
Turk J Math

(2016) 40: 703 – 717

c⃝ TÜBİTAK
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Abstract: Let R be a commutative ring with 1 ̸= 0 and S(R) be the set of all ideals of R . In this paper, we extend

the concept of 2-absorbing primary ideals to the context of ϕ -2-absorbing primary ideals. Let ϕ : S(R) → S(R) ∪ ∅
be a function. A proper ideal I of R is said to be a ϕ -2-absorbing primary ideal of R if whenever a, b, c ∈ R with

abc ∈ I −ϕ(I) implies ab ∈ I or ac ∈
√
I or bc ∈

√
I . A number of results concerning ϕ -2-absorbing primary ideals are

given.

Key words: Primary ideal, weakly primary ideal, prime ideal, weakly prime ideal, 2-absorbing ideal, n-absorbing ideal,

weakly 2-absorbing ideal, 2-absorbing primary ideal, weakly 2-absorbing primary ideal, ϕ -prime ideal, ϕ -2-primary ideal,

ϕ -2-absorbing ideal

1. Introduction

Throughout this paper R denotes a commutative ring with 1 ̸= 0 and the set of all ideals of R is denoted by

S(R). An ideal I of R is said to be proper if I ̸= R . Let I be a proper ideal of R . Then
√
I = {r ∈ R : rk ∈ I ,

for some k ∈ N} denotes the radical ideal of R . Note that
√
0 is the set (ideal) of all nilpotent elements of R .

Generalizations of prime ideals to the context of ϕ-prime ideals are studied extensively in [1,12]. Various

generalizations of prime (primary) ideals are also studied in [2–10,13,14].

Recall that a proper ideal I of R is called a 2-absorbing ideal of R as in [5] if whenever abc ∈ I for

some a, b, c ∈ R , then ab ∈ I or bc ∈ I or ac ∈ I . A proper ideal I of R is called a weakly prime ideal of R

as in [2] if whenever 0 ̸= ab ∈ I for some a, b ∈ I , then a ∈ I or b ∈ I . A proper ideal I of R is called a

weakly primary ideal of R as in [4] if whenever 0 ̸= ab ∈ I for some a, b ∈ I , then a ∈ I or b ∈
√
I . Recall

from [7] that a proper ideal of R is said to be a 2-absorbing primary ideal of R if whenever a, b, c ∈ R with

abc ∈ I , then ab ∈ I or ac ∈
√
I or bc ∈

√
I . Moreover, recall from [8] that a proper ideal I of R is said to be

a weakly 2-absorbing primary ideal of R if whenever a, b, c ∈ R with 0 ̸= abc ∈ I implies ab ∈ I or ac ∈
√
I or

bc ∈
√
I . Recall that a proper ideal I of R is called a ϕ-2-absorbing ideal of R as in [12] if whenever a, b, c ∈ R

with abc ∈ I − ϕ(I) implies ab ∈ I or ac ∈ I or bc ∈ I . A proper ideal I of R is called a ϕ-prime ideal of
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R as in [1] if whenever a, b ∈ R with ab ∈ I − ϕ(I) implies a ∈ I or b ∈ I . A proper ideal I of R is called a

ϕ-primary ideal of R as in [10] if whenever a, b ∈ R with ab ∈ I − ϕ(I) implies a ∈ I or b ∈
√
I . We show

that ϕ-2-absorbing primary ideals enjoy analogues of many of the properties of (weakly) 2-absorbing primary

ideals.

In this paper, we extend the concept of 2-absorbing primary ideal to the context of ϕ-2-absorbing primary

ideal. Let ϕ : S(R) → S(R) ∪ ∅ be a function. A proper ideal I of R is said to be a ϕ-2-absorbing primary

ideal of R if whenever a, b, c ∈ R with abc ∈ I − ϕ(I) implies ab ∈ I or ac ∈
√
I or bc ∈

√
I . Let I be a

proper ideal of R and suppose that I is a ϕ -2-absorbing primary ideal of R . Then

1. If ϕ(J) = ∅ for every J ∈ S(R), then we say that ϕ = ϕ∅ and I is called a ϕ∅ -2-absorbing primary ideal

of R , and hence I is a 2-absorbing primary ideal of R .

2. If ϕ(J) = 0 for every J ∈ S(R), then we say that ϕ = ϕ0 and I is called a ϕ0 -2-absorbing primary ideal

of R , and thus I is a weakly 2-absorbing primary ideal of R .

3. If ϕ(J) = J for every J ∈ S(R), then we say that ϕ = ϕ1 and I is called a ϕ1 -2-absorbing primary ideal

of R .

4. If n ≥ 2 and ϕ(J) = Jn for every J ∈ S(R), then we say that ϕ = ϕn and I is called a ϕn -2-absorbing

primary ideal of R . In particular, if n = 2 and ϕ(J) = J2 for every J ∈ S(R), then we say that I is an

almost-2-absorbing primary ideal of R .

5. If ϕ(J) = ∩∞
n=1J

n for every J ∈ S(R), then we say that ϕ = ϕω and I is called a ϕω -2-absorbing primary

ideal of R .

Since I − ϕ(I) = I − (I ∩ ϕ(I)), without loss of generality, we may assume that ϕ(I) ⊆ I . Given two

functions ψ1, ψ2 : S(R) → S(R) ∪ ∅ , we say ψ1 ≤ ψ2 if ψ1(J) ⊆ ψ2(J) for each J ∈ S(R). Hence it can be

easily seen that ϕ∅ ≤ ϕ0 ≤ ϕω ≤ · · · ≤ ϕn+1 ≤ ϕn ≤ · · · ≤ ϕ2 ≤ ϕ1 .

Throughout this paper, as it is noted earlier, if ϕ : S(R) → S(R)∪∅ is a function, then we always assume

that ϕ(I) ⊆ I .

Among many results in this paper, it is shown (Theorem 2.3) that a proper ideal I of R is a ϕ-2-absorbing

primary ideal of R for some function ϕ if and only if I/ϕ(I) is a weakly 2-absorbing primary ideal of R/ϕ(I).

It is shown (Theorem 2.8 and Corollary 2.10) that if I is a ϕ-2-absorbing primary ideal of R for some function

ϕ that is not a 2-absorbing primary ideal of R , then I3 ⊆ ϕ(I) and
√
ϕ(I) =

√
I . It is shown (Corollary 8)

that if I is a proper ideal of a Noetherian domain R , then I is a 2-absorbing primary ideal of R if and only if

I is a ϕ-2-absorbing primary ideal of R for some ϕ with ϕ ≤ ϕ4 . Let R1 and R2 be commutative rings with

1 ̸= 0, I1 , I2 be ideals of R1 and R2 , respectively, and R = R1×R2 . Let ψi : S(Ri) → S(Ri)∪∅ (i = 1, 2) be

functions. Let ϕ = ψ1×ψ2. If I = I1× I2 is a nonzero proper ideal of R , then it is shown (Theorem 2.30) that

I is a ϕ-2-absorbing primary ideal of R that is not a 2-absorbing primary ideal of R if and only if ϕ(I) ̸= ∅
and one of the following conditions holds:

1. ψ2(R2) = R2 and I1 is a ψ1 -2-absorbing primary ideal of R1 that is not a 2-absorbing primary ideal of

R1 .
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2. ψ1(R1) = R1 , and I2 is a ψ2 -2-absorbing primary ideal of R2 that is not a 2-absorbing primary ideal of

R2 .

