Turk J Math
(2016) 40: 679-687
(c) TÜBİTAK
doi:10.3906/mat-1505-3

Bounds for the second Hankel determinant of certain bi-univalent functions

Halit ORHAN ${ }^{1, *}$, Nanjundan MAGESH ${ }^{2}$, Jagadeesan YAMINI ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey
${ }^{2}$ Post-Graduate and Research Department of Mathematics, Government Arts College for Men Krishnagiri, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, Government First, Grade College, Vijayanagar, Bangalore, Karnataka, India

| Received: 01.05.2015 | Accepted/Published Online: 14.10.2015 | • | Final Version: 08.04.2016 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

We investigate the second Hankel determinant inequalities for a certain class of analytic and bi-univalent functions. Some interesting applications of the results presented here are also discussed.

Key words: Bi-univalent functions, bi-starlike, bi-Bǎzilevič, second Hankel determinant

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Furthermore, by \mathcal{S} we will show the family of all functions in \mathcal{A} that are univalent in \mathbb{U}.

Some of the important and well-investigated subclasses of the univalent function class \mathcal{S} include (for example) the class $\mathcal{S}^{*}(\beta)$ of starlike functions of order β in \mathbb{U} and the class $\mathcal{K}(\beta)$ of convex functions of order β in \mathbb{U}. By definition, we have

$$
\mathcal{S}^{*}(\beta):=\left\{f: f \in \mathcal{A} \text { and } \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta ; z \in \mathbb{U} ; 0 \leq \beta<1\right\}
$$

and

$$
\mathcal{K}(\beta):=\left\{f: f \in \mathcal{A} \text { and } \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta ; z \in \mathbb{U} ; 0 \leq \beta<1\right\}
$$

The arithmetic means of some functions and expressions are very frequently used in mathematics, especially in geometric function theory. Making use of the arithmetic means Mocanu [19] introduced the class of α-convex $(0 \leqq \alpha \leqq 1)$ functions (later called Mocanu-convex functions) as follows:

$$
\mathcal{M}(\alpha):=\left\{f: f \in \mathcal{S} \text { and } \Re\left((1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>0 ; z \in \mathbb{U}\right\}
$$

[^0]In [17], it was shown that if the above analytical criteria hold for $z \in \mathbb{U}$, then f is in the class of starlike functions $\mathcal{S}^{*}(0)$ for α real and is in the class of convex functions $\mathcal{K}(0)$ for $\alpha \geq 1$. In general, the class of α convexity.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1).

For $0 \leq \beta<1$, a function $f \in \sigma$ is in the class $S_{\sigma}^{*}(\beta)$ of bi-starlike function of order β, or $\mathcal{K}_{\sigma, \beta}$ of bi-convex function of order β if both f and f^{-1} are respectively starlike or convex functions of order β. A function f is in the class $\mathcal{M}_{\Sigma}^{\alpha}(\beta)$ of bi-Mocanu convex function of order β if both f and f^{-1} are respectively Mocanu convex function of order β. For a brief history and interesting examples of functions that are in (or are not in) the class σ, together with various other properties of the bi-univalent function class σ, one can refer the work of Srivastava et al. [26] and references therein. Various subclasses of the bi-univalent function class σ were introduced and nonsharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series expansion (1.1) were found in several recent investigations (see, for example, [2, 4, 7, 10, 16, 22, 24]). However, the problem of finding the coefficient bounds on $\left|a_{n}\right|(n=3,4, \ldots)$ for functions $f \in \sigma$ is still an open problem.

