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Abstract:We consider the nonlinear equation −∆u = |u|p−1u−εu in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded

domain in Rn , n ≥ 4, ε is a small positive parameter, and p = (n+2)/(n−2). We study the existence of sign-changing

solutions that concentrate at some points of the domain. We prove that this problem has no solutions with one positive

and one negative bubble. Furthermore, for a family of solutions with exactly two positive bubbles and one negative

bubble, we prove that the limits of the blow-up points satisfy a certain condition.
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1. Introduction

In this paper, we study the sign-changing solutions for the following semilinear elliptic problem:

(Pε)

{
−∆u = |u|p−1u− εu in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn , n ≥ 4, ε is a small positive parameter, and p+ 1 = 2n
n−2 is the

critical Sobolev exponent for the embedding of H1
0 (Ω) into Lp+1(Ω).

The Sobolev embedding H1
0 (Ω) ↪→ Lp+1(Ω) is known to be noncompact, and for this reason, the

solvability of (Pε) is quite delicate. Pohozaev’s identity [24] shows that the problem (Pε) has only a trivial

solution if the domain Ω is assumed to be strictly star-shaped.

Moreover, during the last two decades, there has been extensive research on this problem, and much

progress has been made with regard to the existence of positive solutions. It is known that there is an effect of

the domain topology on the existence of positive solutions. The first attempts were made by Bahri and Coron

[2], who found a positive solution for (P0) in the case that the domain Ω satisfies some nontrivial topological

conditions. Moreover, Dancer [13] and Ding [14] gave an example of contractible domains on which a solution

still exists, showing that both topology and geometry of the domains play a prominent role.

The great contribution was the work of Brezis and Nirenberg [10]. Assuming that Ω is a bounded regular

domain in Rn , n ≥ 4 and ε ∈ (−λ1(Ω), 0), where λ1(Ω) denotes the first eigenvalue of −∆ under the Dirichlet

boundary condition. They proved that (Pε) has a solution. Furthermore, for n = 3 there exists λ∗
1 > 0 such

that (Pε) has a solution if ε ∈ (−λ1(Ω),−λ⋆
1). This paper highlighted the crucial role played by the dimension
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n in the study of (Pε). The reason for this difference relies on the presence in the equation of the lower order

term εu , which makes the estimates quite different.

After the work of Brezis and Nirenberg, Han in [16] proved that the solution found by them blows up

at the critical point of Robin’s function defined by φ(x) = H(x, x), where H is the regular part of Green’s

function as ε < 0 goes to zero. Conversely, in [25, 26] Rey proved that any C1 -stable critical point of Robin’s

function generates a family of solutions that blow up at this point as ε goes to zero. Moreover, in [19], Musso

and Pistoia considered the case where ε > 0 is close to 0. They also proved the existence of a family of solutions

that blow up and concentrate in two points if Ω is a domain with a small “hole”.

The existence and qualitative behavior of sign-changing solutions for elliptic problems with critical

nonlinearity have been extensively investigated during the last few decades (see [4, 5, 7, 8, 11, 12, 15, 17,

18, 20, 21]). Ben Ayed et al. in [7, 8] studied the blow-up of the low energy sign-changing solutions of (P−ε),

which converges to the value 2Sn/2 as ε → 0. More precisely, they proved that the solution blow-up occurs at

exactly two points, which are the limits of concentration points of the positive and negative parts of the solution

and whose distance from each other and from the boundary is bounded. In [11], Castro and Clapp considered a

suitable symmetric domain Ω and proved the existence of one pair of solutions that change sign exactly once,

provided that n ≥ 4 and ε < 0 small. Micheletti and Pistoia in [18] and Bartsh et al. in [4] generalized such a

result showing the existence of at least N pairs of sign-changing solutions with one positive and one negative

blow-up point.

The study of asymptotic behavior would become difficult in the absence of solution positivity assumption.

The major difficulty is that the limit problem of (Pε) after a change of variable is

−∆u = |u|p−1u in Rn, (1.1)

having many unknown sign-changing solutions. However, interesting information about energy shows that (see

[27]) ∫
Rn

|∇w|2 > 2Sn/2, for each sign-changing solution w of (1.1), (1.2)

where S denotes the best minimizer of the Sobolev inequality on the whole space; that is,

S = inf{|∇u|2L2(Rn)|u|
−2
L2n/(n−2)(Rn)

: ∇u ∈ L2(Rn), u ∈ L2n/(n−2)(Rn), u ̸= 0}.

When we add the positivity assumption, the solutions of (1.1) are the family

δ(a,λ)(x) = c0
λ(n−2)/2

(1 + λ2|x− a|2)(n−2)/2
, c0 = (n(n− 2))(n−2)/4, λ > 0, a ∈ Rn. (1.3)

The space H1
0 (Ω) is equipped with the norm ∥.∥ and its corresponding inner product < ., . > defined by

∥u∥ =
(∫

Ω

|∇u|2
)1/2

and < u, v >=

∫
Ω

∇u∇v, u, v ∈ H1
0 (Ω). (1.4)

When we study problem (1.1) in a bounded smooth domain Ω, we need to introduce the function Pδ(a,λ) ,

which is the projection of δ(a,λ) on H1
0 (Ω). This function satisfies the following:

−△Pδ(a,λ) = −△δ(a,λ) in Ω; Pδ(a,λ) = 0 on ∂Ω.
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We are particularly interested in the existence and nonexistence of sign-changing solutions that blow up

positively and negatively at different points of Ω as the parameter ε goes to zero in the sense of the following

definition.

Definition 1.1 Let (uε) be a family of solutions for (Pε) . We say that (uε) blow up positively at different k1

points, a1, ..., ak1
, in Ω and blow up negatively at different k2 points, ak1+1, ..., ak1+k2 , in Ω if there exist k1+k2

points a1,ε, ...., ak1+k2,ε ∈ Ω and k1 + k2 concentration λ1,ε, ...., λk1+k2,ε with lim
ε→0

ai,ε = ai , lim
ε→0

λi,ε = +∞ ,

λi,εd(ai,ε, ∂Ω) → +∞ for i = 1, ..., k1 + k2 and εij =
(

λi

λj
+

λj

λi
+ λiλj |ai − aj |2

) 2−n
2 → 0 as ε → 0 for i ̸= j ,

such that ∥∥∥uε −
( k1∑

i=1

Pδ(ai,ε,λi,ε) −
k1+k2∑
i=k1+1

Pδ(ai,ε,λi,ε)

)∥∥∥→ 0 in H1
0 (Ω) as ε → 0. (1.5)

Our first result concerns the nonexistence of sign-changing solutions that blow up at two points.

Theorem 1.1 Let Ω be any smooth bounded domain in Rn , n ≥ 4 . There exists ε0 > 0 , such that, for each

ε ∈ (0, ε0) , problem (Pε) has no sign-changing solutions uε that blow up positively at a1,ε ∈ Ω and negatively

at a2,ε ∈ Ω .

To state the result in the case of three concentration points, we need to introduce some notations. We denote

by G Green’s function of the Laplace operator defined by: ∀x ∈ Ω

−∆G(x, .) = cnδx in Ω, G(x, .) = 0 on ∂Ω,

where δx denotes the Dirac mass at x and cn = (n− 2)wn , with wn being the area of the unit sphere of Rn .

We denote by H the regular part of G ; that is,

H(x1, x2) = |x1 − x2|2−n −G(x1, x2) for (x1, x2) ∈ Ω2.

Note that the construction of positive solutions that concentrate at different k points of Ω, with k ≥ 2, is

related to suitable critical points of the function Ψk : Rk
+ × Ωk → R defined by

Ψk(Λ, x) =
1

2
(M(x)Λ,Λ) +

1

2

k∑
i=1

Λ
4

n−2

i ,

where Λ =T (Λ1, ...,Λk), M(x) = (mij)1≤i,j≤k , being the matrix defined by

mii = H(ai, ai) for i = 1, ..., k,mij = mji = −G(ai, aj) for i ̸= j.

Let ρ(x) be the smallest eigenvalue of M(x) and r(x) the eigenvector corresponding to ρ(x) whose norm is 1.

We point out that we can choose r(x) so that all their components are strictly positive (see [3, 6]).

