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Abstract:We combine Euclidean and adequate rings, and introduce a new type of ring. A ring R is called an E-adequate

ring provided that for any a, b ∈ R such that aR + bR = R and c ̸= 0 there exists y ∈ R such that (a + by, c) is an

E-adequate pair. We shall prove that an E-adequate ring is an elementary divisor ring if and only if it is a Hermite ring.

Elementary matrix reduction over such rings is also studied. We thereby generalize Domsha, Vasiunyk, and Zabavsky’s

theorems to a much wider class of rings.
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1. Introduction

Throughout this paper, all rings are commutative with an identity. A matrix A (not necessarily square) over

a ring R admits diagonal reduction if there exist invertible matrices P and Q such that PAQ is a diagonal

matrix (dij), for which dii is a divisor of d(i+1)(i+1) for each i . A ring R is an elementary divisor ring provided

that every matrix over R admits a diagonal reduction. A ring R is a Hermite ring if every 1× 2 matrix over

R admits a diagonal reduction. As is well known, a ring R is Hermite if and only if for all a, b ∈ R there exist

a1, , b1 ∈ R such that a = a1d, b = b1d and a1R + b1R = R ([10, Theorem 1.2.5]). After Kaplansky’s work on

elementary divisor rings without zero divisors, Gillman and Henriksen proved that

Theorem 1.1 [10, Theorem 1.2.11] A ring R is an elementary divisor ring if and only if

(1) R is a Hermite ring;

(2) For all a1, a2, a3 ∈ R , a1R+a2R+a3R = R =⇒ there exist p, q ∈ R such that pa1R+(pa2+qa3)R = R .

One of the most attractive problems about the diagonal reduction of matrices is to investigate various

conditions under which a Hermite ring is an elementary divisor ring. Many authors have studied this problem

over some classes of rings, like Euclidean rings, 2-Euclidean rings, regular rings, adequate rings, and rings having

almost stable range 1 (cf. [3,6,8,9,11]).

A map φ : R → N (the nonnegative integers) is called a norm on R if it satisfies the following conditions:

(1) φ(0) = 0; (2) φ(x) > 0 for all x ̸= 0; (3) φ(xy) ≥ φ(x) wherever xy ̸= 0. A ring R is called Euclidean

provided that there exists a norm φ on R such that for any a, b ∈ R, b ̸= 0, we can write a = bq + r with

φ(r) < φ(b) (cf. [1,2]). As is well known, every Euclidean domain is an elementary divisor ring.
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An element c ∈ R is adequate provided that for any a ∈ R there exist some r, s ∈ R such that (1)

c = rs ; (2) rR + aR = R ; (3) s′R + aR ̸= R for each noninvertible divisor s′ of s . A B ézout ring in which

every nonzero element is adequate is called an adequate ring. Kaplansky proved that for the class of adequate

domains being a Hermite ring is equivalent to being an elementary divisor ring. This was extended to rings

with zero-divisors by Gillman and Henriksen. A ring R has stable range 1 if aR + bR = R with a, b ∈ R

there exists a y ∈ R such that a+ by ∈ R is invertible. Such a condition plays an important role in algebraic

K-theory (cf. [1]). It includes many kind of rings, e.g., regular rings, semiregular rings, π -regular rings, local

rings, and clean rings. Domsha and Vasiunyk combined this condition with adequate condition together. They

state that a ring R has adequate range 1 if aR+ bR = R with a, b ∈ R implies that there exists a y ∈ R such

that a + by ∈ R is adequate. [3, Theorem 14] says that every B ézout domain having adequate range 1 is an

elementary divisor ring.