3. I2 = ψ2(I2) is a primary ideal of R2 and I1 ̸= R1 is ψ1 -primary ideal of R1 that is not primary such

that ψ1(I1) ̸= I1 (note that if I1 = 0, then I2 ̸= 0).

4. I1 = ψ1(I1) is a primary ideal of R2 and I2 ̸= R2 is a ψ2 -primary ideal of R2 that is not primary such

that ψ2(I2) ̸= I2 (note that if I1 = 0, then I2 ̸= 0).

Let R = R1 × R2 × · · · × Rm , where 3 ≤ m < ∞ , and R1, R2 , ..., Rm are commutative rings with

1 ̸= 0. Let n ≥ 2. It is shown (Theorem 18) that every proper ideal of R is a ϕn -2-absorbing primary ideal of

R if and only if R1, ..., Rm are von Neumann regular rings (and hence R is a von Neumann regular ring). Let

I be a ϕ -2-absorbing primary ideal of R for some function ϕ . Suppose that I1I2I3 ⊆ I , but I1I2I3 ̸⊆ ϕ(I),

for some ideals I1, I2 and I3 of R such that I is a free ϕ-triple-zero with respect to I1I2I3 (see Definition 2.5

and Definition 2.37). Then it is shown (Theorem 21) that I1I2 ⊆ I or I1I3 ⊆
√
I or I2I3 ⊆

√
I.

2. ϕ-2-absorbing primary ideals

Throughout this paper, as it is noted earlier in the introduction, if ϕ : S(R) → S(R) ∪ ∅ is a function, then we

always assume that ϕ(I) ⊆ I .

Lemma 1 Let I be a proper ideal of R and ψ1, ψ2 : S(R) → S(R) ∪ ∅ are functions with ψ1 ≤ ψ2. If I is a

ψ1 -2-absorbing primary ideal of R , then I is a ψ2 -2-absorbing primary ideal of R .

Proof Suppose that I is a ψ1 -2-absorbing primary ideal of R and a, b, c ∈ R such that abc ∈ I − ψ2(I).

Since abc ∈ I − ψ2(I) ⊆ I − ψ1(I), the claim is clear. 2

Theorem 1 Let I be a proper ideal of R . Then

1. I is a 2-absorbing primary ideal of R ⇒ I is a weakly 2-absorbing primary ideal of R ⇒ I is a ϕω−2-

absorbing primary ideal of R ⇒ I is a ϕn+1 -2-absorbing primary ideal of R for every n ≥ 2 ⇒ I is a

ϕn -2-absorbing primary ideal of R for every n ≥ 2 ⇒ I is an almost 2-absorbing primary ideal of R .

2. I is an idempotent ideal of R ⇒ I is an ϕω−2-absorbing primary ideal of R and I is a ϕn -2-absorbing

ideal of R for every n ≥ 1.

3. If
√
I = I , then I is a ϕn - 2-absorbing primary ideal of R if and only if I is a ϕn -2-absorbing ideal of

R .

4. I is a ϕn -2-absorbing primary ideal of R for all n ≥ 2 if and only if I is a ϕω -2-absorbing primary ideal

of R .

Proof (1) It is clear from Lemma 1.

(2) Suppose that I is an idempotent ideal of R . Then I = In for all n ≥ 1, and so ϕω(I) = ∩∞
n=1I

n = I.

Thus the claim is clear.

(3) Since
√√

I =
√
I , the claim is obvious.
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(4) Let a, b, c ∈ R with abc ∈ I − ∩∞
n=1I

n . Hence abc ∈ I − In for some n ≥ 2. Since I is a ϕn -2-

absorbing primary ideal of R , we have ab ∈ I or bc ∈
√
I or ac ∈

√
I . The converse is clear from (1). 2

Theorem 2 Let ϕ : S(R) → S(R) ∪ ∅ be a function. Set R/∅ = R , and let I be a proper ideal of R . Then

1. I is a ϕ-2-absorbing primary ideal of R if and only if I/ϕ(I) is a weakly 2-absorbing primary ideal of

R/ϕ(I) .

2. I is a ϕ-prime ideal of R if and only if I/ϕ(I) is a weakly prime ideal of R/ϕ(I) .

3. I is a ϕ-primary ideal of R if and only if I/ϕ(I) is a weakly primary ideal of R/ϕ(I) .

Proof If ϕ(I) = ∅ , then R/∅ = R and hence there is nothing to prove. Thus we may assume that ϕ(I) ̸= ∅ .
(1). Suppose that I is a ϕ-2-absorbing primary ideal of R . Assume that ϕ(I) ̸= (a + ϕ(I))(b +

ϕ(I))(c + ϕ(I)) ∈ I/ϕ(I) for some a, b, c ∈ R . Since abc ∈ I − ϕ(I), ab ∈ I or ac ∈
√
I or bc ∈

√
I . Since√

I/ϕ(I) =
√
I/ϕ(I), we have ab + ϕ(I) ∈ I/ϕ(I) or ac + ϕ(I) ∈

√
I/ϕ(I) or bc + ϕ(I) ∈

√
I/ϕ(I). Thus

I/ϕ(I) is a weakly 2-absorbing primary ideal of R/ϕ(I).

Conversely, suppose that I/ϕ(I) is a weakly 2-absorbing primary ideal of R/ϕ(I). Assume that

abc ∈ I − ϕ(I) for some a, b, c ∈ R . Thus ϕ(I) ̸= (a + ϕ(I))(b + ϕ(I))(c + ϕ(I)) = abc + ϕ(I) ∈ I/ϕ(I).

Hence ab + ϕ(I) ∈ I/ϕ(I) or ac + ϕ(I) ∈
√
I/ϕ(I) or bc + ϕ(I) ∈

√
I/ϕ(I). Thus ab ∈ I or ac ∈

√
I or

bc ∈
√
I .

By a similar argument as in the proof of (1), one can prove (2) and (3). 2

Since ϕn(I) = In , the proof of the following result is clear by Theorem 2.

Corollary 1 Let I be a proper ideal of R and n ≥ 2 . Then

1. I is a ϕn -2-absorbing primary ideal of R if and only if I/In is a weakly 2-absorbing primary ideal of

R/In .

2. I is a ϕn -prime ideal of R if and only if I/In is a weakly prime ideal of R/In .

3. I is a ϕn -primary ideal of R if and only if I/In is a weakly primary ideal of R/In .

Definition 1 Let I be a ϕ-2-absorbing primary ideal of R and suppose that abc ∈ ϕ(I) for some a, b, c ∈ R

such that ab ̸∈ I , ac ̸∈
√
I , and bc ̸∈

√
I , then we say (a, b, c) is a ϕ-triple-zero of I . Similarly, if I is a

weakly 2-absorbing primary ideal of R and abc = 0 for some a, b, c ∈ R such that ab ̸∈ I , ac ̸∈
√
I , and

bc ̸∈
√
I , then we say (a, b, c) is a triple-zero of I .