Note that in the positive case, all positive solutions blow up with comparable speeds. However, for the

subcritical semilinear Dirichlet problem, Pistoia and Weth in [23] constructed a family of sign-changing solutions

with k bubbles, concentrated at the same point in the case where Ω is a symmetric domain with respect to

the x1, ..., xn axes. This result is generalized by Musso and Pistoia in [22], under a suitable assumption on the
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nondegeneracy of Robin’s function. Moreover, Ben Ayed and Ould Bouh in [9] proved that the phenomenon of

bubble-tower solutions cannot occur in the supercritical case. In this theorem, we prove that this phenomenon

cannot occur in the case where k = 3, in the sense that the distances of the two positive blow-up points from

each other and from the boundary are bounded.

Theorem 1.2 Let Ω be any smooth bounded domain in Rn , n ≥ 4 . Assume that uε is a solution of (Pε) that

blows up positively at (aε,1, aε,3) ∈ Ω2 and negatively at aε,2 ∈ Ω .

Then, when ε → 0 , aε,i → ai for i = 1, 3 , |a1 − a3| ≥ c0 and we have either ρ(a1, a3) = 0 and

∇ρ(a1, a3) = 0 or:

If n ≥ 5 (Λ1,Λ3, a1, a3) is a critical point of Ψ2 , where Λi = cµi with µi = lim
ε→0

ε
1

n−4λi > 0 for i ∈ {1, 3}

and c is a positive constant.

If n = 4 , let ηi denote the limit of λε,i/λε,j (η1 = η−1
3 ) and Λ the limit of Λi =

c3
c1

ε log(λi) up to a

subsequence, and then (ηi,Λ) satisfies

H(ai, ai)− ηiG(a1, a3) + Λ = 0 and − ∂H(ai, ai)

∂ai
+ 2ηi

∂G(a1, a3)

∂ai
= 0, for i = 1, 3. (1.6)

Note that in the positive case, if Ω is a domain with a small “hole”, Musso and Pistoia [19] proved the existence

of a family of solutions that blow up at two points. In the case of sign-changing solutions, we have the following

example of the existence result.

Remark 1.3 Let D be a bounded domain in Rn , n ≥ 5 , which is symmetric with respect to the hyperplane

T = {x = (x1, x2, ..., xn)/xn = 0} (i.e. x = (x1, x2, ..., xn) ∈ D iff x = (x1, x2, ...,−xn) ∈ D ). There exists

r0 > 0 such that, if 0 < r < r0 is fixed and Ω is the domain given by Ω = D \ w1 ∪ w2 where w1 ⊂ B(a, r)

(a ∈ D \ T ) and w2 is the symmetric of w1 with respect to the hyperplane T , then there exists ε0 > 0 such

that problem (Pε) has a pair of solutions ±uε for any 0 < ε < ε0 , which blow up positively at two points and

negatively at two points of Ω .

To state a more general situation in the case of four concentration points, we define the following subset of

H1
0 (Ω):

Mε = {(α, λ, a, v) ∈ R4 × (R∗
+)

4 × Ω4 ×H1
0 (Ω) such that ∀ i ∈ {1, .., 4}, |αi − 1| < α0, d(ai, ∂Ω) ≥ d0,

λi ∈ [c−1
0 ε−1/(n−4), c0ε

−1/(n−4)], |ai − aj | ≥ d0 ∀i ̸= j, v ∈ E, ∥v∥ ≤ η0},

where η0 , c0 , α0 , d0 are suitable positive constants and E = {Pδ(aε,i,λε,i), ∂Pδ(aε,i,λε,i)/∂λε,i, ∂Pδ(aε,i,λε,i)/∂a
j
i ,

i ≤ k; j ≤ n}}⊤ .

Assume that uε is a family of solutions of (Pε), with exactly two positive blow-up points and two negative

blow-up points. Then, in the limit, the blow-up points have to satisfy a certain condition in terms of Green’s

function and its regular part and we have the following result.
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Theorem 1.4 Let Ω be any smooth bounded domain in Rn , n ≥ 5 . Assume that uε is a sign-changing solution

of (Pε) of the form

uε =

4∑
i=1

γiαε,iPδ(aε,i,λε,i) + vε, (1.7)

where γ1 = γ3 = 1 , γ2 = γ4 = −1 , (αε, λε, aε, vε) ∈ Mε . Then when ε → 0, αε,i → 1, aε,i → ai, cε
−1/(n−4)λε,i →

Λi for i = 1, ..., 4 and (Λ, a) is a critical point of Φ4 , where Φ4 is defined by

Φ4(Λ, a) =
1

2
(M(a)Λ,Λ) +

1

2

4∑
i=1

Λ
4

n−2

i ,

where Λ =T (Λ1, ...,Λk) , M(a) = (mij)1≤i,j≤4 is the matrix defined by

mii = H(ai, ai) for i = 1, ..., 4,mij = mji = −γiγjG(ai, aj) for i ̸= j.

This paper is organized as follows. In Section 2 we prove Theorems 1.1 and 1.2. Section 3 is devoted to

the proof of Theorem 1.4. Finally, the Appendix provides some integral estimates that are needed in Section 2.

2. Proof of Theorems 1.1 and 1.2

This section is devoted to the proof of Theorems 1.1 and 1.2. It presents some ideas introduced by Bahri [1]

and other technical estimates.

Let k ≥ 2 be a fixed integer. We assume that there exists solution uε of (Pε) as in Definition 1.1.

Arguing as in [1, 25], we see that there is a unique way to choose αε,i , aε,i , λε,i , and vε such that

uε =
k∑

i=1

γiαε,iPδ(aε,i,λε,i) + vε, (2.1)

with 
γi ∈ {−1, 1}, αε,i ∈ R, αε,i → 1, as ε → 0,

ai,ε ∈ Ω, λi,ε ∈ R∗
+, λε,id(aε,i, ∂Ω) → +∞, as ε → 0,

vε → 0 in H1
0 (Ω), as ε → 0,

where vε ∈ E such that:

E := {v :< v,φ >= 0 ∀φ ∈ Span{Pδ(aε,i,λε,i), ∂Pδ(aε,i,λε,i)/∂λε,i, ∂Pδ(aε,i,λε,i)/∂a
j
ε,i, i ≤ k; j ≤ n}}, (2.2)

where ajε,i is the j th component of aε,i .

To simplify the notation, we write αi, ai , λi , v , δi , and Pδi instead of αε,i , aε,i , λε,i , vε , δ(aε,i,λε,i) ,

and Pδ(aε,i,λε,i) . We denote by f = O(g) as ε → 0 that f/g is bounded for ε near 0 and by f = o(g) as

ε → 0 that f/g goes to zero as ε → 0.

This type of problem is usually handled by first dealing with the v -part of uε , so as to show that it is

negligible with respect to the concentration phenomenon. Namely, we have the following estimate.
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Lemma 2.1 Let k = 2 , and the function v defined in (2.1) satisfies the following estimate:

∥v∥ = O



2∑
i=1

( ε

λ
n−2
2

i

+
1

(λidi)n−2

)
+ ε12(log(ε

−1
12 ))

n−2
2 , if n = 4, 5,

2∑
i=1

(ε(log λi)
2
3

λ2
i

+
log(λidi)

(λidi)4

)
+ ε12(log(ε

−1
12 ))

2
3 , if n = 6,

2∑
i=1

( ε

λ2
i

+
1

(λidi)
n+2
2

)
+ ε

n+2
2(n−2)

12 (log(ε−1
12 ))

n+2
2n , if n > 6,

where ε12 =
(λ1

λ2
+

λ2

λ1
+ λ1λ2|a1 − a2|2

)(2−n)/2

and di := d(ai, ∂Ω) .

Proof Since uε = α1Pδ1 − α2Pδ2 + v is a solution of (Pε) and using the fact that v ∈ E (see (2.2)),

multiplying (Pε) by v and integrating on Ω, we obtain

∫
Ω

−△uεv = ∥v∥2 =

∫
Ω

|α1Pδ1 − α2Pδ2 + v|p−1(α1Pδ1 − α2Pδ2 + v)v − ε

∫
Ω

(α1Pδ1 − α2Pδ2 + v)v

=

∫
Ω

|α1Pδ1 − α2Pδ2|p−1(α1Pδ1 − α2Pδ2)v + p

∫
Ω

|α1Pδ1 − α2Pδ2|p−1v2

+ o(∥v∥2)− ε

∫
Ω

(α1Pδ1 − α2Pδ2 + v)v.

