx

(t)
(i,j+2)+gx

(t)
(i+2,j)+hx

(t)
(i,j−2)(mod p), (1)

where a, b, c, d, e, f, g, h ∈ Z∗
p = {1, 2, . . . , p− 1} .

Figure. The neighborhood NPNN , i.e. the plus symbol, where the red cell is called the center cell and the gray ones

are the active neighbors of the center cell.

In order to define a CA according to the neighboring relations, which is referred to as the local rule

function (see Eq. (1)), the following ordering and hence the numbering of the rules is introduced:

RN = ap0 + bp1 + cp2 + dp3 + ep4 + fp5 + gp6 + hp7 = (hgfedcba)p . (2)

Since the lattice of cells is infinite dimensional, in order to study CAs considered locally finite, the

interactions on the boundary cells are considered under two assumptions that are commonly made:

• A periodic boundary CA is one where the boundary cells are assumed to be neighbored by its own copies

periodically.

• A null boundary CA is one where the boundary cells are assumed to be neighbored by zero states only.

Now we give the mathematical definition of a 2D CA generated by the local rule NPNN with PBC

(briefly NPNNP ). In the sequel, for convenience we will use notation for NPNNP.

A 2-D CA with the local rule RN and PBC is a function URN
: Ω → Ω defined by

(URN
x)

(t)
(i,j) = ax

(t)
(i−1,j)+bx

(t)
(i,j+1)+cx

(t)
(i+1,j)+dx

(t)
(i,j−1)+ex

(t)
(i−2,j)+fx

(t)
(i,j+2)+gx

(t)
(i+2,j)+hx

(t)
(i,j−2)

= x
(t+1)
(i,j) (mod p). (3)

In this paper, we consider 2D finite CAs generated by the rule NPNN with PBC. It is well known that

these CAs are discrete dynamical systems formed by a finite 2D array m×n and composed of identical objects

called cells.
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Let Φ :Mm×n(Zp) → Zmn
p . Φ takes the tth state [Xt] given by


x11 x12 · · · x1n
x21 x22 · · · x2n
...

... · · ·
...

xm1 xm2 · · · xmn

 −→ (x11, x12, . . . , x1n, . . . , xm1, . . . , xmn)
T ,

where T stands for the transpose of a matrix. Therefore, the local rules will be assumed to act on Zmn
p rather

than Mm×n(Zp).

Let [Xt]m×n be a matrix of size m× n with entries from Zp

[Xt]m×n =


x
(t)
11 . . . x

(t)
1n

...
. . .

...

x
(t)
m1 . . . x

(t)
mn

 .

This matrix is called either the information matrix or the configuration of a 2D finite CA at time t .

By using (3), we can define the evolution of a configuration as a matrix multiplication by

(TRN
)mn×mn



x
(t)
11
...

x
(t)
1n
...

x
(t)
m1
...

x
(t)
mn


=



x
(t+1)
11
...

x
(t+1)
1n
...

x
(t+1)
m1
...

x
(t+1)
mn


where x

(t+1)
i,j is defined in Eq. (1). The rule matrix (TRN )mn×mn is the representation matrix of a 2D finite

CAm×n with rule RN (for further details please see [4]). In a more concise form, we have

[TRN
]mn×mn


XT

1

XT
2

XT
3
...

XT
m


mn×1

=


Y T
1

Y T
2

Y T
3
...
Y T
m


mn×1

.

For example, if i = j = 3, then we have

x
(t+1)
33 = ax

(t)
23 + bx

(t)
34 + cx

(t)
43 + dx

(t)
32 + ex

(t)
13 + fx

(t)
35 + gx

(t)
53 + hx

(t)
31 (mod p).

3. Rule matrix of 2D finite CA with rule RN

In this section, we present the rule matrix that represents a 2D CA with PBC generated by the local rule RN

over the field Zp , which are given in [23] in more detail.
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Table 1. An information (or configuration) matrix of order 5× 5 with PBC.

x44 x45 x41 x42 x43 x44 x45 x41 x42
x54 x55 x51 x52 x53 x54 x55 x51 x52
x14 x15 x11 x12 x13 x14 x15 x11 x12
x24 x25 x21 x22 x23 x24 x25 x21 x22
x34 x35 x31 x32 x33 x34 x35 x31 x32
x44 x45 x41 x42 x43 x44 x45 x41 x42
x54 x55 x51 x52 x53 x54 x55 x51 x52
x14 x15 x11 x12 x13 x14 x15 x11 x12
x24 x25 x21 x22 x23 x24 x25 x21 x22