Remark 1 Note that a proper ideal I of a ring R is a ϕ-2-absorbing primary ideal of R that is not a 2-

absorbing primary ideal of R if and only if I has a ϕ-triple-zero (a, b, c) for some a, b, c ∈ R.

Lemma 2 Let I be a proper ideal of R and suppose that I is a ϕ-2-absorbing primary ideal of R for some

function ϕ . Let a, b, c ∈ R . The following statements are equivalent.
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1. (a, b, c) is a ϕ-triple-zero of I .

2. (a+ ϕ(I), b+ ϕ(I), c+ ϕ(I)) is a triple-zero of I/ϕ(I) .

Proof (1) ⇒ (2). Suppose that (a, b, c) is a ϕ-triple-zero of I . Hence abc ∈ ϕ(I), but ab ̸∈ I , ac ̸∈
√
I , and

bc ̸∈
√
I . Thus ab+ ϕ(I) ̸∈ I/ϕ(I), ac+ ϕ(I) ̸∈

√
I/ϕ(I), and bc+ ϕ(I) ̸∈

√
I/ϕ(I). Since I/ϕ(I) is a weakly

2-absorbing primary ideal of R by Theorem 2, (a+ ϕ(I), b+ ϕ(I), c+ ϕ(I)) is a triple-zero of I/ϕ(I).

(2) ⇒ (1). Suppose that (a+ ϕ(I), b+ ϕ(I), c+ ϕ(I)) is a triple-zero of I/ϕ(I). Then abc ∈ ϕ(I) such

that ab+ϕ(I) ̸∈ I/ϕ(I), ac+ϕ(I) ̸∈
√
I/ϕ(I), and bc+ϕ(I) ̸∈

√
I/ϕ(I). Hence ab ̸∈ I , ac ̸∈

√
I , and bc ̸∈

√
I .

Thus (a, b, c) is a ϕ-triple-zero of I . 2

Theorem 3 Let I be a ϕ-2-absorbing primary ideal of R for some function ϕ and suppose that (a, b, c) is a

ϕ-triple-zero of I for some a, b, c ∈ R (hence I is not a 2-absorbing primary ideal of R). Then

1. abI, bcI , acI ⊆ ϕ(I).

2. aI2, bI2, cI2 ⊆ ϕ(I).

3. I3 ⊆ ϕ(I) .

Proof (1). Since I is a ϕ-2-absorbing primary ideal of R , I/ϕ(I) is a weakly 2-absorbing primary ideal of

R/ϕ(I) by Theorem 2. Since (a, b, c) is a ϕ-triple-zero of I , (a + ϕ(I), b + ϕ(I), c + ϕ(I)) is a triple-zero of

I/ϕ(I) by Lemma 2. Hence abI + ϕ(I) = bcI + ϕ(I) = acI + ϕ(I) = ϕ(I) (in R/ϕ(I)) by [8, Theorem 2.9].

Thus abI, bcI , acI ⊆ ϕ(I).

(2). Again, since (a + ϕ(I), b + ϕ(I), c + ϕ(I)) is a triple-zero of I/ϕ(I) by Lemma 2 and I/ϕ(I) is a

weakly 2-absorbing primary ideal of R/ϕ(I) by Theorem 2, we have aI2+ϕ(I) = bI2+ϕ(I) = cI2+ϕ(I) = ϕ(I)

(in R/ϕ(I)) by [8, Theorem 2.9]. Thus aI2, bI2, cI2 ⊆ ϕ(I).

(3). Since (a + ϕ(I), b + ϕ(I), c + ϕ(I)) is a triple-zero of I/ϕ(I) by Lemma 2 and I/ϕ(I) is a weakly

2-absorbing primary ideal of R/ϕ(I) by Theorem 2, we have I3 + ϕ(I) = ϕ(I) (in R/ϕ(I)) by [8, Theorem

2.10]. Thus I3 ⊆ ϕ(I). 2

Corollary 2 Let I be a ϕ-2-absorbing primary ideal of R such that I3 ̸⊆ ϕ(I) . Then I is a 2-absorbing

primary ideal of R.

Proof The proof is clear by Remark 1 and Theorem 3(3). 2

Corollary 3 If I is a ϕ-2-absorbing primary ideal of R that is not a 2-absorbing primary ideal of R , then
√
I =

√
ϕ(I).

Proof Since I is not a 2-absorbing primary ideal of R , I3 ⊆ ϕ(I) by Theorem 3. Hence
√
I ⊆

√
ϕ(I). Since

ϕ(I) ⊆ I , we have
√
ϕ(I) ⊆

√
I . Thus

√
I =

√
ϕ(I). 2
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Corollary 4 Let ϕ be a function and let I be a proper ideal of R such that
√
ϕ(I) is a prime ideal of R .

Then I is a ϕ-2-absorbing primary ideal of R if and only if I is a 2-absorbing primary ideal of R .

Proof Suppose that I is a ϕ-2-absorbing primary ideal of R . Assume that I is not a 2-absorbing primary

ideal of R . Then
√
I =

√
ϕ(I) by Corollary 3. Thus

√
I is a prime ideal of R . Since

√
I is prime, we conclude

that I is a 2-absorbing primary ideal of R by [7, Theorem 2.8]. 2

Corollary 5 Let I be a proper ϕ-2-absorbing primary ideal of R such that ϕ ≤ ϕ4 . Then

1. I is a ϕn -2-absorbing primary ideal of R for every n ≥ 3 .

2. I is a ϕω -2-absorbing primary ideal of R .

Proof If I is a 2-absorbing primary ideal of R , then (1) and (2) are clear. Hence assume that I is not a

2-absorbing primary ideal of R . Thus I3 ⊆ ϕ(I) by Theorem 3. Since ϕ ≤ ϕ4 , we have I
3 ⊆ ϕ(I) ⊆ I4 . Hence

I3 = In = ϕ(I) for every n ≥ 3. Thus (1) and (2) are clear. 2

Theorem 4 Let J be a finitely generated proper ideal of R . Suppose that J is a ϕ-2-absorbing primary ideal

of R for some function ϕ , where ϕ ≤ ϕ4. Then J is a ψ -2-absorbing primary ideal of R for every function ψ

with ϕω < ψ and one of the following statements holds.

1. J is a weakly 2-absorbing primary ideal of R.

2. J3 = eR = eJ for some idempotent e ∈ R and I = (1 − e)J is a weakly 2-absorbing primary ideal of

(1− e)R .