For integers $n \geq 1$ and $q \geq 1$, the q th Hankel determinant is defined as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q-2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q-2} & \cdots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1\right)
$$

The Hankel determinant plays an important role in the study of singularities (see [8]). This is also important in the study of power series with integral coefficients [5, 8]. The properties of the Hankel determinants can be found in [27]. The Hankel determinants $H_{2}(1)=a_{3}-a_{2}^{2}$ and $H_{2}(2)=a_{2} a_{4}-a_{2}^{3}$ are well known as FeketeSzegö and second Hankel determinant functionals, respectively. Furthermore, Fekete and Szegö [9] introduced the generalized functional $a_{3}-\delta a_{2}^{2}$, where δ is some real number. In 1969, Keogh and Merkes [14] discussed the Fekete-Szegö problem for classes \mathcal{S}^{*} and \mathcal{K}. Recently, several authors investigated upper bounds for the Hankel determinant of functions belonging to various subclasses of univalent functions (see [1, 6, 13, 15, 18, 20, 21] and the references therein). On the other hand, Zaprawa [28, 29] extended the study of the Fekete-Szegö problem for certain subclasses of bi-univalent function class σ. Following Zaprawa [28, 29], the Fekete-Szegö problem for functions belonging to various other subclasses of bi-univalent functions were considered in [3, 12, 23]. Very recently, the upper bounds of $H_{2}(2)$ for the classes $S_{\sigma}^{*}(\beta)$ and $K_{\sigma}(\beta)$ were discussed by Deniz et al. [7].

Next we state the following lemmas that we shall use to establish the desired bounds in our study.

ORHAN et al./Turk J Math

Lemma 1.1 [25] If the function $p \in \mathcal{P}$ is given by the series

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \tag{1.3}
\end{equation*}
$$

then the following sharp estimate holds:

$$
\begin{equation*}
\left|c_{k}\right| \leq 2, \quad k=1,2, \cdots \tag{1.4}
\end{equation*}
$$

Lemma 1.2 [11] If the function $p \in \mathcal{P}$ is given by the series (1.3), then

$$
\begin{aligned}
& 2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \\
& 4 c_{3}=c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z
\end{aligned}
$$

for some x, z with $|x| \leq 1$ and $|z| \leq 1$.
Inspired by $[7,28]$, we consider the following subclass of the function class σ.
For $0 \leq \alpha \leq 1$ and $0 \leq \beta<1$, a function $f \in \sigma$ given by (1.1) is said to be in the class $\mathcal{M}_{\sigma}^{\alpha}(\beta)$ if the following conditions are satisfied:

$$
\Re\left((1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right) \geq \beta \quad(z \in \mathbb{U})
$$

and for $g=f^{-1}$

$$
\Re\left((1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right) \geq \beta \quad(w \in \mathbb{U})
$$

The class was introduced and studied by Li and Wang [16], and the study was further extended by Ali et al. [2]. In this paper we shall obtain the functional $H_{2}(2)$ for functions f belonging to the class $\mathcal{M}_{\sigma}^{\alpha}(\beta)$ and its special classes.

2. Bounds for the second Hankel determinant

We begin this section with the following theorem:

Theorem 2.1 Let f of the form (1.1) be in $\mathcal{M}_{\sigma}^{\alpha}(\beta)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left\{\begin{array}{cc}
\frac{4(1-\beta)^{2}}{3(1+\alpha)^{3}(1+3 \alpha)} & {\left[4(1-\beta)^{2}+(1+\alpha)^{2}\right] ;} \\
& \beta \in\left[0,1-\frac{(1+\alpha)\left[3(1+3 \alpha)+\sqrt{\left.9(1+3 \alpha)^{2}-48(1+\alpha)(1+3 \alpha)+128(1+2 \alpha)^{2}\right]}\right.}{16(1+2 \alpha)}\right] \\
\frac{(1-\beta)^{2}}{(1+\alpha)(1+3 \alpha)} \frac{\left[(1-\beta)^{2}(1+3 \alpha)(13+7 \alpha)-12(1-\beta)(1+\alpha)(1+2 \alpha)(1+3 \alpha)-4(1+\alpha)^{2}\left(9 \alpha^{2}+8 \alpha+2\right)\right]}{\left[16(1-\beta)^{2}(1+2 \alpha)-6(1-\beta)(1+\alpha)(1+3 \alpha)\right](1+2 \alpha)+(1+\alpha)^{2}\left[3(1+\alpha)(1+3 \alpha)-8(1+2 \alpha)^{2}\right]} \\
\beta \in\left(1-\frac{(1+\alpha)\left[3(1+3 \alpha)+\sqrt{\left.9(1+3 \alpha)^{2}+128(1+2 \alpha)^{2}\right]}\right.}{32(1+2 \alpha)}, 1\right)
\end{array}\right.
$$