Hence, we have

Q(v, v) + o(∥v∥2) = f(v), (2.3)

where

Q(v, v) = ∥v∥2 − p

∫
Ω

|α1Pδ1 − α2Pδ2|p−1v2 = ∥v∥2 − p
2∑

i=1

∫
Ω

Pδp−1
i v2 + o(∥v∥2),

f(v) =

∫
Ω

|α1Pδ1 − α2Pδ2|p−1(α1Pδ1 − α2Pδ2)v − ε

∫
Ω

(α1Pδ1 − α2Pδ2)v.

According to [1], Q is a positive definite quadratic form on v , and thus there exists c > 0 independent of ε ,

satisfying Q(v, v) ≥ c∥v∥2 , for each v ∈ E . Then, from (2.3), we get

∥v∥2 = O(|f(v)|).

It remains to estimate f(v). Using the fact that v ∈ E , Holder’s inequality, and the embedding theorem, we
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find

f(v) = α
n+2
n−2

1

∫
Ω

Pδ
n+2
n−2

1 v − α
n+2
n−2

2

∫
Ω

Pδ
n+2
n−2

2 v +O
(∑

i ̸=j

∫
Ω

δ
4

n−2

i inf(δi, δj)|v|+
2∑

i=1

ε

∫
Ω

δi|v|
)

= O
( 2∑

i=1

∫
Ω

δ
4

n−2

i (δi − Pδi)|v|+
∑
i̸=j

∫
Ω

δ
4

n−2

i inf(δi, δj)|v|
)

+ O
(
∥v∥

2∑
i=1

( ε

λ
n−2
2

i

( if n = 4, 5) +
ε(log λi)

2
3

λ2
i

( if n = 6) +
ε

λ2
i

( if n > 6)
))

=



O

(
∥v∥
( 2∑

i=1

( ε

λ
n−2
2

i

+
1

(λidi)n−2

)
+ ε12(log(ε

−1
12 ))

n−2
n

))
, if n = 4, 5,

O

(
∥v∥
( 2∑

i=1

(ε(log λi)
2
3

λ2
i

+
log(λidi)

(λidi)4
)
+ ε12(log(ε

−1
12 ))

2
3

))
, if n = 6,

O

(
∥v∥
( 2∑

i=1

( ε

λ2
i

+
1

(λidi)
n+2
2

)
+ ε

n+2
2(n−2)

12 (log(ε−1
12 ))

n+2
2n

))
, if n > 6.

2

Now we are able to obtain the following result, which is a crucial point in the proof of Theorem 1.1.

Proposition 2.2 Assume that uε = α1Pδ1 − α2Pδ2 + v is a sign-changing solution of (Pε) . We have the

following estimate:

Snαi(1− α
4

n−2

i ) = O
(∑

j

( 1

(λjdj)n−2
+

ε

λ2
j

+ (if n = 4)
ε log λidj

λ2
j

)
+ ε12

)
,

where i ∈ {1, 2} and Sn =

∫
Rn

δ
2n

n−2

(0,1)(y)dy.

Proof It suffices to prove the proposition for i = 1. Multiplying (Pε) by Pδ1 and integrating on Ω, we

obtain∫
Ω

−∆uεPδ1 =

∫
Ω

|α1Pδ1 − α2Pδ2 + v|
4

n−2 (α1Pδ1 − α2Pδ2 + v)Pδ1 − ε

∫
Ω

(α1Pδ1 − α2Pδ2 + v)Pδ1. (2.4)

By Lemma 2.1, we write

α1∥Pδ1∥2 − α2

⟨
Pδ2, P δ1

⟩
=

∫
Ω

(
α

n+2
n−2

1 Pδ
2n/(n−2)
1 − α

n+2
n−2

2 Pδ1Pδ
(n+2)/(n−2)
2

)
− n+ 2

n− 2

∫
Ω

α
4/(n−2)
1 α2Pδ

n+2
n−2

1 Pδ2 − ε

∫
Ω

α1Pδ21 +O
(∑

j

( 1

(λjdj)n−2
+

ε

λ2
j

)
+ ε12

)
. (2.5)

Using Lemmas A.1,..., A.4 and Lemma A.15, the result follows. 2
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Proposition 2.3 Assume that uε = α1Pδ1 − α2Pδ2 + v is a sign-changing solution of (Pε) .

(a) For n ≥ 5 , we have the following estimate:

−n− 2

2
c1

H(ai, ai)

λn−2
i

+ c1

(
λi

∂ε12
∂λi

+
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

)
− c2ε

λ2
i

= Ai with

Ai = O
( 2∑

k=1

( log(λkdk)

(λkdk)n
+ ε

n
n−2

12 log(ε−1
12 ) + εε12 +

ε

(λidi)n−2

)
+ ε2R1,

where i ∈ {1, 2} , c1 = c
2n

n−2

0

∫
Rn

dx

(1 + |x|2)n+2/2
, c2 = c20

∫
Rn

dx

(1 + |x|2)n−2
, and R1 satisfies

R1 =



O
( 2∑

k=1

1

λ4
k

)
, if n > 6,

O
( 2∑

k=1

(log λk)
4
3

λ4
k

)
, if n = 6,

O
( 2∑

k=1

1

λn−2
k

)
, if n = 4, 5.

(b) For n = 4 , we have

−n− 2

2
c1

H(ai, ai)

λn−2
i

+ c1

(
λi

∂ε12
∂λi

+
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

)
− c3ε

log(λidi)

λ2
i

= Ai,

where c3 = 1
2c

2
0ω4 , with ω4 denoting the area of the unit sphere of R4 .

Proof It is sufficient to prove the proposition for i = 1. Multiplying (Pε) by α1λ1∂Pδ1/∂λ1 and integrating

on Ω, we obtain

−
∫
Ω

∆uεα1λ1
∂Pδ1
∂λ1

=

∫
Ω

|α1Pδ1 − α2Pδ2 + v|
4

n−2 (α1Pδ1 − α2Pδ2 + v)α1λ1
∂Pδ1
∂λ1

− ε

∫
Ω

(α1Pδ1 − α2Pδ2 + v)α1λ1
∂Pδ1
∂λ1

= I1 − I2. (2.6)

Using the fact that v ∈ E and Lemmas A.6 and A.8, we derive

−
∫
Ω

∆uεα1λ1
∂Pδ1
∂λ1

= < α1Pδ1 − α2Pδ2 + v, α1λ1
∂Pδ1
∂λ1

>

= α2
1 < Pδ1, λ1

∂Pδ1
∂λ1

> −α1α2 < Pδ2, λ1
∂Pδ1
∂λ1

> + < v, α1λ1
∂Pδ1
∂λ1

>

= α2
1

n− 2

2
c1

H(a1, a1)

λn−2
1

− α1α2c1

(
λ1

∂ε12
∂λ1

+
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

)
+R, (2.7)

where R satisfies

R = O
(
ε

n
n−2

12 log(ε−1
12 ) +

2∑
k=1

log(λkdk)

(λkdk)n

)
. (2.8)

524



HAMMAMI and ISMAIL/Turk J Math

Using Lemma A.5 and the fact that n ≥ 4, we derive

I1 =

∫
Ω

|α1Pδ1 − α2Pδ2|
4

n−2 (α1Pδ1 − α2Pδ2)α1λ1
∂Pδ1
∂λ1

+
n+ 2

n− 2

∫
Ω

|α1Pδ1 − α2Pδ2|
4

n−2 vα1λ1
∂Pδ1
∂λ1

+ O
(
∥v∥2

)
+R

=

∫
Ω

(α1Pδ1)
n+2
n−2α1λ1

∂Pδ1
∂λ1

− n+ 2

n− 2

∫
Ω

α2Pδ2(α1Pδ1)
4

n−2α1λ1
∂Pδ1
∂λ1

+
n+ 2

n− 2

∫
Ω

(α1Pδ1)
4

n−2 vα1λ1
∂Pδ1
∂λ1

−
∫
Ω

(α2Pδ2)
n+2
n−2α1λ1

∂Pδ1
∂λ1

+O
(∫

Ω

(δ1δ2)
n

n−2 + ∥v∥2
)
+R. (2.9)

Using Lemmas A.5, ...,A.10, and A.19, (2.9) becomes

I1 = 2α
2n

n−2

1

(n− 2

2
c1

H(a1, a1)

λn−2
1

)
− α

n+2
n−2

1 α2c1

(
λ1

∂ε12
∂λ1

+
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

)
− α

n+2
n−2

2 α1c1

(
λ1

∂ε12
∂λ1

+
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

)
+R+O

(
∥v∥2

)
. (2.10)

Using Lemma A.16 and Lemma A.18, we obtain for n ≥ 5

I2 = −α2
1

c2ε

λ2
1

+O
( ε

(λ1d1)n−2

)
+O

(
ε

∫
Ω

δ1δ2 + ε

∫
Ω

|v|δ1
)
,

= −α2
1

c2ε

λ2
1

+O
( ε

(λ1d1)n−2
+ εε12 + ( if n ≤ 5)

ε∥v∥

λ
n−2
2

i

+ ( if n = 6)
ε∥v∥(log λi)

2
3

λ2
i

+
ε∥v∥
λ2
i

)
. (2.11)

Therefore, combining (2.6), ..., (2.11), with Proposition 2.2 and using the estimate of v , the proof of Claim (a)

of Proposition 2.3 follows.