Proof If J is a 2-absorbing primary ideal of R , then there is nothing to prove. Hence assume that J is

not a 2-absorbing primary ideal of R . Thus J3 ⊆ ϕ(J) by Theorem 3. Hence J3 ⊆ ϕ4(J) = J4 . Thus

ϕ(J) = J3 = J4 . Hence J3 = J6. Thus J3 is an idempotent ideal of R . Since J3 is an idempotent ideal of R

and J3 = J4 , we have ϕω(J) = J3 = ϕ(J). Thus J is a ψ -2-absorbing primary ideal of R for every function

ψ such that ϕω < ψ by Lemma 1. Since J3 is a finitely generated idempotent ideal of R , J3 = eR for some

idempotent e ∈ R by [Ex. 2.25, [9]]. Hence J3 = eRϕ(J). We consider two cases. Case I. Suppose that

J3 = 0. Then J3 = ϕ(J) = 0. Thus J is a weakly 2-absorbing primary ideal of R . Case II. Assume that

J3 ̸= 0. Let I = (1− e)J . Assume that 0 ̸= abc ∈ I ⊆ J for some a, b, c ∈ (1− e)R . Since eR∩ (1− e)J = {0}

and ϕ(J) = J3 = eR , abc ∈ J −ϕ(J). Thus ab ∈ J or ac ∈
√
J or bc ∈

√
J . Let

√
I(1−e)R denotes the radical

of I in (1−e)R . Since a, b, c ∈ (1−e)R and
√
I(1−e)R = (1−e)

√
J , we conclude that ab ∈ I or ac ∈

√
I(1−e)R

or bc ∈
√
I(1−e)R . 2

The proof of the following result is clear by Theorem 4.

Corollary 6 Suppose that {0, 1} is the set of all idempotents of R . Let I be a finitely generated proper ideal

of R . Then I is a weakly 2-absorbing primary ideal of R if and only if I is a ϕ-2-absorbing primary ideal of

R for some ϕ with ϕ ≤ ϕ4 . In particular, I is a weakly 2-absorbing primary ideal of R if and only if I is a

ϕn -2-absorbing primary ideal of R for some n ≥ 4 .
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Recall that a commutative ring with 1 ̸= 0 is said to be a quasi-local ring if R has exactly one maximal

ideal.

Corollary 7 Suppose that (R,M) is a quasi-local commutative ring. Then a finitely generated ideal I of R is

a ϕ-2-absorbing primary ideal of R for some ϕ with ϕ ≤ ϕ4 if and only if I is a weakly 2-absorbing primary

ideal of R . In particular, I is a weakly 2-absorbing primary ideal of R if and only if I is a ϕn -2-absorbing

primary ideal of R for some n ≥ 4 .

Proof Since (R,M) is a quasi-local commutative ring, {0, 1} is the set of all idempotents of R . Hence the

claim is clear by Corollary 6. 2

Since a proper ideal of an integral domain is weakly 2-absorbing primary if and only if it is 2-absorbing

primary, in view of Corollary 6 we have the following result.

Corollary 8 Let I be a proper ideal of a Noetherian domain R . Then I is a 2-absorbing primary ideal of R if

and only if I is a ϕ-2-absorbing primary ideal of R for some ϕ with ϕ ≤ ϕ4 . In particular, I is a 2-absorbing

primary ideal of R if and only if I is a ϕn -2-absorbing primary ideal of R for some n ≥ 4 .

Theorem 5 Let a ∈ R be nonunit. Let (0 : a) ⊆
√
(a). Then (a) is ϕ-2-absorbing primary, for some ϕ with

ϕ ≤ ϕ3 if and only if (a) is a 2-absorbing primary ideal of R .

Proof Suppose that (a) is ϕ3 -2-absorbing primary. Let x1x2x3 ∈ (a). If x1x2x3 /∈ (a3), then x1x2 ∈ (a) or

x2x3 ∈
√
(a) or x1x3 ∈

√
(a). Now suppose that x1x2x3 ∈ (a3). Thus (x1+a)x2x3 ∈ (a). If (x1+a)x2x3 /∈ (a3),

then (x1 + a)x2 ∈ (a) or x2x3 ∈
√
(a) or (x1 + a)x3 ∈

√
(a). So we have x1x2 ∈ (a) or x2x3 ∈

√
(a) or

x1x3 ∈
√
(a). If (x1+a)x2x3 ∈ (a3), then x1x2x3 ∈ (a3) gives ax2x3 ∈ (a3). Therefore ax2x3 = ra3, for some

r ∈ R. Thus a(x2x3 − ra2) = 0, and so x2x3 − ra2 ∈ (0 : a). Hence x2x3 ∈ (0 : a) + (a)) ⊆
√
(a), and thus

x2x3 ∈
√
(a). The converse part is obvious by Theorem 1. 2

Theorem 6 Suppose that a proper ideal I of R is a ϕ-prime ideal of R for some ϕ and suppose that

ϕ(I) ⊆ ϕ(J) for some radical ideal J of R such that J ⊂ I (J ̸= I ). Then I is a prime ideal of R .

Proof Suppose that I is not a prime ideal of R . Then I2 ⊆ ϕ(I) by [1, Theorem 5]. Hence
√
I =

√
ϕ(I).

Since ϕ(I) ⊆ ϕ(J) ⊆ J and J is a radical ideal of R , we have
√
I =

√
ϕ(J) ⊆ J . Hence I ⊆ J , a contradiction.

Thus I is a prime ideal of R . 2

Theorem 7 Let J,K be proper ideals of R such that J ⊆ K , and let n ≥ 2 . If K is a ϕn -2-absorbing

primary ideal of R , then K/J is a ϕn -2-absorbing primary ideal of R/J.

Proof Suppose that K is a ϕn -2-absorbing primary ideal of R . Assume that (a + J)(b + J)(c + J) ∈

K/J − (K/J)n for some a, b, c ∈ R . Since J ⊆ K, we have abc ∈ K − Kn . Thus ab ∈ K or ac ∈
√
K or

bc ∈
√
K . Since J ⊆ K ,

√
K/J =

√
K/J . Hence (a + J)(b + J) ∈ K/J or (a + J)(c + J) ∈

√
K/J or

(b+ J)(c+ J) ∈
√
K/J . Thus K/J is a ϕn -2-absorbing primary ideal of R/J. 2

The proof of the following result is similar to the proof of Theorem 7. Hence we leave the proof to the

reader.
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Theorem 8 Let J,K be proper ideals of R such that J ⊆ K . If K is a ϕω -2-absorbing primary ideal of R ,

then K/J is a ϕω -2-absorbing primary ideal of R/J.

Definition 2 Let ϕ : S(R) → S(R) ∪ ∅ be a function. We remind the reader that we always assume that

ϕ(I) ⊆ I . Let I be a proper ideal of R and S be a multiplicatively closed subset of R . Then

1. A proper ideal L/I of R/I , where L is a proper ideal of R such that I ⊆ L , is called a ϕI -2-absorbing

primary ideal of R/I if whenever a, b, c ∈ R/I with abc ∈ L/I − (ϕ(L) + I)/I implies ab ∈ L/I or

ac ∈
√
L/I or bc ∈

√
L/I .

2. A proper ideal LS of RS , where L is a proper ideal of R such that L∩S = ∅ , is called a ϕS -2-absorbing

primary ideal of RS if whenever a, b, c ∈ RS with abc ∈ LS − ϕ(L)S implies ab ∈ LS or ac ∈
√
LS or

bc ∈
√
LS .

Theorem 9 Let ϕ : S(R) → S(R)∪ ∅ be a function, P be a proper ideal of R and let I be an ideal of R such

that I ⊆ P . If P is a ϕ-2-absorbing primary ideal of R , then P/I is a ϕI -2-absorbing primary ideal of R/I .

Proof Let a, b, c ∈ R such that (a+ I)(b+ I)(c+ I) = abc+ I ∈ P/I − (ϕ(P )+ I)/I . Hence abc ∈ P −ϕ(P ).