Proof Let $f \in \mathcal{M}_{\sigma}^{\alpha}(\beta)$. Then:

$$
\begin{equation*}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\beta+(1-\beta) p(z) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)=\beta+(1-\beta) q(w), \tag{2.2}
\end{equation*}
$$

where $p, q \in \mathcal{P}$ and defined by

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
q(z)=1+d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\ldots \tag{2.4}
\end{equation*}
$$

It follows from (2.1), (2.2), (2.3), and (2.4) that

$$
\begin{align*}
(1+\alpha) a_{2} & =(1-\beta) c_{1} \tag{2.5}\\
2(1+2 \alpha) a_{3}-(1+3 \alpha) a_{2}^{2} & =(1-\beta) c_{2} \tag{2.6}\\
3(1+3 \alpha) a_{4}-3(1+5 \alpha) a_{2} a_{3}+(1+7 \alpha) a_{2}^{3} & =(1-\beta) c_{3} \tag{2.7}
\end{align*}
$$

and

$$
\begin{align*}
-(1+\alpha) a_{2} & =(1-\beta) d_{1} \tag{2.8}\\
(3+5 \alpha) a_{2}^{2}-(2+4 \alpha) a_{3} & =(1-\beta) d_{2} \tag{2.9}\\
(12+30 \alpha) a_{2} a_{3}-(10+22 \alpha) a_{2}^{3}-(3+9 \alpha) a_{4} & =(1-\beta) d_{3} . \tag{2.10}
\end{align*}
$$

From (2.5) and (2.8), we find that

$$
\begin{equation*}
c_{1}=-d_{1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}=\frac{1-\beta}{1+\alpha} c_{1} . \tag{2.12}
\end{equation*}
$$

Now, from (2.6), (2.9), and (2.12), we have

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}}{(1+\alpha)^{2}} c_{1}^{2}+\frac{1-\beta}{4+8 \alpha}\left(c_{2}-d_{2}\right) . \tag{2.13}
\end{equation*}
$$

From (2.7) and (2.10), we also find that

$$
\begin{equation*}
a_{4}=\frac{(2+8 \alpha)(1-\beta)^{3}}{(3+9 \alpha)(1+\alpha)^{3}} c_{1}^{3}+\frac{5(1-\beta)^{2}}{8(1+\alpha)(1+2 \alpha)} c_{1}\left(c_{2}-d_{2}\right)+\frac{1-\beta}{6(1+3 \alpha)}\left(c_{3}-d_{3}\right) . \tag{2.14}
\end{equation*}
$$

We can then establish that

$$
\begin{align*}
&\left|a_{2} a_{4}-a_{3}^{2}\right|=\quad \left\lvert\, \frac{-1}{3} \frac{(1-\beta)^{4}}{(1+\alpha)^{3}(1+3 \alpha)} c_{1}^{4}+\frac{(1-\beta)^{3}}{8(1+\alpha)^{2}(1+2 \alpha)} c_{1}^{2}\left(c_{2}-d_{2}\right)\right. \\
& \left.+\frac{(1-\beta)^{2}}{6(1+\alpha)(1+3 \alpha)} c_{1}\left(c_{3}-d_{3}\right)-\frac{(1-\beta)^{2}}{16(1+2 \alpha)^{2}}\left(c_{2}-d_{2}\right)^{2} \right\rvert\, \tag{2.15}
\end{align*}
$$

According to Lemma 1.2 and (2.11), we write

$$
\begin{equation*}
c_{2}-d_{2}=\frac{\left(4-c_{1}^{2}\right)}{2}(x-y) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{3}-d_{3}=\frac{c_{1}^{3}}{2}+\frac{c_{1}\left(4-c_{1}^{2}\right)(x+y)}{2}-\frac{c_{1}\left(4-c_{1}^{2}\right)\left(x^{2}+y^{2}\right)}{4}+\frac{\left(4-c_{1}^{2}\right)\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right]}{2} \tag{2.17}
\end{equation*}
$$

for some x, y, z, and w with $|x| \leq 1,|y| \leq 1,|z| \leq 1$, and $|w| \leq 1$. Using (2.16) and (2.17) in 2.15, we have