Theorem 1 Let a, b, c, d, e, f, g, h ∈ Z∗
p, m ≥ 5 and n ≥ 5 . Then the rule matrix of TRN from Zmn

p to Zmn
p ,

which takes the tth state [Xt] (as identified in (3)) to the (t+ 1)st state [Xt+1] = [Y ] , is given by

[23](TRN
)mn×mn =



S cI gI 0 · · · · · · eI aI
aI S cI gI · · · · · · 0 eI
eI aI S cI gI · · · 0 0
0 eI aI S · · · · · · 0 0
...

...
...

...
...

...
...

...
0 · · · 0 eI aI S cI gI
gI · · · · · · 0 eI aI S cI
cI gI · · · · · · 0 eI aI S


mn×mn

(4)

where each submatrix is of order n× n, and

Sn×n =



0 b f 0 0 0 · · · h d
d 0 b f 0 0 · · · 0 h
h d 0 b f 0 · · · 0 0
0 h d 0 b f 0 · · · 0
...

...
...

...
...

...
...

...
...

f · · · · · · · · · 0 h d 0 b
b f · · · · · · · · · 0 h d 0


n×n

. (5)

For example, if we take m = 5 and n = 5, then the representation matrix TRN
is of order 25× 25 and

it acts on configurations of sizes 5× 5 with PBC.

Since the action of the linear transformation on the basis leads to the unique determination of itself, one

needs only to check the values on the basis. To see this, if the local rule in Eq. (1) is applied to all cells of the

first row of information matrix 5× 5, then the first block row of the rule matrix TRN is determined. Next by

reapplying the rule RN to the second row of information matrix 5× 5, the second block row of the rule matrix

TRN
is also determined. Similarly, the rest of the block rows of rule matrix TRN

are determined.

More explicitly, by considering the neighborhood presented in Table 1 and Theorem 1, one obtains the

matrix for m = 5 and n = 5 as follows:

(TRN
)25×25 =


S cI5 gI5 eI5 aI5
aI5 S cI5 gI5 eI5
eI5 aI5 S Ic5 gI5
gI5 eI5 aI5 S cI5
cI5 gI5 eI5 aI5 S

 ,
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where each submatrix is of order 5× 5, and S5×5 =


0 b f h d
d 0 b f h
h d 0 b f
f h d 0 b
b f h d 0


5×5

.

4. The Reversibility of RN

In the previous section, we showed that the rule matrix consists of block circulant matrices and further it is itself

a circulant matrix of block matrices. In this section, these structural rule matrices are going to be represented

by elements of a special quotient ring and hence the reversibility problem of these CAs will be answered by

means of this approach.

Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates x and y. We can represent

each polynomial of R by a circulant matrix whose entries are also circulant matrices in the Zp. In order to

accomplish this correspondence, we let f (x, y) =
∑n

i=1 a
1
1ix

i−1+
(∑n

i=1 a
2
1ix

i−1
)
y+ . . .+

(∑n
i=1 a

m
1ix

i−1
)
ym−1

be a polynomial in the quotient ring R and define the matrix representation from R onto Mnm (Zp) as

Φ : R→Mnm (Zp)

Φ (f (x, y)) =


A1 A2 . . . Am−1 Am

Am A1 A2 . . . Am−1

...
...

...
...

...
A2 . . . Am−1 Am A1

 , (6)

where

Aj =


aj11 aj12 . . . aj1n
aj1n aj11 . . . aj1n−1
...

...
...

...

aj12 aj13 . . . aj11


n×n

(1 ≤ j ≤ m).

Φ is an injective ring homomorphism.

Now we give an example of this representation.

Example 1 Let f (x, y) = 2x + 2x2 + x3 + x4 + y + 2y2 + y3 + 2y4 be a polynomial in the quotient ring

R = Z3 [x, y] /
⟨
x5 − 1, y5 − 1

⟩
. Then the corresponding matrix of f (x, y) is

Φ(f (x, y)) =


A1 A2 A3 A4 A5

A5 A1 A2 A3 A4

A4 A5 A1 A2 A3

A3 A4 A5 A1 A2

A2 A3 A4 A5 A1

 ,

where

A1 =


0 2 2 1 1
1 0 2 2 1
1 1 0 2 2
2 1 1 0 2
2 2 1 1 0

 , A2 = A4 = I5, and A3 = A5 = 2I5.
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Φ(f (x, y)) is also the rule matrix of a CA with n = 5, m = 5 and a = 2, b = 2, c = 1, d = 1, e = 1, f = 2, g =

2, h = 1. Some specific configurations with respect to this rule are presented in Table 2. Further, by Eq. (2) this

rule can be labeled with the rule number (12211122)3 = 37 + 2.36 + 2.35 + 34 + 33 + 32 + 2.3 + 2.1 = 4256.