Let R be a ring and a, b ∈ R . The pair (a, b) is said to be an E-adequate pair if there exist a Q ∈ GE2(R)

and an adequate element w ∈ R such that (a, b)Q = (w, v) for a v ∈ R . Then R is said to be E-adequate

if for any a, b ∈ R such that aR + bR = R and 0 ̸= c ∈ R , there exists y ∈ R such that (a + by, c) is an

E-adequate pair. In Section 2 we prove that an E-adequate ring is an elementary divisor ring if and only if it

is a Hermite ring. A matrix A over a ring admits an elementary reduction provided that A can be reduced

to diagonal form by elementary row (column) operations. In Section 3 we explore when every matrix over an

E-adequate ring admits an elementary reduction. We prove that for any m× n matrix over a type of strongly

E-adequate Bézout rings R there exist P ∈ GEm(R) and Q ∈ GEn(R), such that PAQ is a diagonal matrix

(dij), for which dii is a divisor of d(i+1)(i+1) for each i . More explicit related results are obtained as well. We

thereby generalize some known results to much wider class of rings, e.g., [3, Theorem 14], [4, Theorem 5.3], and

[10, Theorem 1.2.13].

We shall use J(R) and U(R) to denote the Jacobson radical of R and the set of all units in R ,

respectively. GLn(R) stands for the n-dimensional general group of R and GEn(R) means the subgroup

of GLn(R) generated by n× n elementary matrices over R .

2. Elementary divisor rings

Clearly, every ring having stable range 1 has adequate range 1. Thus, many known types of rings have adequate

range 1, for instance, every semilocal ring, every π -regular ring, and every clean ring (i.e. ring in which every

element is the sum of an idempotent and a unit). Moreover, we see that every adequate ring has adequate range

1. By [3, Theorem 11], every VNL ring (i.e. a or 1− a is regular for any element a ∈ R) has adequate range

1. We begin with

Proposition 2.1 If R has adequate range 1, then it is an E-adequate ring.

Proof Suppose that R has adequate range 1. Given aR+ bR = R with a, b ∈ R and 0 ̸= c ∈ R , we can find

a y ∈ R such that a+ by is an adequate element of R . Thus, we have (a+ by, c) · I2 = (a+ by, c). This shows

that the pair (a+ by, c) is an E-adequate pair. Therefore, R is an E-adequate ring. 2

Example 2.2 Let R = {a+ bx | a ∈ Z, b ∈ Q, x2 = 0} . Then R is an E-adequate ring.

Proof Clearly, J(R) = xQ . Suppose fR+gR = R . Case I. f ∈ J(R). Then g ∈ U(R); hence, f+g·1 ∈ U(R).

Case II. f ̸∈ J(R). Since R/J(R) ∼= Z then it is adequate. Now, as f ̸∈ J(R) then from f + J(R) adequate

it is easy to deduce that f ∈ R is adequate. Hence, f + g · 0 ∈ R is adequate. Thus, R has adequate range 1,

and so it is an E-adequate ring, by Proposition 2.1. 2
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We next record a characterization of E-adequate rings in terms of divisibility chain of finite length, as

done in ω -Euclidean rings (cf. [2]).

Proposition 2.3 Let R be a ring. Then the following are equivalent:

(1) R is an E-adequate ring.

(2) For any a, b ∈ R such that aR + bR = R and 0 ̸= c ∈ R , there exist a y ∈ R and two finite sequences

(qi)1≤i≤n and (ri)1≤i≤n of elements of R satisfying rn is adequate and the following equalities:

a+ by = cq1 + r1, c = r1q2 + r2, · · · , rn−3 = rn−2qn−1 + rn−1, rn−2 = rn−1qn + rn.

Proof (1) ⇒ (2) Suppose aR + bR = R with a, b ∈ R and 0 ̸= c ∈ R . By hypothesis, there exist a y ∈ R ,

a U ∈ GE2(R) and an adequate element w ∈ R such that (a+ by, c)U = (w, v) for a v ∈ R . By adding some

identity matrices, we may write U as(
1 0
x1 1

)(
1 x2

0 1

)
· · ·

(
1 0

xn−1 1

)(
1 xn

0 1

)(
α 0
0 β

)
,

where α, β ∈ U(R) and n ∈ N is even. Thus,

(a+ by, c)

(
1 0
x1 1

)(
1 x2

0 1

)
· · ·

(
1 0

xn−1 1

)(
1 xn

0 1

)
= (wα−1, vβ−1).