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \left\lvert\, \frac{-(1-\beta)^{4} c_{1}^{4}}{3(1+\alpha)^{3}(1+3 \alpha)}+\frac{(1-\beta)^{3} c_{1}^{2}\left(4-c_{1}^{2}\right)(x-y)}{16(1+\alpha)^{2}(1+2 \alpha)}+\frac{(1-\beta)^{2} c_{1}}{6(1+\alpha)(1+3 \alpha)}\right. \\
& \times\left[\frac{c_{1}^{3}}{2}+\frac{c_{1}\left(4-c_{1}^{2}\right)(x+y)}{2}-\frac{c_{1}\left(4-c_{1}^{2}\right)\left(x^{2}+y^{2}\right)}{4}\right. \\
& \left.\quad+\frac{\left(4-c_{1}^{2}\right)\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right]}{2}\right] \left.-\frac{(1-\beta)^{2}\left(4-c_{1}^{2}\right)^{2}}{64(1+2 \alpha)^{2}}(x-y)^{2} \right\rvert\, \\
\leq & \frac{(1-\beta)^{4}}{3(1+\alpha)^{3}(1+3 \alpha)} c_{1}^{4}+\frac{(1-\beta)^{2} c_{1}^{4}}{12(1+\alpha)(1+3 \alpha)}+\frac{(1-\beta)^{2} c_{1}\left(4-c_{1}^{2}\right)}{6(1+\alpha)(1+3 \alpha)} \\
+ & {\left[\frac{(1-\beta)^{3} c_{1}^{2}\left(4-c_{1}^{2}\right)}{16(1+\alpha)^{2}(1+2 \alpha)}+\frac{(1-\beta)^{2} c_{1}^{2}\left(4-c_{1}^{2}\right)}{12(1+\alpha)(1+3 \alpha)}\right](|x|+|y|) } \\
+ & {\left[\frac{(1-\beta)^{2} c_{1}^{2}\left(4-c_{1}^{2}\right)}{24(1+\alpha)(1+3 \alpha)}-\frac{(1-\beta)^{2} c_{1}\left(4-c_{1}^{2}\right)}{12(1+\alpha)(1+3 \alpha)}\right]\left(|x|^{2}+|y|^{2}\right) } \\
& +\frac{(1-\beta)^{2}\left(4-c_{1}^{2}\right)^{2}}{64(1+2 \alpha)^{2}}(|x|+|y|)^{2} .
\end{aligned}
$$

Since $p \in \mathcal{P}$, then $\left|c_{1}\right| \leq 2$. Letting $c_{1}=c$, we may assume without restriction that $c \in[0,2]$. Thus, for $\gamma_{1}=|x| \leq 1$ and $\gamma_{2}=|y| \leq 1$, we obtain

$$
\begin{aligned}
&\left|a_{2} a_{4}-a_{3}^{2}\right| \leq T_{1}+T_{2}\left(\gamma_{1}+\gamma_{2}\right)+T_{3}\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)+T_{4}\left(\gamma_{1}+\gamma_{2}\right)^{2}=F\left(\gamma_{1}, \gamma_{2}\right), \\
& T_{1}= \\
& T_{1}(c)=\frac{(1-\beta)^{4}}{3(1+\alpha)^{3}(1+3 \alpha)} c^{4}+\frac{(1-\beta)^{2} c^{4}}{12(1+\alpha)(1+3 \alpha)}+\frac{(1-\beta)^{2} c\left(4-c^{2}\right)}{6(1+\alpha)(1+3 \alpha)} \geq 0 \\
& T_{2}= T_{2}(c)=\frac{(1-\beta)^{3} c^{2}\left(4-c^{2}\right)}{16(1+\alpha)^{2}(1+2 \alpha)}+\frac{(1-\beta)^{2} c^{2}\left(4-c^{2}\right)}{12(1+\alpha)(1+3 \alpha)} \geq 0 \\
& T_{3}= T_{3}(c)=\frac{(1-\beta)^{2} c^{2}\left(4-c^{2}\right)}{24(1+\alpha)(1+3 \alpha)}-\frac{(1-\beta)^{2} c\left(4-c^{2}\right)}{12(1+\alpha)(1+3 \alpha)} \leq 0 \\
& T_{4}= T_{4}(c)=\frac{(1-\beta)^{2}\left(4-c^{2}\right)^{2}}{64(1+2 \alpha)^{2}} \geq 0 .
\end{aligned}
$$