To prove Claim (b), observe that we have used the fact that n ≥ 5 only in I2 . Then we need to compute∫
Ω

Pδ1λ1
∂Pδ1
∂λ1

=

∫
Ω

δ1λ1
∂δ1
∂λ1

+O
( 1

(λ1d1)2

)
=

∫
B(a1,d1)

δ1λ1
∂δ1
∂λ1

+

∫
Ω\B(a1,d1)

δ1λ1
∂δ1
∂λ1

+O
( 1

(λ1d1)2

)
.

An easy computation shows that

∫
B(a1,d1)

δ1λ1
∂δ1
∂λ1

= c20

∫
B(a1,d1)

λ2
1(1− λ2|x− a21|)

(1 + λ2
1|x− a1|2)3

dx

= c20
mes(S3)

λ2
1

∫ λ1d1

0

(1− r2)r3

(1 + r2)3
dr,

= −c3
log(λ1d1)

λ2
1

+O
( 1

(λ1d1)2λ2
1

)
,

where c3 =
1

2
c20mes(S3).
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Now, we need to estimate∫
Ω\B(a1,d1)

δ1λ1
∂δ1
∂λ1

≤ λ1

λ2
1d

2
1

∫
Ω\B(a1,d1)

c20λ1

(1 + λ2
1|x− a1|2)

dx = O
( 1

(λ1d1)2

)
.

Therefore, ∫
Ω

δ1λ1
∂δ1
∂λ1

= −c3
log(λ1d1)

λ2
1

+O
( 1

(λ1d1)2

)
.

The proof of Claim (b) follows. 2

Proof of Theorem 1.1 Arguing by contradiction, let us suppose that the problem (Pε) has a solution uε as

stated in Theorem 1.1. This solution has to satisfy (2.1), and from Proposition 2.3, we have

−n− 2

2
c1

H(ai, ai)

λn−2
i

+ c1

(
λi

∂ε12
∂λi

+
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

)
− c2ε

λ2
i

= A, if n ≥ 5, (2.12)

−n− 2

2
c1

H(ai, ai)

λn−2
i

+ c1

(
λi

∂ε12
∂λi

+
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

)
− c3ε log(λidi)

λ2
i

= A, if n = 4, (2.13)

where i = 1, 2, and A = o
(
ε12 +

∑2
k=1

(
1

(λkdk)n−2 + ε
λ2
k

))
.

Furthermore, an easy computation shows that

λi
∂ε12
∂λi

= −n− 2

2
ε12

(
1− 2

λj

λi
ε

2
n−2

12

)
, for i, j ∈ {1, 2}, i ̸= j. (2.14)

Without loss of generality, we can assume that λ2 ≥ λ1 . We distinguish two cases and we will prove that they

cannot occur. This implies our theorem.

Case 1.
λ1λ2|a1 − a2|2

λ2/λ1
→ +∞. In this case, it is easy to obtain

ε12 =
1

(λ1λ2|a1 − a2|2)
n−2
2

+ o(ε12), (2.15)

which implies that

λi
∂ε12
∂λi

= −n− 2

2

1

(λ1λ2|a1 − a2|2)
n−2
2

+ o(ε12), for i = 1, 2. (2.16)

Then from (2.16), (2.12) and (2.13) become

−(n− 2)

2
c1

H(ai, ai)

λn−2
i

− (n− 2)

2
c1

(
1

(λ1λ2|a1 − a2|2)
n−2
2

− H(a1, a2)

(λ1λ2)
n−2
2

)
− c2ε

λ2
i

=

o
(
ε12 +

2∑
k=1

( 1

(λkdk)n−2
+

ε

λ2
k

))
, if n ≥ 5, (2.17)

−(n− 2)

2
c1

H(ai, ai)

λn−2
i

− (n− 2)

2
c1

(
1

(λ1λ2|a1 − a2|2)
n−2
2

− H(a1, a2)

(λ1λ2)
n−2
2

)
− c3ε log(λidi)

λ2
i

=

o
(
ε12 +

2∑
k=1

( 1

(λkdk)n−2
+

ε

λ2
k

))
, if n = 4. (2.18)
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Using the fact that

ε12 = O
( H(a1, a2)

(λ1λ2)
n−2
2

+
G(a1, a2)

(λ1λ2)
n−2
2

)
= O

( 1

(λ1d1)n−2
+

G(a1, a2)

(λ1λ2)
n−2
2

)
, (2.19)

we derive

−
2∑

i=1

H(ai, ai)

λn−2
i

(1 + o(1))− 2
G(a1, a2)

(λ1λ2)
n−2
2

(1 + o(1))−
2∑

i=1

ε

λ2
i

(c2 + o(1)) = 0, if n ≥ 5,

−
2∑

i=1

H(ai, ai)

λn−2
i

(1 + o(1))− 2
G(a1, a2)

(λ1λ2)
n−2
2

(1 + o(1))−
2∑

i=1

ε log(λidi)

λ2
i

(c3 + o(1)) = 0, if n = 4,

which gives a contradiction. Hence, this case cannot occur.

Case 2:
λ1λ2|a1 − a2|2

λ2/λ1
→ c ≥ 0. In this case, we note that λ2/λ1 → +∞. Multiplying (2.12) by 2 for i = 2

and adding to (2.12) for i = 1, we obtain

−n− 2

2
c1

(H(a1, a1)

λn−2
1

+ 2
H(a2, a2)

λn−2
2

)
+ c1

(
λ1

∂ε12
∂λ1

+ 2λ2
∂ε12
∂λ2

)
+ 3c1

n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

−c2ε

λ2
1

− 2
c2ε

λ2
2

= o
(
ε12 +

2∑
k=1

(
1

(λkdk)n−2
+

ε

λ2
k

)
)
. (2.20)

Now, using (2.14) and the fact that λ2 ≥ λ1 , an easy computation shows that

λ1
∂ε12
∂λ1

+ 2λ2
∂ε12
∂λ2

≤ −n− 2

4
ε12. (2.21)

Furthermore, since H(a1, a2) ≤ cd2−n
1 and λ2/λ1 → +∞ , we get

H(a1, a2)

(λ1λ2)
n−2
2

= o
( 1

(λ1d1)n−2

)
. (2.22)

Using (2.20), (2.21), and (2.22) we have

−
2∑

i=1

(n− 2

2
c1

H(ai, ai)

λn−2
i

(1 + o(1)) + c2
ε

λ2
i

(1 + o(1))
)
− n− 2

4
c1ε12(1 + o(1)) ≥ 0.

Then we derive a contradiction and therefore this case cannot occur for n ≥ 5, using the same argument for

n = 4. Hence, Theorem 1.1 is proved. 2

Proof of Theorem 1.2 Let us assume that problem (Pε) has a solution uε as stated in Theorem 1.2. This

solution has to satisfy (2.1),

uε = α1Pδ1 − α2Pδ2 + α3Pδ3 + v, (2.23)

with v orthogonal to each Pδi and their derivatives with respect to λi and aki , where aki denotes the k th

component of ai .
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Note that for each i = 1, 2, 3, as in Proposition 2.3, we have

(Ei) c1
n− 2

2

H(ai, ai)

λn−2
i

+ γi
∑
j ̸=i

γjc1

(
λi

∂εij
∂λi

+
n− 2

2

H(ai, aj)

(λiλj)
n−2
2

)
+

εc2
λ2
i

( if n ≥ 5)

+ c3
ε log(λidi)

λ2
i

( if n = 4) = o
( 3∑

j=1

( 1

(λjdj)n−2
+

ε

λ2
j

)
+
∑
j ̸=k

εjk

)
, (2.24)

where γ1 = γ3 = 1, γ2 = −1.