Table 2. Some configurations of the rule 4256

Some configurations of the rule 4256 given in Example

1, where the first one is the initial configuration and

the sequent from left to right are configurations at

time t = 1, 2, 3, 4, and 8. The white cells have 0-

states, the black cells have 1-states, and the blue cells

have 2-states.

Theorem 2 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates and let f (x, y) ∈ R.

The matrix Φ(f (x, y)) is nonsingular if and only if f (x, y) is a unit in the quotient ring R.

Proof Assume that f (x, y) ∈ R is a unit. Then there exists a unique g (x, y) ∈ R such that f (x, y) g (x, y) = 1.

By applying Φ to both sides of the last equality we get Φ (f (x, y))Φ (g (x, y)) = Φ (1). Equivalently,

AB = Imn implies A−1 = B. Therefore, the matrix Φ (f (x, y)) = A is nonsingular. Conversely, suppose that

Φ (f (x, y)) = A is nonsingular. Then there exists a unique matrix B such that AB = Imn and Φ (g (x, y)) = B.

By taking a preimage of A and B we get Φ−1 (A)Φ−1 (B) = f (x, y) g (x, y) = Φ−1 (I) = 1. Hence, f (x, y) is

a unit in the ring R and has an inverse g (x, y) . 2

Theorem 3 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates and let f (x, y) ∈ R.

The matrix Φ(f (x, y)) is singular if and only if f (x, y) is a zero-divisor in the quotient ring R.

Proof The proof is analogous to the previous proof and so we skip it. 2

Now we give a decomposition of the ring R. Let xn − 1 = f1 (x) . . . fr (x), y
m − 1 = g1 (y) . . . gs (y) be

factorizations of xn − 1 and ym − 1 in irreducible polynomials, respectively. Then by applying the Chinese

remainder theorem we get the following decomposition:

R ∼= Zp [x, y] / ⟨f1 (x) , g1 (y)⟩ ⊕ Zp [x, y] / ⟨f1 (x) , g2 (y)⟩

⊕ . . .⊕ Zp [x, y] / ⟨fr (x) , gs (y)⟩ (7)

ψ : R→ S

ψ (f (x, y)) = (f (x, y) (mod f1 (x) , g1 (y)) , . . . , f (x, y) (mod fr (x) , gs (y))) . (8)

This decomposition gives us an easy way to determine the zero-divisors and the units of the quotient ring R.
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Corollary 1 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates and let f (x, y) ∈ R.

f (x, y) is a zero-divisor of R if at least one of the components of (8) is zero or a zero-divisor.

Corollary 2 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates and let f (x, y) ∈ R.

f (x, y) is a unit of R if all components of (8) are units.

Example 2 Let R = Z2 [x, y] /
⟨
x3 − 1, y3 − 1

⟩
. Then x3 − 1 = (x− 1)

(
x2 + x+ 1

)
= f1 (x) f2 (x) and

y3 − 1 = (y − 1)
(
y2 + y + 1

)
= g1 (y) g2 (y) .

R ∼= Z2 [x, y] / ⟨f1 (x) , g1 (y)⟩⊕Z2 [x, y] / ⟨f1 (x) , g2 (y)⟩

⊕Z2 [x, y] / ⟨f2 (x) , g1 (y)⟩⊕Z2 [x, y] / ⟨f2 (x) , g2 (y)⟩ .

Consider the polynomial f (x, y) = 1 + x + x2 + y + xy + xy2 + x2y2 ∈ Z2 [x, y] /
⟨
x3 − 1, y3 − 1

⟩
.

