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Abstract: In this paper, we reconsider the (1, 3)-Bertrand curves with respect to the casual characters of a (1, 3)-normal

plane that is a plane spanned by the principal normal and the second binormal vector fields of the given curve. Here,

we restrict our investigation of (1, 3)-Bertrand curves to the spacelike (1, 3)-normal plane in Minkowski space-time. We

obtain the necessary and sufficient conditions for the curves with spacelike (1, 3)-normal plane to be (1, 3)-Bertrand

curves and we give the related examples for these curves.
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1. Introduction

Much work has been done about the general theory of curves in a Euclidean space (or more generally in

a Riemannian manifold). Now we have extensive knowledge on their local geometry as well as their global

geometry. Characterization of a regular curve is one of the important and interesting problems in the theory of

curves in Euclidean space. There are two ways widely used to solve these problems: figuring out the relationship

between the Frenet vectors of the curves [15], and determining the shape and size of a regular curve by using

its curvatures k1 (or κ) and k2 (or τ).

In 1845, Saint Venant [21] proposed the question of whether the principal normal of a curve is the principal

normal of another on the surface generated by the principal normal of the given one. Bertrand answered this

question in [3], published in 1850. He proved that a necessary and sufficient condition for the existence of such a

second curve is required; in fact, a linear relationship calculated with constant coefficients should exist between

the first and second curvatures of the given original curve. In other words, if we denote the first and second

curvatures of a given curve by k1and k2 respectively, we have λk1 + µk2 = 1, λ, µ ∈ R . Since 1850, after the

paper of Bertrand, the pairs of curves like this have been called conjugate Bertrand curves, or more commonly

Bertrand curves [15].

There are many important papers on Bertrand curves in Euclidean space [4, 7, 20].

When we investigate the properties of Bertrand curves in Euclidean n -space, it is easy to see that either

k2 or k3 is zero, which means that Bertrand curves in En (n > 3) are degenerate curves [20]. This result

was restated by Matsuda and Yorozu [17]. They proved that there were not any special Bertrand curves in

En (n > 3) and defined a new kind, which is called (1, 3)-type Bertrand curves in 4-dimensional Euclidean
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space. Bertrand curves and their characterizations were studied by many researchers in Minkowski 3-space and

Minkowski space-time (see [1, 2, 8, 10, 12, 13, 22, 23] as well as in Euclidean space. In addition, there are some

other studies about Bertrand curves such as [9, 14, 16, 19, 24].

Many researchers have dealt with (1, 3)-type Bertrand curves in Minkowski space-time. However, they

only considered the casual character of the curves. Therefore, there are some gaps in this approach. For

example, they take no account of whether a Cartan null curve can have a nonnull Bertrand mate curve. In this

paper, we reconsider (1, 3)-type Bertrand curves in Minkowski space-time with respect to the casual character

of the plane spanned by the principal normal and the second binormal of the curve. For now, we look into the

spacelike case of the plane.

2. Preliminaries

The Minkowski space-time E4
1 is the Euclidean 4-space E4 equipped with an indefinite flat metric given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
1 . Recall that a vector v ∈ E4

1\{0} can be spacelike

if g(v, v) > 0, timelike if g(v, v) < 0, and null (lightlike) if g(v, v) = 0. In particular, the vector v = 0 is said

to be a spacelike. The norm of a vector v is given by ||v|| =
√
|g(v, v)| . Two vectors v and w are said to be

orthogonal if g(v, w) = 0. An arbitrary curve α(s) in E4
1 can locally be spacelike, timelike, or null (lightlike)

if all its velocity vectors α′(s) are respectively spacelike, timelike, or null [18].

A null curve α is parameterized by pseudo-arc s if g(α′′(s), α′′(s)) = 1 [5]. On the other hand, a nonnull

curve α is parametrized by the arc-length parameter s if g(α′(s), α′(s)) = ±1.

Let {T,N,B1, B2} be the moving Frenet frame along a curve α in E4
1 , consisting of the tangent, the

principal normal, and the first binormal and the second binormal vector field respectively.

From [11], if α is a spacelike or a timelike curve whose Frenet frame {T,N,B1, B2} contains only nonnull

vector fields, the Frenet equations are given by


T ′

N ′

B′
1

B′
2

 =


0 ϵ2κ1 0 0

−ϵ1κ1 0 ϵ3κ2 0
0 −ϵ2κ2 0 −ϵ1ϵ2ϵ3κ3

0 0 −ϵ3κ3 0




T
N
B1

B2

 , (2.1)

where g(T, T ) = ϵ1 , g(N,N) = ϵ2 , g(B1, B1) = ϵ3 , g(B2, B2) = ϵ4 , ϵ1ϵ2ϵ3ϵ4 = −1, ϵi ∈ {−1, 1} , i ∈
{1, 2, 3, 4} . In particular, the following conditions hold:

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0.

From [5, 6], if α is a null Cartan curve, the Cartan Frenet equations are given by


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0
κ2 0 −κ1 0
0 −κ2 0 κ3

−κ3 0 0 0




T
N
B1

B2

 , (2.2)
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where the first curvature κ1(s) = 0 if α(s) is a null straight line or κ1(s) = 1 in all other cases. In this case,

the next conditions hold:

g(T, T ) = g(B1, B1) = 0, g(N,N) = g(B2, B2) = 1,

g(T,N) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0, g(T,B1) = 1.

3. On (1,3)-Bertrand curves with spacelike plane sp{N,B2} in E4
1

In this section, we discuss (1, 3)-Bertrand curves according to their (1, 3)-normal planes, which are planes

spanned by the principal normal vectors and second binormal vectors of the curves. Here we assume that the

(1, 3)-normal planes are spacelike. As a result, we obtain the necessary and sufficient conditions for the curves

to be (1, 3)-Bertrand curves with spacelike (1, 3)-normal plane.