As in Proposition 2.3, we have the following result:

Proposition 2.4 Assume that uε =

3∑
i=1

αiγiPδi + v is a sign-changing solution of (Pε) . We have

(Fi)
γi
2

c1

λn−1
i

∂H(ai, ai)

∂ai
−
∑
j ̸=i

γjc1

( −1

(λiλj)
n−2
2

1

λi

∂H(ai, aj)

∂ai
+

1

λi

∂εij
∂ai

)
= O

(∑
j ̸=i

(
εεij + λj |ai − aj |ε

n+1
n−2

ij

)

+
ε

(λidi)n−1
+

3∑
k=1

log λkdk
(λkdk)n

+
∑
j ̸=k

ε
n

n−2

kj log(ε−1
kj ) +

3∑
j=1

(
( if n ≤ 5)

ε2

λn−2
j

+ ( if n = 6)
ε2(log λj)

4
3

λ4
j

+
ε2

λ4
j

))
.

Proof As in the proof of Proposition 2.3, we get (2.6), but with α1λ1∂Pδ1/∂λ1 changed by α1(λ1)
−1∂Pδ1/∂a1 .

Thus, using Lemmas A.11,..., A.14, A.17, and A.20, the proposition follows. 2

Now we distinguish many cases depending on the set

F := {(i, j) : i ̸= j and min(λi, λj)|ai − aj | is bounded}

and we will prove that all these cases cannot occur.

We note that if (i, j) ∈ F we can derive λi/λj → 0 or ∞ and di/dj = 1 + o(1) as ε → 0.

Furthermore, the behavior of εij depends on the set F . In fact, assuming that λi ≤ λj , we have

c
(λi

λj

)n−2
2 ≤ εij ≤

(λi

λj

)n−2
2

, if (i, j) ∈ F, (2.25)

εij =
1(

λiλj |ai − aj |2
)n−2

2

+ o(εij), if (i, j) ̸∈ F. (2.26)

Lemma 2.5 The case ε13 = o
( 3∑

i=1

( 1

(λidi)n−2
+

ε

λ2
i

)
+
∑
r ̸=j

εrj

)
does not occur.

Proof In the following, we focus only on proving the case n ≥ 5. The case n = 4 is not proved since it can

be demonstrated using the same reasoning as in the first case.

Without loss of generality, we can assume that λ1 ≤ λ2 ≤ λ3 . We distinguish three cases and we will

prove that they cannot occur. This implies our lemma.

Case 1. {(1, 2), (2, 3)} ∈ F .
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Adding (E1) + 2(E2) + 4(E3) and using (2.21), we have

3∑
i=1

c1
n− 2

2
2i−1H(ai, ai)

λn−2
i

) + c1
n− 2

4
ε12(1 + o(1)) + c1

n− 2

2
ε23 +O(ε13) + 5c1

n− 2

2

H(a1, a3)

(λ1λ3)
n−2
2

− 3c1
n− 2

2

H(a1, a2)

(λ1λ2)
n−2
2

− 6c1
n− 2

2

H(a2, a3)

(λ2λ3)
n−2
2

+

3∑
i=1

c22
i−1 ε

λ2
i

≤ o
( 3∑

i=1

( 1

(λidi)n−2
+

ε

λ2
i

)
+
∑
r ̸=j

εrj

)
.

Using {(1, 2), (2, 3)} ∈ F , we obtain

H(ai, ai+1)

(λiλi+1)
n−2
2

= o
( 1

(λidi)n−2

)
, for i = 1, 2,

which gives a contradiction. Hence, this case cannot occur.

Case 2. {(1, 2), (2, 3)} ∩ F = ∅ .
Adding (E1) + 2(E2) + 4(E3) and using (2.19), we have

3∑
i=1

c1
n− 2

2
2i−1H(ai, ai)

λn−2
i

+O(ε13) + 5c1
n− 2

2

H(a1, a3)

(λ1λ3)
n−2
2

+ c1
n− 2

2

(3G(a1, a2)

(λ1λ2)
n−2
2

+
6G(a2, a3)

(λ2λ3)
n−2
2

)
+

3∑
i=1

c22
i−1 ε

λ2
i

= o
( 3∑

i=1

( 1

(λidi)n−2
+

ε

λ2
i

)
+

G(a1, a2)

(λ1λ2)
n−2
2

+
G(a2, a3)

(λ2λ3)
n−2
2

)
.

Then we derive a contradiction and therefore this case cannot occur.

Case 3. (1, 2) ∈ F and (2, 3) ̸∈ F or (1, 2) ̸∈ F and (2, 3) ∈ F . Assume that (1, 2) ∈ F and (2, 3) ̸∈ F .

Adding (E1) + 2(E2) + 4(E3), using (2.19) and (2.21), we have

3∑
i=1

c1
(n− 2)

2
2i−1H(ai, ai)

λn−2
i

+ c1
(n− 2)

4
ε12 − 3c1

(n− 2)

2

H(a1, a2)

(λ1λ2)n−2/2
+ 6c1

(n− 2)

2

G(a2, a3)

(λ2λ3)n−2/2

+O(ε13) +

3∑
i=1

c22
i−1 ε

λ2
i

≤ o
( 3∑

i=1

( 1

(λidi)n−2
+

ε

λ2
i

)
+ ε12 +

G(a2, a3)

(λ2λ3)
n−2
2

)
.

As in case 1, (1, 2) ∈ F implies
H(a1, a2)

(λ1λ2)n−2/2
= o
( 1

(λ1d1)n−2

)
, which gives a contradiction. Hence, Lemma 2.5

is proved. 2

First, we start by providing the following crucial lemmas. We are only interested in proving the case

n ≥ 5 since the same reasoning can be used for n = 4.

Lemma 2.6 There exists a positive constant c0 > 0 such that

1. c−1
0 ≤ d1

d3
≤ c0,

2. c−1
0 ≤ λ1

λ3
≤ c0,

529



HAMMAMI and ISMAIL/Turk J Math

3. c−1
0 ≤ |a1 − a3|

di
≤ c0, for i = 1, 3.

Proof The proof will be by contradiction.

Claim 1. Assume that d1/d3 → 0. In this case, we have

|a1 − a3| ≥ cd3 and ε13 =
1

(λ1λ3|a1 − a3|2)
n−2
2

+ o(ε13), (2.27)

which implies that ε13 = o((λ1d1)
2−n + (λ3d3)

2−n).

Using Lemma 2.5, we derive a contradiction. In the same way, we prove that d3/d1 ̸→ 0. Hence, the

proof of Claim 1 is completed.

Claim 2. Assume that λ1/λ3 → 0. By Claim 1, we have (λ3d3)
−1 = o((λ1d1)

−1). Four cases may occur.

Case 1. λ2/λ3 ̸→ 0 or {(1, 2), (2, 3)} ∩ F = ∅ .
If λ2/λ3 ̸→ 0, we have λ1/λ2 ≤ cλ1/λ3 , and then λ1/λ2 → 0.

Therefore, by (2.14), we have λ2
∂ε12
∂λ2

= −n− 2

2
ε12 + o(ε12) and λ2

∂ε23
∂λ2

= −n− 2

2
ε23 + o(ε23).

Thus, (E2) and (E3) becomes

c1
n− 2

2

(H(a2, a2)

λn−2
2

− H(a1, a2)

(λ1λ2)
n−2
2

− H(a2, a3)

(λ2λ3)
n−2
2

+ ε12 + ε23

)
+

c2ε

λ2
2

= o
( 3∑
i=1

(
1

(λidi)n−2
+

ε

λ2
i

) +
∑
k ̸=r

εkr
)
,

c1
n− 2

2

(
− ε13 −

H(a2, a3)

(λ2λ3)
n−2
2

)
+O(ε23) = o

( 3∑
i=1

(
1

(λidi)n−2
+

ε

λ2
i

) +
∑
k ̸=r

εkr
)
.

Using the fact that λ1/λ2 → 0, λ1/λ3 → 0 and Claim 1, we obtain

H(a1, ai)

(λ1λi)
n−2
2

= o
( 1

(λ1d1)n−2

)
and

H(a2, a3)

(λ2λ3)
n−2
2

= o
( 1

(λ1d1)n−2

)
.