Now we need to maximize $F\left(\gamma_{1}, \gamma_{2}\right)$ in the closed square $\mathbb{S}:=\left\{\left(\gamma_{1}, \gamma_{2}\right): 0 \leq \gamma_{1} \leq 1,0 \leq \gamma_{2} \leq 1\right\}$ for $c \in[0,2]$. We must investigate the maximum of $F\left(\gamma_{1}, \gamma_{2}\right)$ according to $c \in(0,2), c=0$, and $c=2$ taking into account the sign of $F_{\gamma_{1} \gamma_{1}} F_{\gamma_{2} \gamma_{2}}-\left(F_{\gamma_{1} \gamma_{2}}\right)^{2}$.

First, let $c \in(0,2)$. Since $T_{3}<0$ and $T_{3}+2 T_{4}>0$ for $c \in(0,2)$, we conclude that

$$
F_{\gamma_{1} \gamma_{1}} F_{\gamma_{2} \gamma_{2}}-\left(F_{\gamma_{1} \gamma_{2}}\right)^{2}<0 .
$$

ORHAN et al./Turk J Math

Thus, the function F cannot have a local maximum in the interior of the square \mathbb{S}. Now we investigate the maximum of F on the boundary of the square \mathbb{S}.

For $\gamma_{1}=0$ and $0 \leq \gamma_{2} \leq 1$ (similarly $\gamma_{2}=0$ and $0 \leq \gamma_{1} \leq 1$), we obtain

$$
F\left(0, \gamma_{2}\right)=G\left(\gamma_{2}\right)=T_{1}+T_{2} \gamma_{2}+\left(T_{3}+T_{4}\right) \gamma_{2}^{2}
$$

(i) The case $T_{3}+T_{4} \geq 0$: In this case for $0<\gamma_{2}<1$ and any fixed c with $0<c<2$, it is clear that $G^{\prime}\left(\gamma_{2}\right)=2\left(T_{3}+T_{4}\right) \gamma_{2}+T_{2}>0$; that is, $G\left(\gamma_{2}\right)$ is an increasing function. Hence, for fixed $c \in(0,2)$, the maximum of $G\left(\gamma_{2}\right)$ occurs at $\gamma_{2}=1$ and

$$
\max G\left(\gamma_{2}\right)=G(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

(ii) The case $T_{3}+T_{4}<0$: Since $T_{2}+2\left(T_{3}+T_{4}\right) \geq 0$ for $0<\gamma_{2}<1$ and any fixed c with $0<c<2$, it is clear that $T_{2}+2\left(T_{3}+T_{4}\right)<2\left(T_{3}+T_{4}\right) \gamma_{2}+T_{2}<T_{2}$ and so $G^{\prime}\left(\gamma_{2}\right)>0$. Hence, for fixed $c \in(0,2)$, the maximum of $G\left(\gamma_{2}\right)$ occurs at $\gamma_{2}=1$ and also for $c=2$ we obtain

$$
\begin{equation*}
F\left(\gamma_{1}, \gamma_{2}\right)=\frac{4(1-\beta)^{2}}{3(1+\alpha)^{3}(1+3 \alpha)}\left[4(1-\beta)^{2}+(1+\alpha)^{2}\right] \tag{2.18}
\end{equation*}
$$

Taking into account the value (2.18) and the cases i and i, for $0 \leq \gamma_{2}<1$ and any fixed c with $0 \leq c \leq 2$,

$$
\max G\left(\gamma_{2}\right)=G(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