Let (a+ by, c)

(
1 0
x1 1

)
= (y1, z1). Then (a+ by)+ cx1 = y1, z1 = c . Let (y1, z1)

(
1 x2

0 1

)
= (y2, z2). Then

z1 + y1x2 = z2, y1 = y2. By iteration of this process, we let

(yn−2, zn−2)

(
1 0

xn−1 1

)
= (yn−1, zn−1),

(yn−1, zn−1)

(
1 xn

0 1

)
= (wα−1, vβ−1).

Then yn−2 + zn−2xn−1 = yn−1, zn−2 = zn−1, yn−1 = wα−1 , and zn−1 + yn−1xn = vβ−1. Let qi = −xi ,

ri = yi (i is odd) and ri = zi (i is even). Then we get a sequence of equations:

a+ by = cq1 + r1, c = r1q2 + r2, · · · , rn−3 = rn−2qn−1 + rn−1,

where rn−1 = wα−1 ∈ R is adequate, as desired.

(2) ⇒ (1) By hypothesis, there exists a finite divisible chain:

a = bq1 + r1, b = r1q2 + r2, · · · , rn−2 = rn−1qn + rn,

where rn ∈ R is adequate. Hence, we get (a, b)

(
0 −1
1 q1

)
= (b,−r1), (b,−r1)

(
0 −1
1 −q2

)
= (−r1,−r2),

(−r1,−r2)

(
0 −1
1 q3

)
= (−r2, r3), (−r2, r3)

(
0 −1
1 −q4

)
= (r3, r4), (r3, r4)

(
0 −1
1 q5

)
= (r4,−r5), · · · ,

and (
(−1)

(n−2)(n−1)
2 · rn−2, (−1)

(n−1)n
2 · rn−1

)( 0 −1
1 (−1)n−1qn

)
=

(
(−1)

(n−1)n
2 · rn−1, (−1)

n(n+1)
2 · rn

)
.
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Clearly, c := (−1)
n(n+1)

2 · rn ∈ R is adequate. Thus,

(
(−1)

(n−1)n
2 · rn−1, (−1)

n(n+1)
2 · rn

)( 0 −1
1 0

)
=

(
c, (−1)1+

(n−1)n
2 · rn−1

)
.

Let F (x) denote the matrix

(
0 −1
1 x

)
. Then

F (x) =

(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)(
1 x
0 1

)
is the product of four elementary matrices. This completes the proof. 2

The following lemma is well known (see [Lam, Excrise in Classical Ring Theory, Ex. 20.10B]). We include

a simple proof for completeness.

Lemma 2.4 If R has stable range 1, then J(R) = {x | x− u ∈ U(R) for any u ∈ U(R)} .

Proof Let x ∈ R and x− u ∈ U(R) for any u ∈ U(R). Let r ∈ R . Then xR+ (1− xr)R = R . Since R has

stable range 1, we have a y ∈ R such that u := x + (1 − xr)y ∈ U(R). Hence, x − u = −(1 − xr)y ∈ U(R),

and then 1− xr ∈ U(R). Therefore, x ∈ J(R), and thus yielding the result. 2

Recall that a ring R is semiregular provided that R/J(R) is regular and every idempotent lifts modulo

J(R). A ring R is semiregular if and only if for any a ∈ R there exists an idempotent e ∈ aR such that

a− ae ∈ J(R) (cf. [7]).

Lemma 2.5 Let R be a Bézout ring, and let a ∈ R be adequate. Then R/aR is semiregular.

Proof Let S = R/aR and x ∈ S . In view of [12, Theorem 2], 0 ∈ S is adequate. Then we have some

r, s ∈ R such that 0 = rs , where rS + xS = S and s′S + xS ̸= S for any noninvertible divisor s′ of s . Write

rS + sS = hS . If h ̸∈ U(S), then s = hs′ for some s′ ∈ R . Hence, hS + xS ̸= S . Write r = hr′ . Then

hS+xS = S , an absurd. This implies that rS+ sS = S . Since rS+xS = rS+ sS = S , we get rS+ sxS = S .