Thus ab ∈ P or ac ∈
√
P or bc ∈

√
P . Since I ⊆ P ,

√
P/I =

√
P/I . Thus (a + I)(b + I) ∈ P/I or

(a+ I)(c+ I) ∈
√
P/I or (b+ I)(c+ I) ∈

√
P/I . 2

Theorem 10 Let ϕ : S(R) → S(R) ∪ ∅ be a function and let P be a proper ideal of R . Suppose that I is a

proper ideal of R such that I ⊆ ϕ(P ) . The following statements are equivalent.

1. P is a ϕ-2-absorbing primary ideal of R .

2. P/I is a ϕI -2-absorbing primary ideal of R/I .

3. P/In is a ϕIn -2-absorbing primary ideal of R/In for every n ≥ 1 .

Proof (1) ⇒ (2). It is clear by Theorem 9. (2) ⇒ (3). Let n ≥ 1. Since I ⊆ ϕ(P ), we have In ⊆ I ⊆ ϕ(P ).

Suppose that (a+In)(b+In)(c+In) ∈ P/In−ϕ(P )/In for some a, b, c ∈ R . Hence abc ̸∈ ϕ(P ). Since I ⊆ ϕ(P )

and abc ̸∈ ϕ(P ), abc ̸∈ I . Thus (a + I)(b + I)(c + I) ∈ P/I − ϕ(P )/I . Since
√
P/I =

√
P/In =

√
P/In

and P/I is a ϕI -2-absorbing primary ideal of R , one can conclude that ab ∈ P or ac ∈
√
P or bc ∈

√
P .

Thus ab + In ∈ P/In or ac + In ∈
√
P/In or bc + In ∈

√
P/In . (3) ⇒ (1). Let n = 1. Suppose

that abc ∈ P − ϕ(P ) for some a, b, c ∈ R . Since I ⊆ ϕ(P ), abc ̸∈ I . Since I ⊆ ϕ(P ) ⊂ P , we have

(a+ I)(b+ I)(c+ I) = abc+ I ∈ P/I − ϕ(P )/I . Since
√
P/I =

√
P/I and P/I is a ϕI -2-absorbing primary

ideal of R , one can conclude that ab ∈ P or ac ∈
√
P or bc ∈

√
P . 2

Corollary 9 Let ϕ : S(R) → S(R) ∪ ∅ be a function and let P be a proper ideal of R that is not a weakly

2-absorbing primary ideal of R . The following statements are equivalent.

1. P is a ϕ-2-absorbing primary ideal of R .

710



BADAWI et al./Turk J Math

2. P/P 3 is a ϕP 3 -2-absorbing primary ideal of R/P 3 .

3. P/Pn is a ϕPn -2-absorbing primary ideal of R/Pn for every n ≥ 3 .

Proof Since P is not a weakly 2-absorbing primary ideal of R (and hence P is not a 2-absorbing primary

ideal of R), we have P 3 ⊆ ϕ(P ) by Theorem 3. Hence we are done by Theorem 10. 2

For a commutative ring R with 1 ̸= 0. Let Z(R) be the set of all zero-divisors of R .

Theorem 11 Let ϕ : S(R) → S(R)∪∅ be a function. Let P be a proper ideal of R and S be a multiplicatively

closed subset of R such that S ∩ Z(R) = S ∩ P = ∅ . The following statements are equivalent.

1. P is a ϕ-2-absorbing primary ideal of R .

2. PS is a ϕS -2-absorbing primary ideal of RS .

Proof (1) ⇒ (2). Suppose that x1x2x3 = y ∈ PS − ϕ(P )S for some x1, x2, x3 ∈ RS . Hence there is an s ∈ S

and a, b, c, d ∈ R such that x1 = a/s, x2 = b/s, x3 = c/s , and y = s2d/s3 . Thus abc
s3 = s2d

s3 ∈ PS−ϕ(P )S . Since

Z(R) ∩ S = ∅ , we have abc = s2d ∈ P − ϕ(P ). Thus ab ∈ P or ac ∈
√
P or bc ∈

√
P . Since Z(R) ∩ S = ∅ ,

√
PS =

√
PS . Thus x1x2 ∈ PS or x1x3 ∈

√
PS or x2x3 ∈

√
PS .

(2) ⇒ (1). Suppose that abc ∈ P − ϕ(P ) for some a, b, c ∈ R . Thus abc ∈ PS − ϕ(P )S . Hence ab ∈ PS

or ac ∈
√
PS or bc ∈

√
PS . Hence ab ∈ P or ac ∈

√
P or bc ∈

√
P . 2

The proof of the following result is easily verified, and hence we omit the proof.

Lemma 3 Let ϕ : S(R) → S(R) ∪ ∅ be a function. Set R/∅ = R , and let I be a proper ideal of R . Then

1. I is a 2-absorbing primary ideal of R if and only if I/ϕ(I) is a 2-absorbing primary ideal of R/ϕ(I) .

2. I is a prime ideal of R if and only if I/ϕ(I) is a prime ideal of R/ϕ(I) .

3. I is a primary ideal of R if and only if I/ϕ(I) is a primary ideal of R/ϕ(I) .

Remark 2 Let R1, R2, ..., Rn be commutative rings with 1 ̸= 0 (n ≥ 1) and R = R1 × · · · ×Rn . For each i ,

1 ≤ i ≤ n , let ψi : S(Ri) → S(Ri)∪∅ be a function, and let ϕ = ψ1×· · ·×ψn . Let I = I1×· · ·× In be an ideal

of R , where I1, ..., In are ideals of R1 , ..., Rn , respectively. Suppose that ψi(Ii) = ∅ for some i , 1 ≤ i ≤ n .

Then I − ϕ(I) = I . Hence ϕ(I) = ∅ if and only if ψi(Ii) = ∅ for some i , 1 ≤ i ≤ n . If ϕ(I) = ∅ , then we set

R/ϕ(I) = R .

Theorem 12 Let R1 and R2 be commutative rings with 1 ̸= 0 , I1 be a proper ideal of R1 , and R = R1×R2 .

Let ψi : S(Ri) → S(Ri) ∪ ∅ (i = 1, 2) be functions such that ψ2(R2) ̸= R2 , and let ϕ = ψ1 × ψ2. Then the

following statements are equivalent.

1. I1 ×R2 is a ϕ-2-absorbing primary ideal of R.

2. I1 ×R2 is a 2-absorbing primary ideal of R.

3. I1 is a 2-absorbing primary ideal of R1.
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Proof Suppose that ψ1(I1) = ∅ or ψ2(R2) = ∅ . Then ϕ(I1 ×R2) = ∅ by Remark 2. Hence (1) ⇔ (2) ⇔ (3).

Thus assume that ϕ(I1 ×R2) ̸= ∅ , and hence neither ψ1(I1) = ∅ nor ψ2(R2) = ∅ .
(1) ⇒ (2). It is clear that I1 is a ψ1 -2-absorbing primary ideal of R1 . If I1 is a 2-absorbing primary

ideal of R1 , then we are done. Hence assume that I1 is not a 2-absorbing ideal of R1 . Thus I1 has a ψ1 -triple-

zero (a, b, c) for some a, b, c ∈ R1 . Since ψ2(R2) ̸= R2 , we have (a, 1)(b, 1)(c, 1) ∈ I1 × R2 − ψ1(I1)× ψ2(R2).