For $\gamma_{1}=1$ and $0 \leq \gamma_{2} \leq 1$ (similarly $\gamma_{2}=1$ and $0 \leq \gamma_{1} \leq 1$), we obtain

$$
F\left(1, \gamma_{2}\right)=H\left(\gamma_{2}\right)=\left(T_{3}+T_{4}\right) \gamma_{2}^{2}+\left(T_{2}+2 T_{4}\right) \gamma_{2}+T_{1}+T_{2}+T_{3}+T_{4}
$$

Similarly to the above cases of $T_{3}+T_{4}$, we get that

$$
\max H\left(\gamma_{2}\right)=H(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

Since $G(1) \leq H(1)$ for $c \in(0,2), \max F\left(\gamma_{1}, \gamma_{2}\right)=F(1,1)$ on the boundary of the square \mathbb{S}. Thus, the maximum of F occurs at $\gamma_{1}=1$ and $\gamma_{2}=1$ in the closed square \mathbb{S}.

Let $K:(0,2) \rightarrow \mathbb{R}$.

$$
\begin{equation*}
K(c)=\max F\left(\gamma_{1}, \gamma_{2}\right)=F(1,1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4} \tag{2.19}
\end{equation*}
$$

Substituting the values of T_{1}, T_{2}, T_{3}, and T_{4} in the function K defined by (2.19) yields

$$
\begin{aligned}
K(c)= & \frac{(1-\beta)^{2}}{48(1+\alpha)^{3}(1+2 \alpha)^{2}(1+3 \alpha)}\left\{\left[16(1-\beta)^{2}(1+2 \alpha)^{2}\right.\right. \\
& \left.-6(1-\beta)(1+\alpha)(1+2 \alpha)(1+3 \alpha)-8(1+\alpha)^{2}(1+2 \alpha)^{2}+3(1+\alpha)^{3}(1+3 \alpha)\right] c^{4} \\
& +24(1+\alpha)\left[(1-\beta)(1+2 \alpha)(1+3 \alpha)+2(1+\alpha)(1+2 \alpha)^{2}-(1+\alpha)^{2}(1+3 \alpha)\right] c^{2} \\
& \left.+48(1+\alpha)^{3}(1+3 \alpha)\right\} .
\end{aligned}
$$

Assume that $K(c)$ has a maximum value in an interior of $c \in(0,2)$, by elementary calculation, we find

$$
\begin{aligned}
K^{\prime}(c)= & \frac{(1-\beta)^{2}}{12(1+\alpha)^{3}(1+2 \alpha)^{2}(1+3 \alpha)}\left\{\left[16(1-\beta)^{2}(1+2 \alpha)^{2}\right.\right. \\
& \left.-6(1-\beta)(1+\alpha)(1+2 \alpha)(1+3 \alpha)-8(1+\alpha)^{2}(1+2 \alpha)^{2}+3(1+\alpha)^{3}(1+3 \alpha)\right] c^{3} \\
& \left.+12(1+\alpha)\left[(1-\beta)(1+2 \alpha)(1+3 \alpha)+2(1+\alpha)(1+2 \alpha)^{2}-(1+\alpha)^{2}(1+3 \alpha)\right] c\right\}
\end{aligned}
$$

After some calculations we conclude the following cases:

Case 1 Let

$$
\left[16(1-\beta)^{2}(1+2 \alpha)-6(1-\beta)(1+\alpha)(1+3 \alpha)\right](1+2 \alpha)+(1+\alpha)^{2}\left[3(1+\alpha)(1+3 \alpha)-8(1+2 \alpha)^{2}\right] \geq 0
$$

that is,

$$
\beta \in\left[0,1-\frac{(1+\alpha)\left[3(1+3 \alpha)+\sqrt{9(1+3 \alpha)^{2}-48(1+\alpha)(1+3 \alpha)+128(1+2 \alpha)^{2}}\right]}{16(1+2 \alpha)}\right]
$$

Therefore, $K^{\prime}(c)>0$ for $c \in(0,2)$. Since K is an increasing function in the interval (0,2), the maximum point of K must be on the boundary of $c \in(0,2]$; that is, $c=2$. Thus, we have

$$
\max _{0<c<2} K(c)=K(2)=\frac{4(1-\beta)^{2}}{3(1+\alpha)^{3}(1+3 \alpha)}\left[4(1-\beta)^{2}+(1+\alpha)^{2}\right]
$$