Definition 1 Let β : I ⊂ R → E4
1 and β∗ : I∗ ⊂ R → E4

1 be C∞ -special Frenet curves in Minkowski

space-time E4
1 and f : I → I∗ a regular C∞ -map such that each point β(s) of β corresponds to the point

β∗(s∗) = β∗(f(s)) of β∗ for all s ∈ I . Here s and s∗ are arc-length parameters or pseudo-arc parameters of

β and β∗, respectively. If the Frenet (1, 3)-normal plane at each point β(s) of β coincides with the Frenet

(1, 3)-normal plane at each point β∗(s∗) = β∗(f(s)) of β∗ for all s , then β is called a (1, 3)-Bertrand curve

in Minkowski space-time E4
1 and β∗ is called a (1, 3)-Bertrand mate curve of β [10].

Let β : I → E4
1 be a (1, 3)-Bertrand curve in E4

1 with the Frenet frame {T,N,B1, B2} and the curvatures

κ1, κ2, κ3 and β∗ : I → E4
1 be a (1, 3)-Bertrand mate curve of β with the Frenet frame {T ∗, N∗, B∗

1 , B
∗
2} and

the curvatures κ∗
1, κ

∗
2, κ

∗
3 . We assume that the (1, 3)-normal plane spanned by {N,B2} is a spacelike plane.

Since sp{N,B2} = sp{N∗, B∗
2} is a spacelike plane, we have the following four cases:

Case 1 β is a spacelike or timelike curve with nonzero curvature functions κ1, κ2, κ3 and spacelike vectors

N, B2 , and β∗ is also spacelike or timelike curve with nonzero curvature functions κ∗
1, κ∗

2, κ∗
3 and spacelike

vectors N∗, B∗
2 ;

Case 2 β is a spacelike or timelike curve with nonzero curvature functions κ1, κ2, κ3 and spacelike vectors

N, B2, and β∗ is a Cartan null curve with curvature functions κ∗
1 = 1 , κ∗

2, κ∗
3 ̸= 0 ;

Case 3 β is a Cartan null curve with curvature functions κ1 = 1 , κ2, κ3 ̸= 0, and β∗ is a spacelike or

timelike curve with nonzero curvature functions κ∗
1, κ∗

2, κ∗
3 and spacelike vectors N∗, B∗

2 ;

Case 4 β is a Cartan null curve with curvature functions κ1 = 1 , κ2, κ3 ̸= 0 and β∗ is also a Cartan null

curve with curvature functions κ∗
1 = 1 , κ∗

2, κ∗
3 ̸= 0 .

In what follows, we consider these four cases separately.

Case 1. Let β be a spacelike or timelike curve with nonzero curvature functions κ1, κ2, κ3 and spacelike

vectors N, B2 , and β∗ be also a spacelike or timelike curve with nonzero curvature functions κ∗
1, κ∗

2, κ∗
3 and

spacelike vectors N∗, B∗
2 . In this case, we have the following theorem.
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UÇUM et al./Turk J Math

Theorem 1 Let β : I ⊂ R → E4
1 be a spacelike or timelike curve parameterized by arc-length parameter s

with the nonzero curvatures κ1, κ2, κ3 and spacelike (1, 3)-normal plane. Then the curve β is a (1, 3)-Bertrand

curve and its Bertrand mate curve is a spacelike or timelike curve with nonzero curvatures if and only if there

exist constant real numbers a, b, h ̸= ∓1, µ satisfying

aκ2 (s)− bκ3 (s) ̸= 0, (3.1)

1 = ϵ1aκ1 (s) + ϵ3h(aκ2 (s)− bκ3 (s)), (3.2)

µκ3 (s) = hκ1 (s)− κ2 (s) , (3.3)

−κ1 (s)κ2 (s) (h
2 + 1) + h(κ2

1 (s) + κ2
2 (s) + κ2

3 (s)) ̸= 0 (3.4)

for all s ∈ I .

Proof We assume that β : I ⊂ R → E4
1 is a spacelike or timelike curve parameterized by arc-length parameter

s with the nonzero curvatures κ1, κ2, κ3 and spacelike (1, 3)-normal plane, and the curve β∗ : I∗ ⊂ R → E4
1 is

a spacelike or timelike (1, 3)-Bertrand mate curve parameterized by arc-length parameter s∗ with the nonzero

curvatures κ∗
1, κ

∗
2, κ

∗
3 of the curve β. Then we can write the curve β∗ as follows:

β∗(s∗) = β∗(f(s)) = β(s) + a(s)N(s) + b(s)B2(s) (3.5)

for all s∗ ∈ I∗, s ∈ I where a(s) and b(s) are C∞ -functions on I. Differentiating (3.5) with respect to s and

using the Frenet formulae (2.1), we get

T ∗f ′ = (1− aϵ1κ1)T + a′N + ϵ3(aκ2 − bκ3)B1 + b′B2. (3.6)

Multiplying equation (3.6) by N and B2 , respectively, we have

a′ = 0 and b′ = 0. (3.7)

Substituting (3.7) in (3.6), we find

T ∗f ′ = (1− aϵ1κ1)T + ϵ3(aκ2 − bκ3)B1. (3.8)

Multiplying equation (3.8) by itself, we obtain

ϵ∗1(f
′)2 = ϵ1(1− aϵ1κ1)

2 + ϵ3(aκ2 − bκ3)
2. (3.9)

If we denote

δ =
1− aϵ1κ1

f ′ and γ =
ϵ3(aκ2 − bκ3)

f ′ , (3.10)

we get

T ∗ = δT + γB1. (3.11)