Then ψ (f (x, y)) = (1, 1, x, 1 + xy) . The element 1 + xy ∈Z2 [x, y] / ⟨f2 (x) , g2 (y)⟩ is a zero divisor and so is

f (x, y) = 1+x+x2+ y+xy+xy2+x2y2 ∈ Z2 [x, y] /
⟨
x3 − 1, y3 − 1

⟩
. The corresponding matrix of f (x, y) is

Φ(f (x, y)) =



1 1 1 1 1 0 0 1 1
1 1 1 0 1 1 1 0 1
1 1 1 1 0 1 1 1 0
0 1 1 1 1 1 1 1 0
1 0 1 1 1 1 0 1 1
1 1 0 1 1 1 1 0 1
1 1 0 0 1 1 1 1 1
0 1 1 1 0 1 1 1 1
1 0 1 1 1 0 1 1 1


and det(Φ (f (x, y))) = 0 mod 2.

Similarly, consider the polynomial f (x, y) = 1 + x2 + y + xy + x2y2 ∈ Z2 [x, y] /
⟨
x3 − 1, y3 − 1

⟩
, where

ψ (f (x, y)) = (1, 1 + y, x, 1) . All components of ψ (f (x, y)) are units and so

f (x, y) ∈ Z2 [x, y] /
⟨
x3 − 1, y3 − 1

⟩
is a unit. Thus the matrix corresponding to f (x, y) given below is invertible.

Φ(f (x, y)) =



1 0 1 1 1 0 0 0 1
1 1 0 0 1 1 1 0 0
0 1 1 1 0 1 0 1 0
0 0 1 1 0 1 1 1 0
1 0 0 1 1 0 0 1 1
0 1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 0 1
0 1 1 1 0 0 1 1 0
1 0 1 0 1 0 0 1 1


.

Note that det (Φ (f (x, y))) = 1 mod 2.

Theorem 4 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates and let R1 ⊕
R2 ⊕ . . . ⊕ Rt be a minimal decomposition of R. Then rank(Φ (f (x, y))) = rank(Φ (f1 (x, y))) + . . . +

rank(Φ (ft (x, y))).
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Proof. Since the decomposition stated in the theorem is minimal every component can be considered

as a field extension of order αi, i = 1, 2, . . . , t. The image of f (x, y) in each component is either a unit or the

zero element. Moreover, we can consider each element as a circulant matrix of order αi, i = 1, 2, . . . , t. Then

we get the following diagonal matrix:

Φ (f (x, y)) =


Φ(f1 (x, y)) 0 0 0

0 Φ (f2 (x, y)) 0 0

0 0
. . . 0

0 0 0 Φ (ft (x, y))

 .

All matrices located on the diagonal of Φ (f (x, y)) are either unitary matrices or all zero matrices. From

linear algebra we know that unitary matrices have full rank and the rank of an all zero matrix is zero.

Therefore, the rank of Φ (f (x, y)) is the sum of order of diagonal matrices. Thus, we have rank (Φ (f (x, y))) =

rank (Φ (f1 (x, y))) + . . .+ rank (Φ (ft (x, y))) .

Example 3 Let f (x, y) = 1 + x + x2 + y + xy + xy2 + x2y2 ∈ Z2 [x, y] /
⟨
x3 − 1, y3 − 1

⟩
. By Example 2 we

know that Φ(f (x, y)) is irreversible. The decomposition

Z2 [x, y] / ⟨f1 (x) , g1 (y)⟩⊕Z2 [x, y] / ⟨f1 (x) , g2 (y)⟩

⊕Z2 [x, y] / ⟨f2 (x) , g1 (y)⟩⊕Z2 [x, y] / ⟨f2 (x) , g2 (y)⟩

is not minimal, since the last part can be decomposed further as

(Z2 [x, y] / ⟨f2 (x) , g2 (y)⟩) (x+ y)⊕ (Z2 [x, y] / ⟨f2 (x) , g2 (y)⟩) (1 + x+ y) ,

where x+ y is an idempotent of the Z2 [x, y] / ⟨f2 (x) , g2 (y)⟩ . This can be also viewed as

F2⊕F4⊕F4⊕F4⊕F4.

Then we have ψ (f (x, y)) = (1, 1, x, 0, 1 + xy) , where 1 + xy is a unit in

(Z2 [x, y] / ⟨f2 (x) , g2 (y)⟩) (1 + x+ y) .

Then the rank of Φ(f (x, y)) is the sum of the rank of the components, i.e. rank (Φ (f (x, y))) = 1+2+2+0+

2 = 7.

Theorem 5 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates where (m,n) = 1.

Then R ∼= Zp [z] / ⟨znm − 1⟩ .