Thus ab ∈ I1 or ac ∈
√
I1 or bc ∈

√
I1 , a contradiction. Thus I1 is a 2-absorbing primary ideal of R1 . Hence

I1 ×R2 is a 2-absorbing primary ideal of R.

(2) ⇒ (3). It is clear.

(3) ⇒ (1). It is clear. 2

Theorem 13 Let R1 and R2 be commutative rings with 1 ̸= 0 , I1 be a proper ideal of R1 , and R = R1×R2 .

Let ψi : S(Ri) → S(Ri) ∪ ∅ (i = 1, 2) be functions and let ϕ = ψ1 × ψ2. Then the following statements are

equivalent.

1. I1 ×R2 is a ϕ-2-absorbing primary ideal of R that is not a 2-absorbing primary ideal of R .

2. ϕ(I1 ×R2) ̸= ∅ , ψ2(R2) = R2 , and I1 is a ψ1 -2-absorbing primary ideal of R1 that is not a 2-absorbing

primary ideal of R1 .

Proof (1) ⇒ (2). Since I1 × R2 is not a 2-absorbing primary ideal of R , it is clear that ϕ(I1 × R2) ̸= ∅
and ψ2(R2) = R2 by Theorem 12. Since I1 × R2 is a ϕ-2-absorbing primary ideal of R , it is clear that I1

is a ψ1 -2-absorbing primary ideal of R1 . Since I1 × R2 is not a 2-absorbing primary ideal of R , I1 is not a

2-absorbing primary ideal of R1 by [7, Theorem 2.23].

(2) ⇒ (1). Since ϕ(I1 × R2) ̸= ∅ and ψ2(R2) = R2 , R/ϕ(I1 × R2) is ring-isomorphic to R1/ψ1(I1).

Since I1 is a ψ1 -2-absorbing primary ideal of R1 that is not a 2-absorbing primary ideal of R1 , I1/ψ1(I1)

is a weakly 2-absorbing primary ideal of R1/ψ1(I1) that is not a 2-absorbing primary ideal of R1/ψ1(I1) by

Theorem 2 and Lemma 3. Hence (I1 ×R2)/ϕ(I1 ×R2) is a weakly 2-absorbing primary ideal of R/ϕ(I1 ×R2)

that is not a 2-absorbing primary ideal of R/ϕ(I1 ×R2). Thus I1 ×R2 is a ϕ -2-absorbing primary ideal of R

that is not a 2-absorbing primary ideal of R by Theorem 2 and Lemma 3. 2

Theorem 14 Let R1 and R2 be commutative rings with 1 ̸= 0 , I1 , I2 be ideals of R1 and R2 , respectively,

and R = R1 × R2 . Let ψi : S(Ri) → S(Ri) ∪ ∅ (i = 1, 2) be functions. Let ϕ = ψ1 × ψ2. If I = I1 × I2 is

a nonzero proper ideal of R and ϕ(I) ̸= I1 × I2 , then I is a ϕ-2-absorbing primary ideal of R that is not a

2-absorbing primary ideal of R if and only if ϕ(I) ̸= ∅ and one of the following conditions holds.

1. ψ2(R2) = R2 and I1 is a ψ1 -2-absorbing primary ideal of R1 that is not a 2-absorbing primary ideal of

R1 .

2. ψ1(R1) = R1 and I2 is a ψ2 -2-absorbing primary ideal of R2 that is not a 2-absorbing primary ideal of

R2 .

3. I2 = ψ2(I2) is a primary ideal of R2 and I1 ̸= R1 is ψ1 -primary ideal of R1 that is not primary such

that ψ1(I1) ̸= I1 (note that if I1 = 0 , then I2 ̸= 0).
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4. I1 = ψ1(I1) is a primary ideal of R2 and I2 ̸= R2 is a ψ2 -primary ideal of R2 that is not primary such

that ψ2(I2) ̸= I2 (note that if I1 = 0 , then I2 ̸= 0).

Proof Suppose that I is a ϕ-2-absorbing primary ideal of R that is not a 2-absorbing primary ideal of R .

Hence ϕ(I) ̸= ∅ . Assume that I1 = R1 . Then ψ1(R1) = R1 and I2 is a ψ2 -2-absorbing primary ideal of R2

that is not a 2-absorbing primary ideal of R2 by Theorem 13. Assume that I2 = R2 . Then ψ2(R2) = R2

and I1 is a ψ1 -2-absorbing primary ideal of R1 that is not a 2-absorbing primary ideal of R1 by Theorem

13. Thus assume that I1 ̸= R1 and I2 ̸= R2 . Since ϕ(I) ̸= I1 × I2 , we conclude that I/ϕ(I) is a nonzero

weakly 2-absorbing primary ideal of R/ϕ(I) that is not a 2-absorbing primary ideal of R/ϕ(I) by Theorem

2. Hence I1/ψ1(I1)× I2/ψ2(I2) is a nonzero weakly 2-absorbing primary ideal of R1/ψ1(I1)×R2/ψ2(I2) that

is not a 2-absorbing primary ideal of R1/ψ1(I1) × R2/ψ2(I2). Thus by [8, Theorem 2.23], we have either

I1/ψ1(I1) = ψ1(I1)/ψ1(I1) is a primary ideal ideal of R1/ψ1(I1) and I2/ψ2(I2) is a nonzero weakly primary

ideal of R2/ψ2(I2) that is not primary or I2/ψ2(I2) = ψ2(I2)/ψ2(I2) is a primary ideal of R2/ψ2(I2) and

I1/ψ1(I1) a nonzero weakly primary ideal of R1/ψ1(I1) that is not primary. Thus (3) or (4) must hold by

Theorem 2.

Conversely, suppose that ϕ(I) ̸= ∅ . If (1) or (2) holds, then I is a ϕ-2-absorbing primary ideal of R

that is not a 2-absorbing primary ideal of R by Theorem 13. Suppose that (3) or (4) holds, then I/ϕ(I) is

a nonzero weakly 2-absorbing primary ideal of R/ϕ(I) that is not 2-absorbing primary by [8, Theorem 2.23].

Thus I is a ϕ-2-absorbing primary ideal of R that is not a 2-absorbing primary ideal of R by Theorem 2. 2

Theorem 15 Let R1 and R2 be commutative rings with 1 ̸= 0 , I1 , I2 be nonzero ideals of R1 and R2 ,

respectively, and R = R1 × R2 . Let ψi : S(Ri) → S(Ri) ∪ ∅ (i = 1, 2) be functions such that ψ1(I1) ̸= I1 and

ψ2(I2) ̸= I2 . Let ϕ = ψ1 × ψ2. If I1 × I2 is a proper ideal of R , then the following statements are equivalent.

1. I1 × I2 is a ϕ -2-absorbing primary ideal of R.

2. I1 = R1 and I2 is a 2-absorbing primary ideal of R2 or I2 = R2 and I1 is a 2-absorbing primary ideal

of R1 or I1, I2 are primary ideals of R1 , R2 , respectively.