Write rc + sxd = 1 in S . Set e = rc . Then e2 − e = (rc)2 − rc = (rc)(sxd) = 0. Let u be an arbitrary

invertible element of S .

Claim I. (u− ex)S + rS = S . If not, (u− ex)S + rS = tS ̸= S . Then rS ⊆ tS , and so u ∈ eS + tS ⊆
rS + tS ⊆ tS . This implies that t ∈ U(S), a contradiction.

Claim II. (u− ex)S + sS = S . If not, (u− ex)S + sS = tS ̸= S . Then t is a noninvertible divisor of s ,

and so tS + xS ̸= S . It follows from eS + sS = S that eS + tS = S . Write u − ex = tw with w ∈ R . Then

e = ex+ tw , and so eS + tS ⊆ tS + xS ̸= S , an absurd.

Finally, (u−ex)S+rsS = S . we get u−ex ∈ U(S). This implies that
(
x−(1−e)x

)
−u = ex−u ∈ U(S).

In light of [12, Theorem 3], S has stable range 1. It follows from Lemma 2.4 that x− (1− e)x ∈ J(S). Clearly,

1− e = sxd ∈ xS . Therefore, the lemma is true. 2

Lemma 2.6 (cf. [10, Theorem 1.2.9]) Let R be a Hermite ring. Then the following are equivalent:

(1) R is an elementary divisor ring.

(2) Every matrix

(
a 0
b c

)
∈ M2(R) with aR+ bR+ cR = R admits an elementary reduction.
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We have accumulated all the information necessary to prove the following.

Theorem 2.7 Let R be an E-adequate ring. Then R is an elementary divisor ring if and only if R is a

Hermite ring.

Proof =⇒ This is obvious by Theorem 1.1.

⇐= Suppose that A =

(
a 0
b c

)
∈ M2(R) with aR + bR + cR = R . It will suffice to prove that A

admits an elementary reduction, in terms of Lemma 2.6. If c = 0, then aR + bR = R . Write ax + by = 1.

Then (
x y
−b a

)
A =

(
1 0
0 0

)
.

We check that det

(
x y
−b a

)
= 1, as desired.

If c ̸= 0, it will suffice to prove that A admits an elementary diagonal reduction. Write ax+ by+ cz = 1

for some x, y, z ∈ R . Then bR + (ax + cz)R = R . By hypothesis, there exists some t ∈ R such that

b+ (ax+ cz)t = w ∈ R and (w, c) is an E-adequate pair. Thus, we see that(
1 0
xt 1

)
A

(
1 0
zt 1

)
=

(
a 0
w c

)
.

As (w, c) is an E-adequate pair, there exist a Q ∈ GE2(R) and a d ∈ R such that (w, c)Q = (e, d) where e ∈ R

is adequate. Hence, (
a 0
w c

)
Q

(
0 1
1 0

)
=

(
∗ ∗
d e

)
.

As R is a Hermite ring, we can find a P ∈ GL2(R) such that (d, e)P = (q, 0) for a q ∈ R . Thus,

(d, e)P

(
0 1
1 0

)
= (0, q). Set

(
P

(
0 1
1 0

))−1
= (pij). Then (d, e) = (0, q)(pij), and so e = qp22 . Further,

we see that (
1 0
xt 1

)
A

(
1 0
zt 1

)
Q

(
0 1
1 0

)
P

(
0 1
1 0

)
=

(
p r
0 q

)
.

As aR + bR + cR = R , we see that rR + pR + qR = R . Since e ∈ R is adequate, R/eR is semiregular

by Lemma 2.5, and so (R/eR)/J(R/eR) is regular. For any α ∈ R/eR , we can find some β ∈ R such that(
α−αβα

)
+eR ∈ J(R/eR). It follows from eR ⊆ qR that

(
α−αβα

)
+qR ∈ J(R/qR). Thus, (R/qR)/J(R/qR)

is regular; hence, (R/qR)/J(R/qR) has stable range 1. This implies that R/qR has stable range 1.