Differentiating (3.11) with respect to s and using the Frenet formulae (2.1), we have

f ′κ∗
1N

∗ = δ′T + (δκ1 − γκ2)N + γ′B1 + γκ3B2. (3.12)
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UÇUM et al./Turk J Math

Multiplying equation (3.12) by T and B1 , respectively, we get

δ′ = 0 and γ′ = 0. (3.13)

From (3.10), we find

(1− aϵ1κ1)γ = ϵ3(aκ2 − bκ3)δ. (3.14)

Assume that γ = 0. From (3.11), T ∗ = δT. Then

T ∗ = ±T. (3.15)

Differentiating (3.15) with respect to s and using the Frenet formulae (2.1), we find

f ′κ∗
1N

∗ = ±κ1N. (3.16)

From (3.16), N is linearly dependent with N∗ , which is a contradiction. Therefore, γ ̸= 0. Since γ ̸= 0, from

(3.10), we find (3.1)

aκ2 − bκ3 ̸= 0. (3.17)

From (3.14), we have (3.2)

1 = aϵ1κ1 + hϵ3(aκ2 − bκ3), (3.18)

where h ̸= ∓1 from (3.14) and (3.9). Substituting (3.13) in (3.12), we get

f ′κ∗
1N

∗ = (δκ1 − γκ2)N + γκ3B2. (3.19)

Multiplying equation (3.19) by itself, we obtain

(f ′)2(κ∗
1)

2 = (δκ1 − γκ2)
2 + γ2κ2

3. (3.20)

Substituting (3.10) in (3.20), we find

(f ′)2(κ∗
1)

2 =
(aκ2 − bκ3)

2

(f ′)2
[(hκ1 − κ2)

2 + κ2
3]. (3.21)

Substituting (3.18) in (3.9), we have

(f ′)2 = ϵ∗1ϵ1(aκ2 − bκ3)
2[h2 − 1] (3.22)

where h2 ̸= 1. Substituting (3.22) in (3.21), we get

(f ′)2(κ∗
1)

2 =
ϵ∗1ϵ1

h2 − 1
[(hκ1 − κ2)

2 + κ2
3]. (3.23)

If we denote

λ1 =
(δκ1 − γκ2)

f ′κ∗
1

=
ϵ3(aκ2 − bκ3)

(f ′)2κ∗
1

[(hκ1 − κ2)] (3.24)

λ2 =
γκ3

f ′κ∗
1

=
ϵ3(aκ2 − bκ3)

(f ′)2κ∗
1

κ3, (3.25)
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we get

N∗ = λ1N + λ2B2. (3.26)

Differentiating (3.26) with respect to s and using the Frenet formulae (2.1), we find

−ϵ∗1f
′κ∗

1T
∗ + ϵ∗3f

′κ∗
2B

∗
1 = −ϵ1κ1λ1T + λ′

1N + ϵ3(λ1κ2 − λ2κ3)B1 + λ′
2B2. (3.27)

Multiplying equation (3.27) by N and B2 respectively, we obtain

λ′
1 = 0 and λ′

2 = 0. (3.28)

From (3.24) and (3.25), since λ2 ̸= 0, we have (3.3)

µκ3 = hκ1 − κ2 (3.29)

where µ = λ1/λ2 . Substituting (3.28) in (3.27), we find

−ϵ∗1f
′κ∗

1T
∗ + ϵ∗3f

′κ∗
2B

∗
1 = −ϵ1κ1λ1T + ϵ3(λ1κ2 − λ2κ3)B1. (3.30)

From (3.8) and (3.30), we obtain

ϵ∗3f
′κ∗

2B
∗
1 = A(s)T +B(s)B1, (3.31)

where

A(s) =
ϵ1ϵ3(aκ2 − bκ3)

(f ′)2(h2 − 1)κ∗
1

[−κ1κ2(h
2 + 1) + h(κ2

1 + κ2
2 + κ2

3)] (3.32)

and

B(s) =
ϵ1ϵ3h(aκ2 − bκ3)

(f ′)2(h2 − 1)κ∗
1

[−κ1κ2(h
2 + 1) + h(κ2

1 + κ2
2 + κ2

3)]. (3.33)

Since ϵ∗3f
′κ∗

2B
∗
1 ̸= 0, we get (3.4)

−κ1κ2(h
2 + 1) + h(κ2

1 + κ2
2 + κ2

3 ̸= 0. (3.34)

Conversely, we assume that β : I ⊂ R → E4
1 is a spacelike or timelike curve parameterized by arc-length

parameter s with the nonzero curvatures κ1, κ2, κ3 and spacelike (1, 3)-normal plane, and the relations

(3.1),(3.2),(3.3), (3.4) hold for constant real numbers a, b, h ̸= ∓1, µ . Then we can define a curve β∗ as

follows:
β∗(s∗) = β(s) + aN(s) + bB2(s). (3.35)

Differentiating (3.35) with respect to s and using the Frenet formulae (2.1), we find

dβ∗

ds
= (1− aϵ1κ1)T + ϵ3(aκ2 − bκ3)B1. (3.36)

From (3.36) and (3.2), we get

dβ∗

ds
= ϵ3(aκ2 − bκ3)[hT +B1]. (3.37)

From (3.37), we have

f ′ =
ds∗

ds
=

∥∥∥∥dβ∗

ds

∥∥∥∥ = m1(aκ2 − bκ3)
√
ϵ1m2 (h2 − 1) > 0 (3.38)
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where m1 = ∓1 such that m1(aκ2 − bκ3) > 0 and m2 = ∓1 such that ϵ1m2

(
h2 − 1

)
> 0. Now, by rewriting

(3.37), we obtain

T ∗f ′ = ϵ3(aκ2 − bκ3)[hT +B1]. (3.39)