3. I1 × I2 is a 2-absorbing primary ideal of R.

Proof Suppose that ψ1(I1) = ∅ or ψ2(I2) = ∅ . Then ϕ(I1 × I2) = ∅ by Remark 2. Hence (1) ⇔ (2) ⇔ (3)

by [7, Theorem 2.23]. Thus assume that ϕ(I1 × I2) ̸= ∅ , and hence neither ψ1(I1) = ∅ nor ψ2(I2) = ∅ .
(1) ⇒ (2). Suppose that I1 × I2 is a ϕ-2-absorbing primary ideal of R. Hence I1/ψ1(I1) × I2/ψ2(I2)

is a weakly 2-absorbing primary ideal of R1/ψ1(I1) × R2/ψ2(I2) by Theorem 2. Hence by [8, Theorem

2.22], we conclude that I1/ψ1(I1) = R1/ψ1(I1) and I2/ψ2(I2) is a 2-absorbing primary ideal of R2/ψ2(I2)

or I2 = R2/ψ2(I2) and I1/ψ(I1) is a 2-absorbing primary ideal of R1/ψ1(I1) or I1/ψ1(I1), I2/ψ2(I2) are

primary ideals of R1/ψ1(I1), R2/ψ2(I2), respectively. Thus I1 = R1 and I2 is a 2-absorbing primary ideal of

R2 or I2 = R2 and I1 is a 2-absorbing primary ideal of R1 or I1, I2 are primary ideals of R1 , R2 , respectively,

by Lemma 3.

(2) ⇒ (3). Suppose that I1 = R1 and I2 is a 2-absorbing primary ideal of R2 or I2 = R2 and I1 is

a 2-absorbing primary ideal of R1 or I1, I2 are primary ideals of R1 , R2 , respectively. Then I1 × I2 is a

2-absorbing primary ideal of R by [8, Theorem 2.22].
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(3) ⇒ (1). Suppose that I1 × I2 is a 2-absorbing primary ideal of R. Then it is clear that I1 × I2 is a

ϕ -2-absorbing primary ideal of R by Lemma 3. 2

Theorem 16 Let R = R1 × R2 × · · · × Rn , where 2 < n < ∞ , and R1, R2 , ..., Rn are commutative rings

with 1 ̸= 0 . For each i , 1 ≤ i ≤ n , let ψi : S(Ri) → S(Ri) ∪ ∅ be a function, and let ϕ = ψ1 × · · · × ψn .

Let I = I1 × · · · × In be a nonzero proper ideal of R , where I1, ..., In are ideals of R1, ..., Rn , respectively. Let

M = {i|Ii is a proper ideal of Ri, 1 ≤ i ≤ n} . If |M | = 1 or n , then assume that ψx(Ix) ̸= Ix for some x ∈M

(note that |M | ≥ 1 since I is a proper ideal of R). If |M | ̸= n , then assume that ψy(Ry) ̸= Ry for some

y ∈ {1, ..., n} \M . Then the following statements are equivalent.

1. I is a ϕ-2-absorbing primary ideal of R .

2. I is a 2-absorbing primary ideal of R.

3. Either I = ×n
j=1Ij such that for some k ∈ {1, ..., n}, Ik is a 2-absorbing primary ideal of Rk , and Ij = Rj

for every j ∈ {1, ..., n} − {k} , or I = ×n
j=1Ij such that for some k, m ∈ {1, ..., n}, Ik is a primary ideal

of Rk, Im is a primary ideal of Rm , and Ij = Rj for every j ∈ {1, ..., n} − {k,m}.

Proof If ϕ(I) = ∅ , then (1) ⇔ (2) ⇔ (3) by [7, Theorem 2.24]. Hence assume that ϕ(I) ̸= ∅ .
(1) ⇒ (2). Since I is a ϕ-2-absorbing primary ideal of R , I/ϕ(I) is weakly 2-absorbing primary ideal

of R/ϕ(I) by Theorem 2. Let N = {i|ψi(Ii) ̸= Ri, 1 ≤ i ≤ n} . Then by hypothesis |N | ≥ 2. Since R/ϕ(I) is

ring-isomorphic to L = ×i∈NRi/ψi(Ii), J = ×i∈NIi/ψi(Ii) is a weakly 2-absorbing ideal of L . Suppose that

|N | ≥ 3. Since J is a nonzero weakly 2-absorbing ideal of L , we conclude that J is a 2-absorbing primary

ideal of L by [8, Theorem 2.24]. Thus I is a 2-absorbing primary ideal of R by Lemma 3. Hence assume that

|N | = 2. Then by hypothesis there are x, y ∈ {1, ..., n} such that Ix is a proper ideal of Rx with ψx(Ix) ̸= Ix and

Iy = Ry with ψy(Ry) ̸= Ry . Thus R/ϕ(I) is ring-isomorphic to F = Rx/ψx(Ix)×Ry/ψy(Iy). Since Ix/ψx(Ix),

Ry/ψy(Ry) are nonzero ideals of R/ψx(Ix) and Ry/ψy(Iy), respectively, and H = Ix/ψx(Ix)× Ry/ψy(Ry) is

a weakly 2-absorbing primary ideal of F , we conclude that H is a 2-absorbing primary ideal of F by [8,

Theorem 2.22]. Thus I is a 2-absorbing primary ideal of R by Lemma 3.

(2) ⇒ (3). It is clear by [7, Theorem 2.24].

(3) ⇒ (1). If (3) holds, then I is a 2-absorbing primary ideal of R by [7, Theorem 2.24]. Thus I is a

ϕ -2-absorbing primary ideal of R . 2

Theorem 17 Let R = R1 × R2 × · · · ×Rm , where 3 ≤ m < ∞ , and R1, R2 , ..., Rm are commutative rings

with 1 ̸= 0 . For each i , 1 ≤ i ≤ m , let ψi : S(Ri) → S(Ri) ∪ ∅ such that ψi(J) ̸= ∅ for every J ∈ S(Ri) . Let

ϕ = ψ1 × · · · × ψm . The following statements are equivalent.

1. Every proper ideal of R is a ϕ-2-absorbing primary ideal of R .

2. ψi(I) = I for every proper ideal I ∈ S(Ri) , where 1 ≤ i ≤ m . If m ≥ 4 , then ϕ = ϕ1 . If m = 3 and

ψd(Rd) ̸= Rd for some d , 1 ≤ d ≤ 3 , then every proper ideal of Ri is primary for every i ̸= d , 1 ≤ i ≤ 3 .
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Proof (1) ⇒ (2). Let Ik be a proper ideal of Rk , where 1 ≤ k ≤ m . We show that ψk(Ik) = Ik . Suppose that

ψk(Ik) ̸= Ik . Let I = I1×· · ·× Ik ×· · ·× Im such that Ii = 0 for each i ̸= k , 1 ≤ i ≤ m . Since ψk(Ik) ̸= Ik , I

is a nonzero proper ideal of R . Since ψk(Ik) ̸= Ik and 3 ≤ m <∞ , we conclude that I is a 2-absorbing ideal

of R by Theorem 16, which is impossible since I is not in the form given by Theorem 16(3). Thus ψi(Ii) = Ii

for every proper ideal Ii of Ri . Assume that m ≥ 4 and suppose that ψd(Rd) ̸= Rd for some d , 1 ≤ d ≤ m .