Clearly, r(R/qR) + p(R/qR) = R/qR . Then we can find some t ∈ R such that r + pt ∈ R/qR is

invertible. Hence, (r + pt)k + ql = 1 for some k, l ∈ R . One easily checks that(
k l
−q r + pt

)(
p r
0 q

)(
1 t
0 1

)(
0 1
1 0

)(
1 −kp
0 1

)
=

(
1 0
0 −qp

)
.

Since det

(
k l
−q r + pt

)
= 1, we see that

(
k l
−q r + pt

)
∈ GL2(R), and therefore A admits diagonal

reduction, as asserted. 2
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We now extend [3, Theorem 14] to Bézout rings (not necessarily domains).

Corollary 2.8 If R has adequate range 1, then R is an elementary divisor ring if and only if it is a Bézout

ring.

Proof =⇒ In light of Theorem 1.1, R is a Hermite ring. Thus, it is a Bézout ring by [10, Corollary 2.1.3].

⇐= Suppose that aR+bR+cR = R with a, b, c ∈ R . Write ax+by+cz = 1 for some x, y, z ∈ R . Then

there exists s ∈ R such that w := a+ bys+ czs ∈ R is adequate. In view of Lemma 2.5, R/wR is semiregular;

hence, it has stable range 1. Clearly, wR+ bR+ cR = R , and so b
(
R/wR

)
+ c

(
R/wR

)
= R/wR . Thus, we can

find p ∈ R such that b+ cp ∈ U
(
R/wR

)
. This implies that wR+(b+cp)R = R , i.e. (a+bys+czt)k+(b+cp)l = 1

for some k, l ∈ R . It follows that

(a+ (b+ cp)ys+ c(zt− pys))k + (b+ cp)l = 1.

Thus,
(
a + c(zt − pys))R + (b + cp)R = R . This proves that R has stable range 2. In light of [10, Theorem

2.1.2], R is a Hermite ring. Hence, R is an elementary divisor ring, by Theorem 2.7. 2

Recall that a Bézout ring is an adequate ring if every nonzero element in R is adequate. Every adequate

ring has adequate range 1. It is convenient to prove that every adequate ring is an elementary divisor ring (cf.

[4, 11]).

Corollary 2.9 Every E-adequate Bézout domain is an elementary divisor ring.

Proof Let R be an E-adequate Bézout domain. In view of [10, Theorem 1.2.8], R is a Hermite ring, and

therefore we complete the proof, by Theorem 2.7. 2

3. Elementary matrix reduction

Among all rings in the class of elementary divisor rings there is a subclass of rings such that every matrix over

these rings can be reduced to canonical diagonal form, using only elementary operations. There are elementary

divisor rings over which there exist matrices that have no elementary matrix reduction, e.g., the principal ring

R[x, y]/(x2 + y2 + 1) ([10, p.38]). In fact, using elementary operations is crucial in matrix reduction. The aim

of this section is to investigate when every matrix over a ring admits an elementary reduction. Let R be a ring,

and let a, b ∈ R . We say that (a, b) is a strongly E-adequate pair provided that there exist a Q ∈ GE2(R) such

that (a, b)Q = (w, 0) for an adequate w ∈ R . Clearly, every strongly E-adequate pair in a ring is an E-adequate

pair. A ring R is strongly E-adequate provided that for any a, b ∈ R such that aR + bR = R and 0 ̸= c ∈ R ,

there exists a y ∈ R such that (a+ by, c) is a strongly E-adequate pair.

Proposition 3.1 Every ring having stable range 1 is strongly E-adequate.

Proof Suppose that R has stable range 1. Given aR + bR = R with a, b ∈ R and 0 ̸= c ∈ R , there exists a

y ∈ R such that u := a+ by ∈ U(R). Hence,

(a+ by, c)

(
1 −u−1c
0 1

)
= (u, 0),

thus yielding the result. 2
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Thus, we see that regular rings, π -regular rings, local rings, semilocal rings, and clean rings are all

strongly E-adequate.

Lemma 3.2 Let R be a ring. Then the following are equivalent:

(1) R is a strongly E-adequate ring.