Substituting (3.38) in (3.39), we find

T ∗ =
ϵ3m1√

ϵ1m2 (h2 − 1)
[hT +B1], (3.40)

which implies that g(T ∗, T ∗) = m2 = ϵ∗1 . Differentiating (3.40) with respect to s and using the Frenet formulae

(2.1), we find

dT ∗

ds∗
=

ϵ3m1

f ′
√

ϵ1m2 (h2 − 1)
[(hκ1 − κ2)N + κ3B2]. (3.41)

Using (3.41), we have

κ∗
1 =

∥∥∥∥dT ∗

ds∗

∥∥∥∥ =

√
(hκ1 − κ2)2 + κ2

3

f ′
√
ϵ1m2 (h2 − 1)

> 0. (3.42)

From (3.41) and (3.42), we have

N∗ =
1

κ∗
1

dT ∗

ds∗
=

ϵ3m1√
(hκ1 − κ2)2 + κ2

3

[(hκ1 − κ2)N + κ3B2], (3.43)

which leads to g(N∗, N∗) = 1. If we denote

λ3 =
ϵ3m1(hκ1 − κ2)√
(hκ1 − κ2)2 + κ2

3

and λ4 =
ϵ3m1κ3√

(hκ1 − κ2)2 + κ2
3

, (3.44)

we obtain
N∗ = λ3N + λ4B2. (3.45)

Differentiating (3.45) with respect to s and using the Frenet formulae (2.1), we find

f ′ dN
∗

ds∗
= −ϵ1λ3κ1T + λ′

3N + ϵ3(κ2λ3 − κ3λ4)B1 + λ′
4B2. (3.46)

Differentiating (3.3) with respect to s , we have

(hκ′
1 − κ′

2)κ3 − (hκ1 − κ2)κ
′
3 = 0. (3.47)

Differentiating (3.44) with respect to s and using (3.47), we get

λ′
3 = 0 and λ′

4 = 0. (3.48)

Substituting (3.44) and (3.48) in (3.46), we obtain

dN∗

ds∗
=

m1κ1(hκ1 − κ2)

f ′
√
(hκ1 − κ2)2 + κ2

3

T +
m1[κ2(hκ1 − κ2)− κ2

3]

f ′
√
(hκ1 − κ2)2 + κ2

3

B1. (3.49)
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From (3.40) and (3.42), we find

ϵ∗1κ
∗
1T

∗ =
−m1

√
(hκ1 − κ2)2 + κ2

3

f ′(h2 − 1)
[hT +B1]. (3.50)

From (3.49) and (3.50), we get

dN∗

ds∗
+ ϵ∗1κ

∗
1T

∗ =
P (s)

R(s)
[T + hB1] (3.51)

where

P (s) = −m1[−κ1κ2(h
2 + 1) + h(κ2

1 + κ2
2 + κ2

3)] ̸= 0, (3.52)

R(s) = f ′(h2 − 1)
√

(hκ1 − κ2)2 + κ2
3 ̸= 0.

Using (3.51) and (3.52), we have κ∗
2 as

κ∗
2 =

∣∣∣∣P (s)

R(s)

∣∣∣∣√ϵ3m3 (h2 − 1) (3.53)

where m3 = ±1 such that ϵ3m3

(
h2 − 1

)
> 0. Consider (3.51), (3.52), and (3.53) together, we obtain B∗

1 as

B∗
1 =

ϵ∗3
κ∗
2

[
dN∗

ds∗
+ ϵ∗1κ

∗
1T

∗] =
m4ϵ

∗
3√

ϵ3m3 (h2 − 1)
[T + hB1] (3.54)

where m4 =
∣∣∣P (s)
R(s)

∣∣∣ /P (s)
R(s) = ±1. From (3.54), we have g(B∗

1 , B
∗
1) = m3 = ϵ∗3 = −ϵ∗1. Besides, we can define a

unit vector B∗
2 as B∗

2 = −λ4N + λ3B2 ; that is,

B∗
2 =

m1ϵ3√
(hκ1 − κ2)2 + κ2

3

[−κ3N + (hκ1 − κ2)B2] . (3.55)

Lastly, from (3.54) and (3.55), we get κ∗
3 as

κ∗
3 = g(

dB∗
1

ds∗
, B∗

2) =
m1m4ϵ3ϵ

∗
3κ1κ3(h

2 − 1)

f ′
√
ϵ3m3 (h2 − 1)

√
(hκ1 − κ2)2 + κ2

3

̸= 0.

Consequently, we find that β∗ is a timelike or spacelike curve and a (1, 3)-Bertrand mate curve of the curve β

since span{N∗, B∗
2} =span{N,B2} . 2

Case 2. Let β be a spacelike or timelike curve with nonzero curvature functions κ1, κ2, κ3 and spacelike

vectors N, B2 , and β∗ be a Cartan null curve with curvature functions κ∗
1 = 1, κ∗

2, κ∗
3 ̸= 0. In this case, we

get the following theorem.

Theorem 2 (i) Let β : I ⊂ R → E4
1 be a spacelike or timelike curve parameterized by arc-length parameter s

with the nonzero curvatures κ1, κ2, κ3 and spacelike (1, 3)-normal plane. If the curve β is a (1, 3)-Bertrand

curve and its Bertrand mate curve is a Cartan null curve with nonzero third curvature then there exist constant
real numbers a, b, h = ∓1, µ satisfying

aκ2 (s)− bκ3 (s) ̸= 0, (3.56)
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1 = ϵ1aκ1 (s) + ϵ3h(aκ2 (s)− bκ3 (s)), (3.57)

µκ3 (s) = hκ1 (s)− κ2 (s) , (3.58)

and

P 2
1 (s) = P 2

2 (s) , (3.59)

where

P1 (s) = 2µ3κ1 (s)κ3 (s) + hµ2
(
κ2
2 (s)− κ2

1 (s)
)
+ 2µκ3 (s) (κ1 (s)− hκ2 (s))

+hκ2
3 (s) ,

P2 (s) = 2µ3κ1 (s)κ3 (s) + µ2
(
κ2
2 (s)− κ2

1 (s)− 2κ2
3 (s)

)
− κ2

3 (s) ̸= 0,

for all s ∈ I .