We can choose m a fixed large constant, so that m(E2)−(E3) implies ε13 = o
(∑3

i=1(
1

(λidi)n−2 +
ε
λ2
i
)+
∑

k ̸=r εkr
)
.

Hence, by Lemma 2.5, this case cannot occur.

If {(1, 2), (2, 3)} ∩ F = ∅ . (E2) and (E3) imply that

c1
n− 2

2

(H(a2, a2)

λ
n−2
2

2

+
G(a1, a2)

(λ1λ2)
n−2
2

+
G(a2, a3)

(λ2λ3)
n−2
2

)
+

c2ε

λ2
2

= o
( 3∑
i=1

(
1

(λidi)n−2
+

ε

λ2
i

) +
∑
k ̸=r

εkr
)
,

c1
n− 2

2

(
− ε13 +

G(a2, a3)

(λ2λ3)
n−2
2

)
= o
( 3∑
i=1

(
1

(λidi)n−2
+

ε

λ2
i

) +
∑
k ̸=r

εkr
)
.

Using the formula (E2)− (E3), we obtain

c1
n− 2

2

(
ε13 +

H(a2, a2)

λ
n−2
2

2

+
G(a1, a2)

(λ1λ2)
n−2
2

)
+

c2ε

λ2
2

= o
( 3∑
i=1

(
1

(λidi)n−2
+

ε

λ2
i

) +
∑
k ̸=r

εkr
)
,
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which leads to ε13 = o
( 3∑
i=1

(
1

(λidi)n−2
+

ε

λ2
i

) +
∑
k ̸=r

εkr
)
. Hence, by Lemma 2.5, this case cannot occur.

Case 2. λ2/λ3 → 0 , {(1, 2), (2, 3)} ∩ F ̸= ∅ and λ2/λ1 → +∞ . In this case, it is easy to obtain

ε13 = o(ε12 + ε23). Using Lemma 2.5, we derive a contradiction.

Case 3. λ2/λ3 → 0 , (2, 3) ∈ F , (1, 2) ̸∈ F and λ2/λ1 ̸→ +∞ . In this case, we have that λ2 | a2 − a3 |
is bounded and λ2 | a1 − a2 |→ +∞ . Hence, we derive that λ2 | a1 − a3 |→ +∞ , which implies that

λk | a1 − a3 |→ +∞ for k = 1, 3. Thus,

ε13 =
1

(λ1λ3 | a1 − a3 |2)n−2
2

(1 + o(1)) = (
λ2

λ3
)

n−2
2

1

(λ1λ2 | a1 − a3 |2)n−2
2

(1 + o(1)) = o(ε23).

Then, by Lemma 2.5, we get a contradiction.

Case 4. λ2/λ3 → 0, (1, 2) ∈ F and λ2/λ1 ̸→ +∞ . In this case, it is easy to get ε23 ≤
(λ2

λ3

)n−2
2 =

(λ2

λ1

)n−2
2
(λ1

λ3

)n−2
2 = o

(λ2

λ1

)n−2
2 = o(ε12).

Using the formula
(
2(E1) + (E2)− 4(E3)

)
, we obtain a contradiction, and Claim 2 follows.

Claim 3. Without loss of generality, we can assume that d1 ≤ d3 . First, as in the proof of Claim 1, we get

| a1 − a3 |≤ c0d1 . Now assume that | a1 − a3 | /d1 → 0, which implies

H(ai, ai)

λn−2
i

= o(ε13), for i = 1, 3.

We distinguish two cases and we will prove that they cannot occur.

Case 1. λ1 ≤ λ2 or {(1, 2), (2, 3)} ∩ F = ∅ . Two cases may occur. If λ1 ≤ λ2 , using Claim 2, we have

c−1
0 λ3 ≤ λ2 , and hence

λ2
∂ε2i
∂λ2

= −n− 2

2
ε2i + o(ε2i) for i = 1, 3, (2.28)

λ1
∂ε13
∂λ1

= −n− 2

2
ε13 + o(ε13) and λ1

∂ε12
∂λ1

= O(ε12), (2.29)

H(a2, ai)

(λ2λi)
n−2
2

= o(ε13) for i = 1, 3. (2.30)

Using (2.28), (2.29), (2.30), (E1), and (E2), we obtain

H(a2, a2)

λn−2
2

= o(ε13), εi2 = o(ε13) for i = 1, 3 and
ε

λ2
2

= o(ε13). (2.31)
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On the other hand, we have

1

(λ1λi)
n−2
2

1

λ1

∂H(a1, ai)

∂ak1
= o(ε

n−1
n−2

13 ) for i = 2, 3, (2.32)

1

λ1

∂ε13
∂ak1

= − (n− 2)λ3(a1 − a3)k
(λ1λ3|a1 − a3|2)

n
2

(1 + o(1)), (2.33)

1

λ1

∂ε12
∂ak1

= − (n− 2)λ2(a1 − a2)k

(λ1

λ2
+ λ2

λ1
+ λ1λ2|a1 − a2|2)

n
2

= −(n− 2)λ2(a1 − a2)kε12ε
2

n−2

12 . (2.34)

By (2.31), ..., (2.34) and (F1), we obtain

(n− 2)λ3(a1 − a3)k
(λ1λ3|a1 − a3|2)

n
2

− (n− 2)λ2(a1 − a2)kε
2

n−2

12 ε12 = o(ε
n−1
n−2

13 ) +O
(
ε

n+1
n−2

12 λ2|a2 − a1|
)
. (2.35)

If |a1−a2| ≥ 1
2 |a1−a3| , we have λ2(a1−a2)kε

2/n−2
12 ≤ λ2|a1 − a2|

λ1λ2|a1 − a2|2
≤ 2

(λ2
1|a1 − a3|2)1/2

= O
(
ε
1/n−2
13

)
. Then

λ2(a1 − a2)kε
2/n−2
12 ε12 = O(ε12ε

1/n−2
13 ) = o(ε

n−1
n−2

13 ). (2.35) becomes

ε
n−1
n−2

13 = o(ε
n−1
n−2

13 ),

which gives a contradiction. Hence, this case cannot occur.

If |a1 − a2| ≤ 1
2 |a1 − a3| , we have |a3 − a2| ≥ |a3 − a1| − |a1 − a2| ≥ 1/2|a1 − a3|. Using (F3), the same

argument as in (2.35), we obtain a contradiction.

If {(1, 2), (2, 3)} ∩ F = ∅ .
Using the same reasoning, we derive a contradiction and therefore this case cannot occur.

Case 2. λ2 ≤ λ1 and {(1, 2), (2, 3)} ∩ F ̸= ∅ . Let k ∈ {1, 3} such that (2, k) ∈ F . Using Claim 2 and the

fact that λ2 ≤ λ1 , we derive that ε2k ≥ c(λ2/λk)
(n−2)/2 , which implies that d2 ∼ dk , λ2/λk → 0, and that

λ2 | a2 − ak | is bounded.
Using (Fi) for i = k , we get

−(n− 2)
(
λ2(a2 − ak)jε

n
n−2

2k − λ1λ3

λk
(a1 − a3)jε

n
n−2

13

)
= o
( 1

(λ2d2)n−1
+
∑
r ̸=i

ε
n−1
n−2

ri +
ε

λ2
2

)

+O
(
ε

n+1
n−2

k2 λ2|a2 − ak|+ ε
n+1
n−2

13 λ1|a1 − a3|
)
.

Since λ2 | a2 − ak | is bounded and ε13 = (λ1λ3 | a1 − a3 |2)(2−n)/2(1 + o(1)) , we derive that

ε
n−1
n−2

13 = o
( 1

(λ2d2)n−1
+
∑
k ̸=r

ε
n−1
n−2

kr +
ε

λ2
2

)
,

which implies that

ε13 = o
( 1

(λ2d2)n−2
+
∑
k ̸=r

εkr +
ε

λ2
2

)
. (2.36)

By Lemma 2.5, we get a contradiction. 2
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Lemma 2.7 There exists a positive constant c′0 such that

(i) c′0λi ≤ λ2 ; (ii) di ≥ c′0 for i = 1, 3.