(2) For any a, b ∈ R such that aR+bR and 0 ̸= c ∈ R , there exist a y ∈ R and two finite sequences (qi)1≤i≤n

and (ri)1≤i≤n−1 of elements of R satisfying rn−1 is adequate and the following equalities:

a+ by = cq1 + r1, c = r1q2 + r2, · · · , rn−3 = rn−2qn−1 + rn−1, rn−2 = rn−1qn.

Proof (1) ⇒ (2) Suppose aR + bR = R with a, b ∈ R and 0 ̸= c ∈ R . By hypothesis, there exist a y ∈ R

and a U ∈ GE2(R) such that (a + by, c)U = (w, 0) for some adequate element w ∈ R . As in the proof of

Proposition 2.3, we can find x1, · · · , xn and α ∈ U(R) such that

(a, b)

(
1 0
x1 1

)(
1 x2

0 1

)
· · ·

(
1 0

xn−1 1

)(
1 xn

0 1

)
= (wα−1, 0).

We may assume that n ∈ N is even. Let

(a, b)

(
1 0
x1 1

)
= (y1, z1),

(y1, z1)

(
1 x2

0 1

)
= (y2, z2),

...

(yn−2, zn−2)

(
1 0

xn−1 1

)
= (yn−1, zn−1),

(yn−1, zn−1)

(
1 xn

0 1

)
= (wα−1, 0).

Then yn−2 + zn−2xn−1 = yn−1, zn−2 = zn−1, yn−1 = wα−1 , and zn−1 + yn−1xn = 0. Let qi = −xi ,

ri = yi (i is odd) and ri = zi (i is even). Then we get a sequence of equations:

a = bq1 + r1, b = r1q2 + r2, · · · , rn−3 = rn−2qn−1 + rn−1, rn−2 = rn−1qn,

where rn−1 = wα−1 ∈ R is adequate, as required.

(2) ⇒ (1) For any a, b ∈ R such that aR + bR = R and 0 ̸= c ∈ R , there exist a y ∈ R and two finite

sequences (qi)1≤i≤n and (ri)1≤i≤n−1 of elements of R satisfying rn−1 is adequate and the following equalities:

a+ by = cq1 + r1, c = r1q2 + r2, · · · , rn−3 = rn−2qn−1 + rn−1, rn−3 = rn−1qn.

As in the proof of Lemma 2.3, we can find a Q ∈ GE2(R) such that (a + by, c)Q =
(
0, (−1)1+

(n−1)n
2 · rn−1

)
.

Therefore, (a+ by, c)Q

(
0 −1
1 0

)
=

(
(−1)1+

(n−1)n
2 · rn−1, 0

)
, as desired. 2

Theorem 3.3 Every Euclidean ring is a strongly E-adequate ring.
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Proof Let R be a Euclidean ring. Suppose that aR+bR = R and 0 ̸= c ∈ R . Since R is a Euclidean ring, it is

principal, and so R is neat by [5, Proposition 2.4], and so R/cR has stable range 1. Since a(R/cR)+b(R/cR) =

R/cR , there exists a y ∈ R such that a+ by ∈ U(R/cR). It follows that (a+ by)R+ cR = R . By hypothesis,

we have a norm φ on R , and that a + by = cq1 + r1 with φ(r1) < φ(c) or r1 = 0. If r1 ̸= 0, then there

exists a sequence of equations: c = r1q2 + r2 with φ(r2) < φ(r1) or r2 = 0. If r2 ̸= 0, then we have

r1 = r2q3 + r3 with φ(r3) < φ(r2) or r3 = 0. By iteration of this process, we shall find an infinite inequality:

· · · < φ(rm) < · · · < φ(r1), an absurd. Otherwise, we get a sequence of equations:

a+ by = cq1 + r1, c = r1q2 + r2, r1 = r2q3 + r3, · · · , rn−2 = rn−1qn.

Clearly, rn−2 ∈ rn−1R and rn−3 ∈ rn−2R+rn−1R ⊆ rn−1R . Repeating this process, we see that rn−4, · · · , c, a+
by ⊆ rn−1R . Hence, R = (a+ by)R+ cR ⊆ rn−1R ⊆ R . This implies that rn−1R = R , and thus rn−1 ∈ U(R).