(ii) Let β : I ⊂ R → E4
1 be a spacelike or timelike curve parameterized by arc-length parameter s with the

nonzero constant curvatures κ1, κ2, κ3 and spacelike (1, 3)-normal plane. If the curve β satisfies the conditions

(3.56) , (3.57) , (3.58) , (3.59) , and

κ1 (s)P1 (s)− (κ2 (s) + µκ3 (s))P2 (s) ̸= 0, (3.60)

for all s ∈ I , then the curve β is a (1, 3)-Bertrand curve and its Bertrand mate curve is a Cartan null curve

with nonzero third curvature.

Proof The theorem can be proved by a similar technique to that in the first theorem. Therefore, we omit the

proof of the theorem. 2

Case 3. Let β be a Cartan null curve with curvature functions κ1 = 1, κ2, κ3 ̸= 0, and β∗ be a

spacelike or timelike curve with nonzero curvature functions κ∗
1, κ∗

2, κ∗
3 and spacelike vectors N∗, B∗

2 . Then

we have the following theorem.

Theorem 3 Let β : I ⊂ R → E4
1 be a Cartan null curve parameterized by pseudo-arc parameter s with the

curvatures κ1 = 1, κ2, κ3 ̸= 0 . Then the curve β is a (1, 3)-Bertrand curve and its Bertrand mate curve is a

spacelike or timelike curve with nonzero curvatures if and only if there exist constant real numbers a ̸= 0, b, h,

µ satisfying

aκ2 (s)− bκ3 (s) = ah− 1, (3.61)

µκ3 (s) = h+ κ2 (s) , (3.62)

h2 − κ2
2 (s)− κ2

3 (s) ̸= 0, (3.63)

for all s ∈ I .

Proof We assume that β : I ⊂ R → E4
1 is a Cartan null curve parameterized by pseudo-arc parameter s with

the curvatures κ1 = 1, κ2, κ3 ̸= 0, and the curve β∗ : I∗ ⊂ R → E4
1 is a spacelike or timelike (1, 3)-Bertrand

mate curve parameterized by arc-length parameter s∗ with nonzero curvatures κ∗
1, κ

∗
2, κ

∗
3 of the curve β. Then

we can write the curve β∗ as follows:

β∗(s∗) = β∗(f(s)) = β(s) + a(s)N(s) + b(s)B2(s) (3.64)
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for all s∗ ∈ I∗, s ∈ I where a(s) and b(s) are C∞ -functions on I. Differentiating (3.64) with respect to s and

using the Frenet formulae (2.2), we get

f ′T ∗ = (1 + aκ2 − bκ3)T + a′N − aB1 + b′B2. (3.65)

Multiplying equation (3.65) by N and B2 , respectively, we have

a′ = 0 and b′ = 0. (3.66)

Substituting (3.66) in (3.65), we find

f ′T ∗ = (1 + aκ2 − bκ3)T − aB1. (3.67)

Multiplying equation (3.67) by itself, we obtain

ϵ∗1(f
′)2 = −2a(1 + aκ2 − bκ3). (3.68)

If we denote

δ =
(1 + aκ2 − bκ3)

f ′ and γ =
−a

f ′ , (3.69)

we get

T ∗ = δT + γB1. (3.70)

Differentiating (3.70) with respect to s and using the Frenet formulae (2.2), we have

f ′κ∗
1N

∗ = δ′T + (δ − γκ2)N + γ′B1 + γκ3B2. (3.71)

Multiplying equation (3.71) by T and B1 respectively, we get

δ′ = 0 and γ′ = 0. (3.72)

Assume that γ = 0. From (3.11), T ∗ = δT. Then

T ∗ = ±T. (3.73)

Differentiating (3.73) with respect to s and using the Frenet formulae (2.2) , we get that N is linearly dependent

with N∗ , which is a contradiction. Since γ ̸= 0, from (3.10), we find (3.61)

aκ2 − bκ3 = ah− 1,

where h = −δ/γ . Substituting (3.72) in (3.71), we get

f ′κ∗
1N

∗ = (δ − γκ2)N + γκ3B2. (3.74)

Multiplying equation (3.74) by itself and using (3.68) and (3.69), we have

(f ′)
2
(κ∗

1)
2
=

ϵ∗3[(h+ κ2)
2
+ κ2

3]

2h
. (3.75)
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If we denote

λ1 =
δ − γκ2

f ′κ∗
1

=
a (h+ κ2)

(f ′)
2
κ∗
1

, (3.76)

λ2 =
γκ3

f ′κ∗
1

=
−aκ3

(f ′)
2
κ∗
1

, (3.77)

from (3.74), we obtain

N∗ = λ1N + λ2B2. (3.78)

Differentiating (3.78) with respect to s and using the Frenet formulae (2.2), we find

−ϵ∗1f
′κ∗

1T
∗ + ϵ∗3f

′κ∗
2B

∗
1 = (λ1κ2 − λ2κ3)T + λ′

1N − λ1B1 + λ′
2B2. (3.79)

Multiplying equation (3.79) by N and B2 respectively, we obtain

λ′
1 = 0 and λ′

2 = 0. (3.80)

From (3.76) and (3.77), since λ2 ̸= 0, we have (3.3)

µκ3 = h+ κ2

where µ = −λ1

λ2
. Substituting (3.80) in (3.79), we find

−ϵ∗1f
′κ∗

1T
∗ + ϵ∗3f

′κ∗
2B

∗
1 = (λ1κ2 − λ2κ3)T − λ1B1. (3.81)

From (3.67) and (3.81), we obtain

ϵ∗3f
′κ∗

2B
∗
1 = A(s)T +B(s)B1

where

A(s) =
−a

2 (f ′)
2
κ∗
1

[
h2 − κ2

2 − κ2
3

]
,

and

B(s) =
−a

2 (f ′)
2
κ∗
1h

[
h2 − κ2

2 − κ2
3

]
.