Case 2 Let

$$
\left[16(1-\beta)^{2}(1+2 \alpha)-6(1-\beta)(1+\alpha)(1+3 \alpha)\right](1+2 \alpha)+(1+\alpha)^{2}\left[3(1+\alpha)(1+3 \alpha)-8(1+2 \alpha)^{2}\right]<0
$$

that is,

$$
\beta \in\left[1-\frac{(1+\alpha)\left[3(1+3 \alpha)+\sqrt{9(1+3 \alpha)^{2}-48(1+\alpha)(1+3 \alpha)+128(1+2 \alpha)^{2}}\right]}{16(1+2 \alpha)}, 1\right]
$$

Then $K^{\prime}(c)=0$ implies the real critical point $c_{0_{1}}=0$ or

$$
c_{0_{2}}=\sqrt{\frac{-12(1+\alpha)\left[(1-\beta)(1+2 \alpha)(1+3 \alpha)+2(1+\alpha)(1+2 \alpha)^{2}-(1+\alpha)^{2}(1+3 \alpha)\right]}{\left[16(1-\beta)^{2}(1+2 \alpha)-6(1-\beta)(1+\alpha)(1+3 \alpha)\right](1+2 \alpha)+(1+\alpha)^{2}\left[3(1+\alpha)(1+3 \alpha)-8(1+2 \alpha)^{2}\right]}} .
$$

When

$$
\beta \in\left(1-\frac{(1+\alpha)\left[3(1+3 \alpha)+\sqrt{9(1+3 \alpha)^{2}-48(1+\alpha)(1+3 \alpha)+128(1+2 \alpha)^{2}}\right]}{16(1+2 \alpha)}, 1-\frac{(1+\alpha)\left[3(1+3 \alpha)+\sqrt{9(1+3 \alpha)^{2}+128(1+2 \alpha)^{2}}\right]}{32(1+2 \alpha)}\right],
$$

we observe that $c_{0_{2}} \geq 2$; that is, $c_{0_{2}}$ is out of the interval $(0,2)$. Therefore, the maximum value of $K(c)$ occurs at $c_{0_{1}}=0$ or $c=c_{0_{2}}$, which contradicts our assumption of having the maximum value at the interior point of $c \in[0,2]$.

When $\beta \in\left(1-\frac{(1+\alpha)\left[3(1+3 \alpha)+\sqrt{\left.9(1+3 \alpha)^{2}+128(1+2 \alpha)^{2}\right]}\right.}{32(1+2 \alpha)}, 1\right)$, we observe that $c_{0_{2}}<2$; that is, $c_{0_{2}}$ is an interior of the interval $[0,2]$. Since $K^{\prime \prime}\left(c_{0_{2}}\right)<0$, the maximum value of $K(c)$ occurs at $c=c_{0_{2}}$. Thus, we have

$$
\begin{aligned}
\max _{0 \leq c \leq 2} K(c) & =K\left(c_{0_{2}}\right) \\
& =\frac{(1-\beta)^{2}}{(1+\alpha)(1+3 \alpha)} \frac{\left[(1-\beta)^{2}(1+3 \alpha)(13+7 \alpha)-12(1-\beta)(1+\alpha)(1+2 \alpha)(1+3 \alpha)-4(1+\alpha)^{2}\left(9 \alpha^{2}+8 \alpha+2\right)\right]}{[1+2 \alpha)-6(1-\beta)(1+\alpha)(1+3 \alpha)](1+2 \alpha)+(1+\alpha)^{2}\left[3(1+\alpha)(1+3 \alpha)-8(1+2 \alpha)^{2}\right]}
\end{aligned}
$$

This completes the proof.

Remark 2.2 For $\alpha=0$ and $\alpha=1$, Theorem 2.1 would reduce to known results in [7, Theorem 2.1, Theorem 2.3].

Acknowledgment

The authors would like thank the referee(s) for his/her valuable suggestions. Furthermore, the work of the second-named author was supported by UGC under grant F.MRP-3977/11 (MRP/UGC-SERO).