Therefore, R is a strongly E-adequate ring, by Lemma 3.2. 2

The converse of Theorem 3.3 is not true as the following shows.

Example 3.4 Let R = F [[X,Y ]] where F is a field. Then R is a strongly E-adequate ring while it is not a

Euclidean ring.

Proof Since R is a local ring, it has stable range 1. Thus it is a strongly E-adequate ring by Proposition 3.1.

However, R is not a Bézout domain, since the ideal XR + Y R cannot be generated be an element. Hence, R

is not a principal ideal ring. Therefore, R is not a Euclidean ring, as required. 2

A ring R is elementary principal if, for any a, b ∈ R , there exist c ∈ R and Q ∈ GE2(R) such that

(a, b)Q = (c, 0). Examples of elementary principal rings are Euclidean rings, valuation rings, and regular rings

([13]).

Lemma 3.5 Every strongly E-adequate Bézout ring is elementary principal.

Proof Let R be a strongly E-adequate Bézout ring. For any a, b ∈ R , there exist d, s, t, x, y ∈ R

such that as + bt = d, a = dx , and b = dy . If y = 0, then (a, b) = (a, 0). We now assume that

y ̸= 0. Let w = xs + yt − 1. Then dw = 0 and xR + (yt − w)R = R . By hypothesis, there exists a

z ∈ R and a Q ∈ GE2(R) such that
(
x + (yt − w)z, y

)
Q = (v, 0) for an adequate element v ∈ R . Thus,

(a+ btz, b)Q = d
(
x+ (yt− w)z, y

)
Q = d(v, 0) = (dv, 0). That is,

(a, b)

(
1 0
tz 1

)
Q = (dv, 0).

Thus, R is elementary principal, as asserted. 2

Theorem 3.6 Let R be a strongly E-adequate ring. Then the following are equivalent:

(1) Every matrix over R admits an elementary reduction.

(2) R is a Bézout ring.

Proof (1) ⇒ (2) This is obvious.

(2) ⇒ (1) By virtue of Lemma 3.5, R is elementary principal, and so R is a Hermite ring. It follows

by [13, Theorem 1] that R is a quasi-Euclidean ring. In light of [13, Proposition 2], it suffices to consider
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matrices A =

(
a 0
b c

)
, where aR + bR + cR = R . Since R is strongly E-adequate, it is E-adequate. In

light of Theorem 2.7, we can find U, V ∈ GL2(R) such that UAV admits a diagonal reduction. Clearly, every

elementary principal ring is a GE2 -ring, and so GL2(R) = GE2(R). Hence, U, V ∈ GE2(R). This completes

the proof. 2

As an immediate consequence of Theorem 3.6 and Theorem 3.3, we now derive a known result of

Kaplansky’s (cf. [4]).

Corollary 3.7 Every matrix over Euclidean rings admits an elementary reduction.

A ring R is adequately stable provided that for any adequate a ∈ R, aR+ bR = R =⇒ ∃y ∈ R such that

a+ by ∈ U(R). We turn to E-adequate rings under adequately stable condition.

Lemma 3.8 Let R be an E-adequate ring. If R is adequately stable, then aR+ bR = R with a, b ∈ R implies

that there exists some U ∈ GE2(R) such that (a, b)U = (1, 0) .

Proof Suppose aR + bR = R with a, b ∈ R . Case I. b = 0. Then a ∈ U(R). Hence, (a, b)Q = (1, 0) where

Q =

(
a−1 0
0 1

)
∈ GE2(R). Case II. b ̸= 0. By hypothesis, we can find a y ∈ R such that (a + by, b) is an

E-adequate pair. Thus, there exist a Q ∈ GE2(R) and an adequate w ∈ R such that (a+ by, b)Q = (w, v) for

a v ∈ R . It follows that

(a, b)

(
1 0
y 1

)
Q = (w, v).