Since ϵ∗3f
′κ∗

2B
∗
1 ̸= 0, we get (3.4)

h2 − κ2
2 − κ2

3 ̸= 0.

Conversely, we assume that β : I ⊂ R → E4
1 is a Cartan null curve parameterized by pseudo-arc parameter

s with the curvatures κ1, κ2, κ3 and the relations (3.61), (3.62), and (3.63) hold for constant real numbers

a, b, h, µ . Then we can define a curve β∗ as follows:

β∗(s∗) = β(s) + aN(s) + bB2(s). (3.82)

Differentiating (3.82) with respect to s and using the Frenet formulae (2.2), we find

dβ∗

ds
= (1 + aκ2 − bκ3)T − aB1. (3.83)
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From (3.83) and (3.61), we get

dβ∗

ds
= a[hT −B1]. (3.84)

From (3.84), we have

f ′ =
ds∗

ds
=

∥∥∥∥dβ∗

ds

∥∥∥∥ =
√
2m1a2h > 0 (3.85)

where m1 = ±1 such that 2m1a
2h > 0. Now, by rewriting (3.84), we obtain

T ∗f ′ = a[hT −B1]. (3.86)

Substituting (3.85) in (3.86), we find

T ∗ =
m2√
2m1h

[hT −B1] (3.87)

where m2 = a/ |a| = ∓1. From (3.87), we get g(T ∗, T ∗) = −m1 = ϵ∗1 . Differentiating (3.87) with respect to s

and using the Frenet formulae (2.2), we find

dT ∗

ds∗
=

m2

f ′
√
2m1h

[(h+ κ2)N − κ3B2]. (3.88)

Using (3.88), we have

κ∗
1 =

∥∥∥∥dT ∗

ds∗

∥∥∥∥ =

√
(h+ κ2)2 + κ2

3

f ′
√
2m1h

> 0. (3.89)

From (3.88) and (3.89), we have

N∗ =
1

κ∗
1

dT ∗

ds∗
=

m2√
(h+ κ2)2 + κ2

3

[(h+ κ2)N − κ3B2], (3.90)

which implies that g(N∗, N∗) = 1. If we denote

λ3 =
m2(h+ κ2)√
(h+ κ2)2 + κ2

3

and λ4 =
−m2κ3√

(h+ κ2)2 + κ2
3

, (3.91)

we obtain
N∗ = λ3N + λ4B2. (3.92)

Differentiating (3.92) with respect to s and using the Frenet formulae (2.1), we find

f ′ dN
∗

ds∗
= (κ2λ3 − κ3λ4)T + λ′

3N − λ3B1 + λ′
4B2. (3.93)

Differentiating (3.62) with respect to s , we have

κ′
2κ3 − (h+ κ2)κ

′
3 = 0. (3.94)

Differentiating (3.91) with respect to s and using (3.94), we get

λ′
3 = 0 and λ′

4 = 0. (3.95)
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Substituting (3.91) and (3.95) in (3.93), we obtain

dN∗

ds∗
=

m2

(
hκ2 + κ2

2 + κ2
3

)
f ′
√
(h+ κ2)2 + κ2

3

T − m2(h+ κ2)

f ′
√
(h+ κ2)2 + κ2

3

B1. (3.96)

From (3.87) and (3.89), we find

ϵ∗1κ
∗
1T

∗ =
−m2

√
(h+ κ2)2 + κ2

3

2hf ′ [hT −B1]. (3.97)

From (3.96) and (3.97), we get

dN∗

ds∗
+ ϵ∗1κ

∗
1T

∗ =
m2

(
κ2
2 + κ2

3 − h2
)

2f ′
√

(h+ κ2)2 + κ2
3

[T +
1

h
B1]. (3.98)

Using (3.98), we have κ∗
2 as

κ∗
2 =

∣∣κ2
2 + κ2

3 − h2
∣∣

f
√

2 |h|
√
(h+ κ2)2 + κ2

3

> 0. (3.99)

Considering (3.98) and (3.99) together, we find B∗
1 as

B∗
1 =

ϵ∗3
κ∗
2

[
dN∗

ds∗
+ ϵ∗1κ

∗
1T

∗] =
ϵ∗3m2m3

√
2 |h|

2
[T +

1

h
B1], (3.100)

where m3 =
(
κ2
2 + κ2

3 − h2
)
/
∣∣κ2

2 + κ2
3 − h2

∣∣ = ±1 and ϵ∗3 = ±1. From (3.100), we have g(B∗
1 , B

∗
1) = m1 =

ϵ∗3 = −ϵ∗1. We can define a unit vector B∗
2 as B∗

2 = −λ4N + λ3B2 ; that is,

B∗
2 =

m2κ3√
(h+ κ2)2 + κ2

3

N +
m2(h+ κ2)√
(h+ κ2)2 + κ2

3

B2, (3.101)

which implies that g(B∗
2 , B

∗
2) = 1. Lastly, from (3.100) and (3.101), we obtain κ∗

3 as

κ∗
3 = g(

dB∗
1

ds∗
, B∗

2) =
ϵ∗3m3

√
2 |h|κ3

f ′
√
(h+ κ2)2 + κ2

3

̸= 0.