Proof. Define φ : R → Zp [z] / ⟨znm − 1⟩ as x 7→ zm and y 7→ zn. Then φ (x+ y) = zn + zm and

φ (xy) = zn+m = znzm = φ (x)φ (y) . It is easy to see the injectivity of φ. Since the range and the domain of

the map are finite φ is also surjective. Consequently φ is a ring isomorphism.

Corollary 3 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates where (m,n) = 1

and let f (x, y) ∈ R. f (x, y) is a unit in R if and only if (φ (f (x, y)) , znm − 1) = 1.

Corollary 4 Let R = Zp [x, y] / ⟨xn − 1, ym − 1⟩ be the quotient ring of two indeterminates, (m,n) = 1 and

let f (x, y) ∈ R. f (x, y) is a zero-divisor in R if and only if φ (f (x, y))| znm − 1.
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Example 4 Let f (x, y) = 2x+2x2+x4+y+y2+2y3 be a polynomial in the quotient ring R = Z3 [x, y] /⟨x5−1,

y4 − 1⟩. Then the corresponding matrix of f (x, y) is

Φ (f (x, y)) =


A1 A2 A3 A4

A4 A1 A2 A3

A3 A4 A1 A2

A2 A3 A4 A1

 ,

and

A1 =


0 2 2 0 1
1 0 2 2 0
1 1 0 2 2
0 1 1 0 2
2 0 1 1 0

 , A2 = A3 = I5, and A4 = 2I5

and det(Φ (f (x, y))) = 0 mod 3. Algebraically, φ (f (x, y)) = 2z4 + z5 + 2z8 + z10 + 2z15 + z16 and(
φ (f (x, y)) , z20 − 1

)
= 2 + z2, and so f (x, y) is a zero-divisor of R.

5. Group rings and zero-divisor codes

In this section we present an application to zero-divisor codes obtained from rule matrix of RN . Error correcting

codes are used in applications such as storing or transferring digital data. Due to some recently established

relations and potential good examples, the study of codes over fields has been extended to study of codes over

rings. Such an extension for codes over group rings is presented by Hurley and Hurley in [10]. They have

introduced the concept of zero-divisor codes. Here, we summarize the basic theory of zero-divisor codes and

present some applications of such codes obtained through the representation matrices of CAs studied in the

previous sections.

5.1. Group ring basics

Let R be a ring and G be a group and define the group ring RG to be the set of all R -linear combinations

u =
∑
g∈G

αgg , where αg ∈ R and where only finitely many of the αg ’s are nonzero. The sum and the product

of two group ring elements are defined respectively as

u+ v =
∑
g∈G

αgg +
∑
g∈G

βgg =
∑
g∈G

(αg + βg) g

and

uv =

∑
g∈G

αgg

(∑
h∈G

βhh

)
=
∑

g,h∈G

αgβhgh.

Since G is a group the product can be rewritten as

uv =
∑
g∈G

(∑
h∈G

αhβh−1gh

)
g.
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Example 5 Let R = Z2 = {0, 1} and G = C3 =
{
1, g, g2

}
. Then

Z2C3 =
{
0, 1, g, g2, 1 + g, 1 + g2, g + g2, 1 + g + g2

}
.

For further and detailed information on group rings the authors may refer to [17].

Definition 1 Let R be a ring.

• A nonzero element z ∈ R is said to be a zero-divisor if and only if there exists a nonzero r ∈ R such that

zr = 0.

• An element u ∈ R is said to be a unit if and only if there exists an element v ∈ R such that uv = 1 = vu.

If such a v exists, then it is generally written as u−1.

Let {g1, g2, . . . , gn} be a fixed listing of the elements of G. The RG matrix M (RG,w) ∈ Rn×n (the

ring of n× n matrices) associated with the group ring element w =
n∑

i=1

αgigi ∈ RG is defined as

M (RG,w) =


αg−1

1 g1
αg−1

1 g2
. . . αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

. . . αg−1
2 gn

...
...

...
...

αg−1
n g1

αg−1
n g2

. . . αg−1
n gn

 .

A group ring RG is isomorphic to a ring of RG matrices over R , which is a subring of Rn×n [11].

Example 6 The associated RG matrix of the element w = 1 + g ∈ Z2C3 is

M (Z2C3, w) =

1 1 0
0 1 1
1 0 1

 .