References

[1] Ali RM, Lee SK, Ravichandran V, Supramaniam S. The Fekete-Szegő coefficient functional for transforms of analytic functions. Bull Iranian Math Soc 2009; 35: 119-142.
[2] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl Math Lett 2012; 25: 344-351.
[3] Altinkaya Ş, Yalçin S. Fekete-Szegö inequalities for classes of bi-univalent functions defined by subordination. Adv Math Sci J 2014; 3: 63-71.
[4] Çağlar M, Orhan H, Yağmur N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013; 27: 1165-1171.
[5] Cantor DG. Power series with integral coefficients. B Am Math Soc 1963; 69: 362-366.
[6] Deekonda VK, Thoutreedy R. An upper bound to the second Hankel determinant for functions in Mocanu class. Vietnam J Math 2015; 43: 541-549.
[7] Deniz E, Çağlar M, Orhan H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl Math Comp 2015; 271: 301-307.
[8] Dienes P. The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable. New York, NY, USA: Dover, 1957.
[9] Fekete M, Szegö G. Eine Bemerkung uber ungerade Schlichte Funktionen. J London Math Soc 1933; S1: 85-89 (in German).
[10] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl Math Lett 2011; 24: 1569-1573.
[11] Grenander U, Szegö G. Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. Berkeley, CA, USA: University of California Press, 1958.
[12] Jahangiri JM, Magesh N, Yamini J. Fekete-Szegö inequalities for classes of bi-starlike and bi-convex functions. Elect J Math Anal Appl 2015; 3: 133-140.
[13] Janteng A, Halim SA, Darus M. Hankel determinant for starlike and convex functions. Int J Math Anal 2007; 1: 619-625.

ORHAN et al./Turk J Math

[14] Keogh FR, Merkes EP. A coefficient inequality for certain classes of analytic functions. P Am Math Soc 1969; 20: 8-12.
[15] Lee K, Ravichandran V, Supramaniam S. Bounds for the second Hankel determinant of certain univalent functions. J Ineq Appl 2013; 281: 1-17.
[16] Li XF, Wang AP. Two new subclasses of bi-univalent functions. Int Math Forum 2012; 7: 1495-1504.
[17] Miller SS, Mocanu P, Reade MO. All α-convex functions are univalent and starlike. P Am Math Soc 1973; 37: 553-554.
[18] Mishra AK, Kund SN. The second Hankel determinant for a class of analytic functions associated with the CarlsonShaffer Operator. Tamkang Journal of Mathematics 2013; 44: 73-82.
[19] Mocanu P. Une propriété de convexité gén éralisée dans la théorie de la représentation conforme. Mathematica (Cluj) 1969; 11: 127-133 (in French).
[20] Murugusundaramoorthy G, Magesh N. Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant. Bull Math Anal Appl 2009; 1: 85-89.
[21] Orhan H, Deniz E, Raducanu D. The Fekete-Szeg ö problem for subclasses of analytic functions defined by a differential operator related to conic domains. Comput Math Appl 2010; 59: 283-295.
[22] Orhan H, Magesh N, Balaji VK. Initial coefficient bounds for a general class of bi-univalent functions. Filomat 2015; 29: 1259-1267.
[23] Orhan H, Magesh N, Balaji VK. Fekete-Szegő problem for certain classes of Ma-Minda bi-univalent functions. Afrika Matematika (in press).
[24] Peng Z, Han Q. On the coefficients of several classes of bi-univalent functions. Acta Math Sci 2014; 34B: 228-240.
[25] Pommerenke CH. Univalent Functions. Gottingen, Germany: Vandenhoeck \& Ruprecht, 1975.
[26] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188-1192.
[27] Vein R, Dale P. Determinants and Their Applications in Mathematical Physics. New York, NY, USA: Springer, 1999.
[28] Zaprawa P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull Belg Math Soc Simon Stevin 2014; 21: 169-178.
[29] Zaprawa P. Estimates of initial coefficients for bi-univalent functions. Abstr Appl Anal 2014; 2014: 357480.

[^0]: *Correspondence: orhanhalit607@gmail.com
 2010 AMS Mathematics Subject Classification: 30C45.