Consequently, we find that β∗ is a timelike or spacelike curve, and a (1, 3)-Bertrand mate curve of the curve β

since span{N∗, B∗
2} =span{N,B2} . 2

Case 4. Let β be a Cartan null curve with curvature functions κ1 = 1, κ2, κ3 ̸= 0 and β∗ be also a

Cartan null curve with curvature functions κ∗
1 = 1, κ∗

2, κ∗
3 ̸= 0. In this case, we get the following theorem.

Theorem 4 Let β : I ⊂ R → E4
1 be a Cartan null curve parameterized by pseudo-arc parameter s with the

curvatures κ1, κ2, κ3 . Then curve β is a (1, 3)-Bertrand curve and its Bertrand mate curve is also a Cartan

null curve with nonzero third curvature if and only if there exist constant real numbers λ ̸= 0, δ, γ, µ ̸= 0

satisfying

1 + λκ2 (s)− µκ3 (s) = 0, (3.102)
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κ2
2 (s) + κ2

3 (s) =
λ2

δ4
, (3.103)

−κ2 (s)

κ3 (s)
= γ, (3.104)

for all s ∈ I .

Proof We omit the proof of the theorem since it can be seen in [13]. 2

4. Some examples

Example 1 Let us consider the spacelike curve with the equation

β(s) =
1√
6

(
sinh

(√
3s
)
, cosh

(√
3s
)
, 3 sin s,−3 cos s

)
.

The Frenet frame of β is given by

T (s) =
1√
2

(
cosh

(√
3s
)
, sinh

(√
3s
)
,
√
3 cos s,

√
3 sin s

)
,

N (s) =
1√
2

(
sinh

(√
3s
)
, cosh

(√
3s
)
,− sin s, cos s

)
,

B1 (s) =
1√
2

(√
3 cosh

(√
3s
)
,
√
3 sinh

(√
3s
)
, cos s, sin s

)
,

B2 (s) =
1√
2

(
sinh

(√
3s
)
, cosh

(√
3s
)
, sin s,− cos s

)
.

The curvatures of β are k1 (s) =
√
3, k2 (s) = −2, k3 (s) = 1. Let us take a = 0 , b =

√
3 , h = 1/

√
3 , and

µ = 3 in Theorem 1. Then it is obvious that the relations (3.1), (3.2), (3.3), and (3.4) hold. Therefore, curve

β is a (1, 3)-Bertrand curve in E4
1 and the (1, 3)-Bertrand mate curve β∗ of curve β is a timelike curve given

as follows:

β∗ (s) =

(
2
√
6

3
sinh

(√
3s
)
,
2
√
6

3
cosh

(√
3s
)
,
√
6 sin s,−

√
6 cos s

)
.

The Frenet frame of β∗ is given by

T ∗(s) =
(
2 cosh

(√
3s
)
, 2 sinh

(√
3s
)
,
√
3 cos s,

√
3 sin s

)
,

N∗ (s) =
1√
5

(
2 sinh

(√
3s
)
, 2 cosh

(√
3s
)
,− sin s, cos s

)
,

B∗
1 (s) =

(
−
√
3 cosh

(√
3s
)
,−

√
3 sinh

(√
3s
)
,−2 cos s,−2 sin s

)
,

B∗
2 (s) =

1√
5

(
sinh

(√
3s
)
, cosh

(√
3s
)
, 2 sin s,−2 cos s

)
.
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The curvatures of β∗ are k∗1 (s) =
√
30/2 , k∗2 (s) = 4

√
10/5, k∗3 (s) = 1/

√
10 and also the following equalities

hold:

N∗ (s) =
3√
10

N(s) +
1√
10

B2(s),

B∗
2 (s) =

−1√
10

N(s) +
3√
10

B2(s).

Example 2 Let us consider the timelike curve with the equation

β(s) =
(√

2 sinh s,
√
2 cosh s, sin s, cos s

)
.

The Frenet frame of β is given by

T (s) =
(√

2 cosh s,
√
2 sinh s, cos s,− sin s

)
,

N (s) =

√
3

3

(√
2 sinh s,

√
2 cosh s,− sin s,− cos s

)
,

B1 (s) =
(
− cosh s,− sinh s,−

√
2 cos s,

√
2 sin s

)
,

B2 (s) =

√
3

3

(
sinh s, cosh s,

√
2 sin s,

√
2 cos s

)
.

The curvatures of β are k1 (s) =
√
3, k2 (s) = 2

√
6/3, k3 (s) = 1/

√
3. Let us take a = 0 , b =

√
6 , h = −1/

√
2 ,

and µ = −7/
√
2 in Theorem 1. Then it is obvious that the relations (3.1), (3.2), (3.3), and (3.4) hold.

Therefore, curve β is a (1, 3)-Bertrand curve in E4
1 and the (1, 3)-Bertrand mate curve β∗ of curve β is a

spacelike curve with timelike first normal vector given as follows:

β∗ (s) =
(
2
√
2 sinh s, 2

√
2 cosh s, 3 sin s, 3 cos s

)
.

The Frenet frame of β∗ is given by

T ∗(s) =
(
2
√
2 cosh s, 2

√
2 sinh s, 3 cos s,−3 sin s

)
,

N∗ (s) =
1√
17

(
2
√
2 sinh s, 2

√
2 cosh s,−3 sin s,−3 cos s

)
,

B∗
1 (s) =

(
−3 cosh s,−3 sinh s,−2

√
2 cos s, 2

√
2 sin s

)
,

B∗
2 (s) =

1√
17

(
3 sinh s, 3 cosh s, 2

√
2 sin s, 2

√
2 cos s

)
.