Let I = I1 × · · ·×Rd × · · ·× Im such that Ii = 0 for each i ̸= d , 1 ≤ i ≤ m . Since ψi(Ii) = Ii for every proper

ideal Ii of Ri , we conclude that J = I1 × · · · × Rd/ψd(Rd) × · · · × Im = 01 × · · · × Rd/ψd(Rd) × · · · 0m is a

nonzero weakly 2-absorbing primary ideal of R1 × · · · ×Rd/ψd(Rd)× · · · ×Rm
∼= R/ϕ(I) by Theorem 2, which

is impossible since m ≥ 4 and J is not in the form given by [8, Theorem 2.24]. Thus ϕ = ϕ1 . Assume that

m = 3 and suppose that ψd(Rd) ̸= Rd for some d , 1 ≤ d ≤ 3. Without loss of generality, we may assume that

d = 1. For every i ̸= 1, 2 ≤ i ≤ 3, let Ii be a proper ideal of Ri , and let I = R1×I2×I3 . Since ψi(Ii) = Ii for

every proper ideal Ii of Ri , we conclude that J = R1/ψ1(R1)× I2/I2 × I3/I3 is a nonzero weakly 2-absorbing

primary ideal of R1/ψ1(R1)×R2/I2 ×R3/I3 ∼= R/ϕ(I) by Theorem 2. Thus I2/I2 is a primary ideal of R/I2

and I3/I3 is a primary ideal of R3/I3 by [8, Theorem 2.24]. Thus I2 is a primary ideal of R2 and I3 is a

primary ideal of R3 .

(2) ⇒ (1). If m ≥ 4 and ϕ = ϕ1 , then the claim is clear. If m = 3, then the given conditions in this

case imply (1) by Theorem 2 and [8, Theorem 2.24]. 2

Let n ≥ 2. We remind the reader that a commutative ring R with 1 ̸= 0 is a von Neumann regular ring

if and only if In = I for every proper ideal I of R .

Theorem 18 Let R = R1 × R2 × · · · ×Rm , where 3 ≤ m < ∞ , and R1, R2 , ..., Rm are commutative rings

with 1 ̸= 0 . Let n ≥ 2 . The following statements are equivalent.

1. Every proper ideal of R is a ϕn -2-absorbing primary ideal of R .

2. R1, ..., Rm are von Neumann regular rings (and hence R is a von Neumann regular ring).

Proof (1) ⇒ (2). For each i , 1 ≤ i ≤ m , let ψi : S(Ri) → S(Ri) ∪ ∅ such that ψi(J) = Jn for every

J ∈ S(Ri). Then ψi(J) ̸= ∅ for every J ∈ S(Ri). Let ϕ = ψ1 × · · · × ψm . Then ϕ = ϕn . Thus ϕ = ϕn = ϕ1

by Theorem 17. Hence ϕn(I) = In = I for every ideal I of R . Thus ψk(J) = Jn = J for every ideal J of Rk .

Hence each Ri is a von Neumann regular ring, and thus R is a von Neumann regular ring.

(2) ⇒ (1). Since R is a von Neumann regular ring, In = I for every proper ideal I of R . Thus every

proper ideal of R is a ϕn -2-absorbing primary ideal of R . 2

The hypothesis that m ≥ 3 is crucial in Theorem 17 and Theorem 18. In the following result, we show

that when m = 2, then it is possible that every proper ideal of R is a ϕn -2-absorbing primary ideal of R , but

R need not be a von Neuemann regular ring.

Theorem 19 Let A,B be quasilocal commutative rings with 1 ̸= 0 that are not fields with maximal ideals
√
0A ,

√
0B , respectively. Let R = A × B (hence neither A nor B nor R is a von Neumann regular ring).

Then every proper ideal of R is a 2-absorbing primary ideal of R . In particular, if ϕ : S(R) → S(R) ∪ ∅ is a

function, then every proper ideal of R is a ϕ-2-absorbing primary ideal of R .

Proof It is clear that every proper ideal of A is a primary ideal of A and every proper ideal of B is a primary

ideal of B . It is also clear that every primary ideal is a 2-absorbing primary ideal. Hence every proper ideal of
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R is a 2-absorbing primary ideal of R by [7, Theorem 2.23]. 2

In view of the proof of Theorem 19 and [7, Theorem 2.23], we have the following result.

Theorem 20 Let R = R1×R2 , where R1 and R2 are commutative rings with 1 ̸= 0 . The following statements

are equivalent.

1. Every proper ideal of R is a 2-absorbing primary ideal of R .

2. Every proper ideal of R1 is a primary ideal of R1 and every proper ideal of R2 is a primary ideal of R2 .

Definition 3 Let I be a ϕ-2-absorbing primary ideal of R for some function ϕ . Suppose that I1I2I3 ⊆ I but

I1I2I3 ̸⊆ ϕ(I) , for some ideals I1, I2 , and I3 of R . We say I is a free-ϕ-triple-zero with respect to I1I2I3 if

(a, b, c) is not a ϕ-triple-zero of I for every a ∈ I1, b ∈ I2 , and c ∈ I3 .

Recall from [7] that if I is a weakly 2-absorbing primary ideal of R such that 0 ̸= I1I2I3 ⊆ I for some

ideals I1, I2 , and I3 of R and (a, b, c) is not a triple-zero of I for every a ∈ I1, b ∈ I2 , and c ∈ I3 , then we say

that I is a free-triple-zero with respect to I1I2I3 .

Conjecture 1 Let I be a ϕ-2-absorbing primary ideal of R for some function ϕ . Suppose that I1I2I3 ⊆ I but

I1I2I3 ̸⊆ ϕ(I) , for some ideals I1, I2 , and I3 of R . Then I is a free-ϕ-triple-zero with respect to I1I2I3 .

Theorem 21 Let I be a ϕ-2-absorbing primary ideal of R for some function ϕ . Suppose that I1I2I3 ⊆ I ,

but I1I2I3 ̸⊆ ϕ(I) for some ideals I1, I2 and I3 of R such that I is a free ϕ-triple-zero with respect to I1I2I3 .

Then I1I2 ⊆ I or I1I3 ⊆
√
I or I2I3 ⊆

√
I.

Proof Let J1 = (I1+ϕ(I))/ϕ(I), J2 = (I2+ϕ(I))/ϕ(I), and J3 = (I3+ϕ(I))/ϕ(I). Then J1, J2, J3 are ideals

of R/ϕ(I). Since I is a ϕ -2-absorbing primary ideal of R , I/ϕ(I) is a weakly 2-absorbing primary ideal of

R/ϕ(I) by Theorem 2. Since I is a free ϕ-triple-zero with respect to I1I2I3 , it is clear that 0 ̸= J1J2J3 ⊆ I/ϕ(I)

and I/ϕ(I) is a free-triple-zero with respect to J1J2J3 . Thus by [8, Theorem 3.11], we have J1J2 ⊆ I/ϕ(I) or

J1J3 ⊆
√
I/ϕ(I) or J1J2 ⊆

√
I/ϕ(I). Thus I1I2 ⊆ I or I1I3 ⊆

√
I or I2I3 ⊆

√
I. 2
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