5.2. Zero-divisor codes from rule matrix RN

Zero divisor codes are introduced by [10]. Following the method introduced in [10], here we consider and use the

rule matrices and hence their corresponding representations in the quotient ring to devise zero divisor codes.

We present examples that illustrate the relations.

Definition 2 [10] Let W be a submodule of RG and u ∈ RG, x ∈ W. A group ring encoding is a mapping

f : W → RG , such that f (x) = xu or f (x) = ux. In the latter case, f is a left group ring encoding. In the

former, it is a right group ring encoding.

C = {ux|x ∈W} or C = {xu|x ∈W} .

Definition 3 [10] Let u be a zero-divisor in RG, i.e. uv = 0 for some nonzero v ∈ RG. Let W be

a submodule of RG with basis consisting of group elements S ⊆ G. A zero-divisor code C is defined as

C = {ux|x ∈W} = uW or C = {xu|x ∈W} =Wu. A zero-divisor code is constructed from a zero-divisor u,

and a submodule W . u is said to be a generator element of the code C =Wu relative to the submodule W.
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Definition 4 [10] A set of group ring elements T ⊂ RG is linearly independent if, for αx ∈ R,
∑
x∈T

αxx = 0

only when αx for all x ∈ T. Otherwise T is linearly dependent.

• We define the rank (T ) to be the maximum number of linearly independent elements of T. Thus rank

(T ) = |T | if and only if T is linearly independent.

• Note that a zero-divisor code C =Wu , where W generated by S, is the submodule of RG consisting of

all elements of the form
∑
g∈S

αggu. The dimension of this submodule is the rank (Su) .

Example 7 Let RG = Z2C3 =
{
1, g, g2, 1 + g, 1 + g2, g + g2, 1 + g + g2

}
, u = 1 + g and v = 1 + g + g2.

Furthermore, let W be the submodule of Z2C3 generated by S = {1, g} , i.e. W = ⟨S⟩ = {0, 1, g, 1 + g} .
(Su) = {1, g} (1 + g) =

{
1 + g, g + g2

}
, and so rank (Su) = 2. Moreover, the zero-divisor code is then

C =Wu =
{
0, 1 + g, g + g2, 1 + g2

}
.

Definition 5 [10] For a zero-divisor u with rank U = r , u is said to be a principal zero-divisor if and only if

there exists a v ∈ RG such that uv = 0 and further rank V = n− r.

Example 8 The elements u = 1 + g and v = 1 + g + g2 in Z2C3 are principal zero-divisors.

M (Z2C3, u) =

1 1 0
0 1 1
1 0 1

 ∼
(
1 1 0
0 1 1

)
,

M (Z2C3, v) =
(
1 1 1

)
.

Theorem 6 [10] Let C = {xu|x ∈W} , where W is generated by S such that Su is linearly independent and

|S| =rankU = r. Suppose further that uv = 0 in the group ring RG so that rankV = n − r. Then y is a

codeword if and only if yv = 0.

• The element v ∈ RG is called the check element of the code C.

Example 9 The element v = 1 + g + g2 in Example 7 is the check element of the given code C.

Example 10 Consider the polynomial f (x, y) = 2x+ 2x2 + x4 + y+ y2 + 2y3 ∈ R = Z3 [x, y]
⟨
x5 − 1, y4 − 1

⟩
.

By Example 4 we know that f (x, y) is a zero divisor and φ (f (x, y)) = 2z4+z5+2z8+z10+2z15+z16. By using

φ−1 (f (x, y)) we get the principal zero-divisor of f (x, y) as g (x, y) = 1+x+x2+x3+x4+(1+x+x2+x3+x4)y2.

Moreover, R ≊ Z3 (C5 × C4) ≊ Z3 (C20) . By using the method given above we obtain a [20, 18, 2] cyclic linear

code with check element g (x, y) .

6. Conclusion

In this work, we relate the reversibility problem of a special family of 2D CAs with polynomial algebra. We

present a map between these two structures and hence due to this relation we can then answer the reversibility

question in polynomial algebra. Moreover, we can also compute the corresponding reverse rule if it exists in

polynomial algebra and carry it back to CA. Similar to this approach, researchers may look for families of CAs
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that can be represented by algebraic structures and try to address the reversibility problem and some other

structural properties. Further, in this paper we present some examples of zero-divisor codes obtained through

these CA rule matrices. Here, we present an illustrative example but this research direction is very new and

group ring codes that are obtained by CA families need to be explored further.
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