The curvatures of β∗ are k∗1 (s) =
√
17 , k∗2 (s) = 12

√
34/17, k∗3 (s) = −1/

√
17 and also the following equalities

hold:

N∗ (s) =
7√
51

N(s)−
√
2√
51

B2(s),

B∗
2 (s) =

√
2√
51

N(s) +
7√
51

B2(s).
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Example 3 For the same spacelike curve in Example 1, let us take a = 1 , b = −1 −
√
3 , h = 1 , and

µ = 2 +
√
3 in (ii) of Theorem 2. Then it is obvious that the relations (3.56) , (3.57) , (3.58) , (3.59) , and

(3.60) hold. Therefore, curve β is a (1, 3)-Bertrand curve in E4
1 and the (1, 3)-Bertrand mate curve β∗ of

curve β is a Cartan null given as follows:

β∗ (s) =

(
−
√
6

3
sinh

(√
3s
)
,−

√
6

3
cosh

(√
3s
)
,−

√
2 sin s,

√
2 cos s

)
.

The Frenet frame of β∗ is given by

T (s) = − 1

2
1
4

(
cosh

(√
3s
)
, sinh

(√
3s
)
, cos s, sin s

)
,

N (s) = −1

2

(√
3 sinh

(√
3s
)
,
√
3 cosh

(√
3s
)
,− sin s, cos s

)
,

B1 (s) =
1

2
3
4

(
cosh

(√
3s
)
, sinh

(√
3s
)
,− cos s,− sin s

)
,

B2 (s) =
1

2

(
sinh

(√
3s
)
, cosh

(√
3s
)
,
√
3 sin s,−

√
3 cos s

)
.

The curvatures of β∗ are k∗1 (s) = 1 , k∗2 (s) =
√
2/4, k∗3 (s) =

√
6/4 and also the following equalities hold:

N∗ (s) = −

(√
2 +

√
3

2

)
N(s)−

(
1

2
√

2 +
√
3

)
B2(s),

B∗
2 (s) = −

(
1

2
√
2 +

√
3

)
N(s) +

(√
2 +

√
3

2

)
B2(s).

Example 4 (The null curve equation given in [13]) Let us consider the null curve with the equation

β(s) =
1√
2
(sinh s, cosh s, sin s, cos s) .

The Frenet frame of β is given by

T (s) =
1√
2
(cosh s, sinh s, cos s,− sin s) ,

N (s) =
1√
2
(sinh s, cosh s,− sin s,− cos s) ,

B1 (s) =
1√
2
(− cosh s,− sinh s, cos s,− sin s) ,

B2 (s) =
1√
2
(sinh s, cosh s, sin s, cos s) .

The curvatures of β are k1 (s) = 1, k2 (s) = 0, k3 (s) = −1. Let us take a = b = 1 , h = 2 , and µ = −2

in Theorem 3. Then it is obvious that the relations (3.61), (3.62), and (3.63) hold. Therefore, curve β is a

502
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(1, 3)-Bertrand curve in E4
1 and the (1, 3)-Bertrand mate curve β∗ of curve β is a timelike curve given as

follows:

β∗ (s) =

(
3

2

√
2 sinh s,

3

2

√
2 cosh s,

1

2

√
2 sin s,

1

2

√
2 cos s

)
.

The Frenet frame of β∗ is given by

T ∗(s) =

(
3

4

√
2 cosh s,

3

4

√
2 sinh s,

1

4

√
2 cos s,−1

4

√
2 sin s

)
,

N∗ (s) =

(
3

10

√
10 sinh s,

3

10

√
10 cosh s,− 1

10

√
10 sin s,− 1

10

√
10 cos s

)
,

B∗
1 (s) =

(
−1

4

√
2 cosh s,−1

4

√
2 sinh s,−3

4

√
2 cos s,

3

4

√
2 sin s

)
,

B∗
2 (s) =

(
1

10

√
10 sinh s,

1

10

√
10 cosh s,

3

10

√
10 sin s,

3

10

√
10 cos s

)
.

The curvatures of β∗ are k∗1 (s) =
√
5/4 , k∗2 (s) = 3

√
5/20, k∗3 (s) = 1/

√
5 and also the following equalities

hold:

N∗ (s) =
2√
5
N(s) +

1√
5
B2(s),

B∗
2 (s) =

−1√
5
N(s) +

2√
5
B2(s).

Example 5 For the same null curve in Example 3, let us take a = 1 , b = −3 , h = −2 , and µ = 2 in Theorem

3. Then it is obvious that the relations (3.61), (3.62), and (3.63) hold. Therefore, curve β is a (1, 3)-Bertrand

curve in E4
1 and the (1, 3)-Bertrand mate curve β∗ of curve β is a spacelike curve with timelike first binormal

vector given as follows:

β∗ (s) =
−1√
2
(sinh s, cosh s, 3 sin s, 3 cos s) .

The Frenet frame of β∗ is given by

T ∗(s) =
−1

2
√
2
(cosh s, sinh s, 3 cos s,−3 sin s) ,

N∗ (s) =
−1√
10

(sinh s, cosh s,−3 sin s,−3 cos s) ,

B∗
1 (s) =

1

2
√
2
(3 cosh s, 3 sinh s, cos s,− sin s) ,

B∗
2 (s) =

−1√
10

(3 sinh s, 3 cosh s, sin s, cos s) .

The curvatures of β∗ are k∗1 (s) =
√
5/4 , k∗2 (s) = 3

√
5/20, k∗3 (s) = −1/

√
5 and also the following equalities
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hold:

N∗ (s) = − 2√
5
N(s) +

1√
5
B2(s),

B∗
2 (s) = − 1√

5
N(s)− 2√

5
B2(s).

Acknowledgment

The authors express thanks to the referees for their valuable suggestions. The first author would like to thank

TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports during

his PhD studies.

References
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