Proof The proof of this lemma is similar to that of Lemma 4.2 of [9] and therefore is omitted. 2

We turn now to the proof of Theorem 1.2. By the previous lemmas, we know that λ1 and λ3 are of the

same order, | a1 − a3 |≥ c , λ2 ≥ c′0λi and di ≥ c′0 , for i = 1, 3 where c, c′0 are positive constants. From (E2),

we obtain

c1
n− 2

2

(
H(a2, a2)

λn−2
2

(1 + o(1)) + ε12(1 + o(1)) + ε23(1 + o(1))

)
+
c2ε

λ2
2

(1 + o(1)) = o
( 1

λn−2
1

+
ε

λ2
1

)
. (2.37)

Then

H(a2, a2)

λn−2
2

= o
( 1

λn−2
1

+
ε

λ2
1

)
, εi2 = o

( 1

λn−2
1

+
ε

λ2
1

)
for i = 1, 3. (2.38)

Using (2.38), (Ei) and (Fi) for i = 1, 3 imply that

H(ai, ai)

λn−2
i

− G(a1, a3)

(λ1λ3)
n−2
2

+
c2
c1

2

n− 2

ε

λ2
i

= o
( 1

λn−2
i

+
ε

λ2
i

)
, if n ≥ 5, (2.39)

H(ai, ai)

λ2
i

− G(a1, a3)

λ1λ3
+

c3
c1

ε
log(λi)

λ2
i

= o
( 1

λ2
i

+ ε
log(λi)

λ2
i

)
, if n = 4, (2.40)

− 1

λn−2
i

∂H(ai, ai)

∂ai
+

2

(λ1λ3)
n−2
2

∂G(a1, a3)

∂ai
= o
( 1

λn−2
i

)
. (2.41)

Three cases may occur.

Case 1.
1

(λidi)n−2
= o
( ε

λ2
i

)
, if n ≥ 5,

1

(λidi)2
= o
(ε log(λi)

λ2
i

)
, if n = 4, for i = 1, 3.

We obtain ε13 = o
( ε

λ2
i

)
. Hence, this case cannot occur.

Case 2.
ε

λ2
i

= o
( 1

(λidi)n−2

)
, if n ≥ 5,

ε log(λi)

λ2
i

= o
( 1

(λidi)2

)
, if n = 4, for i = 1, 3 .

Let Λi = λ
(2−n)/2
i , Λ = (Λ1,Λ3), and x = (a1, a3). From (2.39) and (2.40), we have

M(x).
tΛ

∥ Λ ∥
= o(1). (2.42)

The scalar product of (2.42) by r(x) gives

ρ(x)r(x).
tΛ

∥ Λ ∥
= o(1). (2.43)

Since the components of r(x) are positive and λ1, λ3 are of the same order, there exists a positive constant C ,

such that r(x).
tΛ
∥Λ∥ ≥ C > 0. Hence, we get

ρ(x) = o(1). (2.44)
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Denoting by a = (a1, a3) ∈ Ω2 the limit of (a1, a3) (up to a subsequence) and using (2.44), we get ρ(a) = 0. It

remains to prove that ρ′(a) = 0.

We deduce from (2.41) that

∂M

∂ai
(x).tΛ = o(∥ Λ ∥). (2.45)

Observe that Λ may be written under the form

Λ = βr(x) + r(x), with r(x).r(x) = 0, ∥ r ∥= o(β) and β ∼∥ Λ ∥ . (2.46)

Using (2.45), we get

β
∂M

∂ai
(x).tr(x) +

∂M

∂ai
(x).r(x) = o(∥ Λ ∥). (2.47)

Since di ≥ c′0 for i = 1, 3 and | a1 − a3 |≥ c , the matrix
∂M

∂ai
(x) is bounded. Furthermore, we have

∥ r ∥= o(∥ Λ ∥), which implies that

∂M

∂ai
(x).tr(x) = o(∥ Λ ∥).

The scalar product of (2.47) with r(x) gives

βr(x)
∂M

∂ai
(x).tr(x) = o(∥ Λ ∥). (2.48)

Let us consider the equality

M(x).tr(x) = ρ(x).tr(x),

and its derivative with respect to ai implies

∂M

∂ai
(x).tr(x) +M(x)

∂tr

∂ai
(x) =

∂ρ

∂ai
(x).tr(x) + ρ(x)

∂tr

∂ai
(x).

The scalar product with r(x) gives

r(x).
∂M

∂ai
(x).tr(x) =

∂ρ

∂ai
(x). (2.49)

Passing to the limit in (2.48) and (2.49), we obtain

∂ρ

∂ai
(a) = 0. (2.50)

Hence the results.

Case 3.
1

(λidi)n−2
∼ ε

λ2
i

, if n ≥ 5 and
1

(λidi)2
∼ log(λi)ε

λ2
i

, if n = 4, for i = 1, 3.
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Let us perform the change of variables

λi = Λ
− 2

n−2

i ε−
1

n−4

(c2
c1

)− 1
n−4

, if n ≥ 5.

Note that

Λiε
n−2

2(n−4) → 0 as ε → 0,
1

c0
≤ Λi ≤ c0,

and that (2.39) and (2.41) imply, for i, j = 1, 3 and j ̸= i ,

H(ai, ai)Λi −G(ai, aj)Λj +
2

n− 2
Λ

6−n
n−2

i = o(1), (2.51)

−∂H

∂ai
(ai, ai)Λi + 2

∂G

∂ai
(ai, aj)Λj = o(1). (2.52)

Denoting by (a1 , a3) ∈ Ω2 the limit of a1 , a3 and by (Λ1, Λ3) ∈ (R∗
+)

2 the limit of Λ1, Λ3 (up to a

subsequence), from passing to the limit in (2.51) and (2.52), we obtain

H(ai, ai)Λi −G(ai, aj)Λj +
2

n− 2
Λ

6−n
n−2

i = 0,

∂H

∂ai
(ai, ai)Λi − 2

∂G

∂ai
(ai, aj)Λj = 0.

This means that
∂Ψ2

∂Λi
(Λ1,Λ3, a1, a3) = 0 and

∂Ψ2

∂ai
(Λ1,Λ3, a1, a3) = 0, for i ∈ {1, 3}. The proof of

Theorem 1.2 is thereby completed for n ≥ 5.

If n = 4, denoting by ηi = λi/λj with j ̸= i and Λi =
c3
c1
ε log(λi), then (2.40) and (2.41) imply

H(ai, ai)− ηiG(ai, aj) + Λi = o(1), (2.53)

−∂H

∂ai
(ai, ai) + 2ηi

∂G(ai, aj)

∂ai
= o(1). (2.54)

From Lemma 2.6, we derive that ηi converges to a constant ηi , with η1 = η−1
3 := η (up to a subsequence).

Furthermore, since ai ∈ Ω and a1 ̸= a3 , using (2.53), we get that Λi is bounded above and below, for

i = 1, 3. Thus, up to a subsequence, Λi converges to a constant Λi , and it is easy to prove that Λ1 = Λ3 := Λ

(limε→0(Λ1 − Λ3) = 0). Passing to the limit in (2.53) and (2.54), we get

H(ai, ai)− ηiG(a1, a3) + Λ = 0

−∂H(ai, ai)

∂ai
+ 2ηi

∂G(a1, a3)

∂ai
= 0.

This ends the proof of Theorem 1.2. 2
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3. Proof of Theorem 1.4

First of all, let us introduce the general setting. We define on H1
0 (Ω) the functional:

Jε(u) =
1

2
∥u∥2 − n− 2

2n

∫
Ω

|u|
2n

n−2 +
ε

2

∫
Ω

u2.

If u is a critical point of Jε , u satisfies on Ω the equation (Pε). Conversely, we see that any solution of (Pε )

is a critical point of Jε .

We introduce the following subset of H1
0 (Ω):

Mε = {(α, λ, a, v) ∈ R4 × (R∗
+)

4 × Ω4 ×H1
0 (Ω) such that ∀ i ∈ {1, .., 4} |αi − 1| < η0,

d(ai, ∂Ω) ≥ d0, λi ∈ [c−1
0 ε−1/(n−4), c0ε

−1/(n−4)], |ai − aj | ≥ d0 ∀i ̸= j, v ∈ E, ∥v∥ ≤ η0},

where η0 , c0 , d0 are suitable positive constants.

Let us define the functional Kε by the map

Kε : Mε → R, Kε(α, λ, a, v) = Jε(
4∑

i=1

αiγiPδ(ai,λi) + v), (3.1)

where γ1 = γ3 = 1, γ2 = γ4 = −1.