Since wR+ vR = R , we have a z ∈ R such that u := w + vz ∈ U(R). Therefore,

(a, b)

(
1 0
y 1

)
Q

(
1 0
z 1

)(
1 −u−1v
0 1

)(
u−1 0
0 1

)
= (1, 0),

the result follows. 2

Recall that a ring R has stable range 2 if a1R+ a2R+ a3R = R implies that there exist some b1, b2 ∈ R

such that (a1 + a3b1)R + (a2 + a3b2)R = R (cf. [1]). For instance, every elementary divisor ring has stable

range 2.

Lemma 3.9 Let R be an E-adequate ring having stable range 2. If R is adequately stable, then a1R+ a2R+

· · ·+ anR = R (n ≥ 2) implies that there exists some U ∈ GEn(R) such that (a1, a2, · · · , an)U = (1, 0, · · · , 0).

Proof By virtue of Lemma 3.8, the result holds for n = 2. Assume that the result holds for n = k(k ≥ 2).

Let n = k + 1. Then (a1 + ak+1c1)R+ · · ·+ (ak + ak+1ck)R = R for some c1, · · · , ck ∈ R . Hence,

(a1, a2, · · · , an)


1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

c1 c2 · · · ck 1

 = (a1 + ak+1c1, · · · , ak + ak+1ck, an).

By hypothesis, there exists some Q ∈ GEk(R) such that (a1 + ak+1c1, · · · , ak + ak+1ck)Q = (1, 0, · · · , 0).
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Therefore,

(a1, a2, · · · , an)


1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

c1 c2 · · · ck 1


(

Q
1

)

= (a1 + ak+1c1, · · · , ak + ak+1ck, an)

(
Q

1

)
= (1, 0, · · · , 0, an).

Let

U =


1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

c1 c2 · · · ck 1


(

Q
1

)


1 0 · · · 0 −an
0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

 .

Then (a1, a2, · · · , an)U = (1, 0, · · · , 0). By induction, we obtain the result. 2

Lemma 3.10 Let R be an E-adequate ring having stable range 2. If R is adequately stable, then R is a

GE-ring, i.e. GLn(R) = GEn(R) for all n ∈ N .

Proof Let A = (aij) ∈ GLn(R). Then a11R + · · · + a1nR = R . In view of Lemma 3.9, there exists some

U ∈ GEn(R) such that (a11, · · · , a1n)U = (1, 0, · · · , 0). Thus we deduce that

AU =

(
1 0
C B

)
.

This implies that (
1 0

−C In−1

)
AU =

(
1

B

)
for some B ∈ GLn−1(R). By iteration of this process, we can find V,W ∈ GEn(R) such that V AW =

diag(1, 1, · · · , 1, u) for an invertible u ∈ R , and therefore R is a GE -ring. 2

Theorem 3.11 Let R be an E-adequate ring. If R is adequately stable, then the following are equivalent:

(1) Every matrix over R admits an elementary reduction.

(2) R is a Hermite ring.

Proof (1) ⇒ (2) Clearly, R is an elementary divisor ring, and then R is a Hermite ring, by Theorem 1.1.

(2) ⇒ (1) Let A be an m × n matrix over R . In light of Theorem 2.7, there exist U ∈ GLm(R) and

V ∈ GLn(R) such that

UAV =



ε1
ε2

. . .

εr · · · 0
...

...
0 · · · 0


where εi is a divisor εi+1.
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As R is a Hermite ring, R has stable range 2, by [10, Corollary 2.1.1]. Thus, it follows by Lemma 3.10 that R

is a GE-ring. Hence, we prove that U ∈ GEm(R) and V ∈ GEn(R), and therefore the result follows. 2

Corollary 3.12 If R has stable range 1, then the following are equivalent:

(1) Every matrix over R admits an elementary reduction.

(2) R is a Bézout ring.

Proof One direction is obvious. Conversely, assume that R is a Bézout ring. Then R is a Hermite ring, by

[10, Corollary 2.1.8]. Obviously, R is an E-adequate ring and adequately stable. Therefore, we complete the

proof by Theorem 3.11. 2

As an immediate consequence of Corollary 3.12, we prove that every matrix over regular rings admits an

elementary reduction.
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