Note that (α, λ, a, v) is a critical point of Kε if and only if u =

4∑
i=1

αiγiPδ(ai,λi) + v is a critical point

of Jε .

Assume that uε is a sign-changing solution of (Pε), which has the form (1.7) where (αε, λε, aε, vε) ∈ Mε .

We first deal with the v -part of u , and we prove the following:

Lemma 3.1 There exists ε0 > 0 such that, for 0 < ε < ε0 , there exists a C1 -map for which to any (α, λ, a)

with (α, λ, a, 0) ∈ Mε associates vε = v(α,λ,a) ∈ E . Such a vε minimizes Kε(α, λ, a, v) with respect to v in E ,

∥v∥ ≤ η0 , with η0 small enough, and we have the estimate

∥vε∥ = O



4∑
i=1

( ε

λ
3
2
i

+
1

λ3
i

)
+
∑
i ̸=j

εij(log(ε
−1
ij ))

3
5 , if n = 5,

4∑
i=1

(ε(log λi)
2
3

λ2
i

+
log(λi)

λ4
i

)
+
∑
i ̸=j

εij(log(ε
−1
ij ))

2
3 , if n = 6,

4∑
i=1

( ε

λ2
i

+
1

λ
n+2
2

i

)
+
∑
i ̸=j

ε
n+2

2(n−2)

ij (log(ε−1
ij ))

n+2
2n , if n > 6.

Moreover, there exists (Bi, Ci, Di) ∈ R4 × R4 × (R4)n such that

∂Kε

∂v
(α, λ, a, vε) =

4∑
i=1

(
BiPδi + Ciλi

∂Pδi
∂λi

+
n∑

k=1

Dik

1

λi

∂Pδi
∂aki

)
, (3.2)

where the aki is the k th component of ai .
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Next, we prove a useful expansion of the derivative of the function Kε with respect to αi, λi, ai.

Proposition 3.2 Assume that (α, λ, a, v) ∈ Mε and let v := vε be the function obtained in Lemma 3.1. Then

the following expansions hold:

1.
∂Kε

∂αi
(α, λ, a, v) = αiSn(1− α

4
n−2

i ) +O
( 4∑

j=1

( 1

λn−2
j

+
ε

λ2
j

))
,

2. λi
∂Kε

∂λi
(α, λ, a, v) = −2α2

i c2
ε

λ2
i

+ α2
i (1− 2α

4/(n−2)
i )

c1(n− 2)H(ai, ai)

2λn−2
i

− c1γi
∑
j ̸=i

γjαjαi(1− α
4/(n−2)
j

− α
4/(n−2)
i )

(n− 2)G(ai, aj)

2(λiλj)
n−2
2

+ o
( 4∑

k=1

( 1

λn−2
k

+
ε

λ2
k

)
+
∑
r ̸=k

εkr

)
,

3.
1

λi

∂Kε

∂ai
(α, λ, a, v) = α2

i (2α
4/(n−2)
i − 1)

c1∂H(ai, ai)

2λn−1
i ∂ai

+ c1λi

∑
j ̸=i

γjαjαi(1− α
4/(n−2)
j − α

4/(n−2)
i )

( 1

(λiλj)
n−2
2

1

λi

∂G(ai, aj)

∂ai

)

+ o
(∑

r ̸=k

ε
n−1
n−2

kr +
4∑

k=1

( 1

λn−1
k

+
ε

λ3
k

))
.

We now estimate the numbers Bi , Ci , Dik defined in Lemma 3.1. Taking the scalar product of (3.2)

with respect to Pδi ,
∂Pδi
∂λi

, and
∂Pδi
∂aki

for i = 1, ..., 4 and k = 1, ..., n and using Proposition 3.2, the solution

of the system in Bi , Ci , Dik shows the following result.

Proposition 3.3 The coefficients Bi , Ci , and Dik that occur in Lemma 3.1 satisfy the estimates

Bi = O
( 4∑

j=1

( 1

λn−2
j

+
ε

λ2
j

))
,

Ci = O
( 4∑

j=1

( 1

λn−2
j

+
ε

λ2
j

))
,

Dik = O
( 4∑

j=1

( 1

λn−2
j

+
ε

λ2
j

))
.

(3.3)

For (λ, a), our aim is to study the α -part of u . Namely, we prove the following result.

Proposition 3.4 There exists ε0 > 0 such that, for 0 < ε < ε0 , there exists a C1 -map for which to any (λ, a)

associates α = α(λ,a) that satisfies
∂Kε

∂αi
(α, λ, a, vε) = 0 for each i , and we have the following estimate:

|αi − 1| = O
( 4∑

j=1

( ε

λ2
j

+
1

λn−2
j

))
.
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Now we have to find (λ, a) such that

∂Kε

∂λi
= Ci

(∂2Pδi
∂2λi

, vε
)
+

n∑
k=1

Dik

( ∂2Pδi
∂λi∂aki

, vε

)
, ∀i, (3.4)

∂Kε

∂ari
= Ci

( ∂2Pδi
∂λi∂ari

, vε
)
+

n∑
k=1

Dik

( ∂2Pδi
∂ari ∂a

k
i

, vε

)
, ∀i, ∀r. (3.5)

Using Lemma 3.1, Proposition 3.2, Proposition 3.3, and Proposition 3.4, we deduce that (3.4) and (3.5) are

equivalent to

−c1(n− 2)H(ai, ai)

2λn−2
i

+ c1γi
∑
j ̸=i

γj
(n− 2)G(ai, aj)

2(λiλj)
n−2
2

− 2c2
ε

λ2
= o
( 4∑

k=1

( 1

λn−2
k

+
ε

λ2
k

))
, (3.6)

c1

2λn−1
i

∂H(ai, ai)

∂ai
− c1γi

∑
j ̸=i

γj

( 1

(λiλj)
n−2
2

1

λi

∂G(ai, aj)

∂ai

)
= o
( 4∑

k=1

( 1

λn−1
k

+
ε

λ3
k

))
. (3.7)

Let us perform the change of variables

λi = Λ
−2/(n−2)
i ε−1/(n−4)

(c2
c1

)−1/(n−4)
. (3.8)

Note that

Λi → Λi ∈ R∗
+ and ai → ai, as ε → 0, for all i.

Passing to the limit in (3.6) and (3.7) and using (3.8), we obtain

H(ai, ai)Λi −
∑
j ̸=i

γiγjG(ai, aj)Λj +
4

n− 2
Λ

6−n
n−2

i = 0,

∂H

∂ai
(ai, ai)Λi −

∑
j ̸=i

γiγj
∂G

∂ai
(ai, aj)Λj = 0.

This means that
∂Φ4

∂Λi
(Λ, a) = 0 and

∂Φ4

∂ai
(Λ, a) = 0, for i ∈ {1, ..., 4}. This concludes the proof of

Theorem 1.4.
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Appendix

In this appendix, we collect the estimates of the different integral quantities presented in the paper. These

estimates were originally introduced by Bahri [1] and Bahri and Coron [2]. For the proof, we refer the interested

reader to the literature [1, 2, 25]. We suppose that λidi is large enough and εij is small enough. We have the

following estimates

Lemma A. 1

< Pδ, Pδ >= Sn − c1
H(a, a)

λn−2
+O

( log(λd)
(λd)n

)
,

where Sn is defined in Proposition 2.2 and c1 is defined in Proposition 2.3.

Lemma A. 2 ∫
Ω

Pδ
2n

n−2 = Sn − 2n

n− 2
c1

H(a, a)

λn−2
+O

( log(λd)
(λd)n

)
.

Lemma A. 3 For i ̸= j

< Pδi, P δj >= c1

(
εij −

H(ai, aj)

(λiλj)(n−2)/2

)
+O

(
ε

n
n−2

ij log(ε−1
ij ) +

∑
k=i,j

log(λkdk)

(λkdk)n

)
.

Lemma A. 4 For i ̸= j∫
Ω

Pδ
n+2
n−2

i Pδj =< Pδi, P δj > +O
(
ε

n
n−2

ij log(ε−1
ij ) +

∑
k=i,j

log(λkdk)

(λkdk)n

)
.

Lemma A. 5 For i ̸= j ∫
Ω

(
δiδj

) n
n−2 = O

(
ε

n
n−2

ij log(ε−1
ij

)
.

Lemma A. 6 ⟨
Pδ, λ

∂Pδ

∂λ

⟩
=

n− 2

2
c1

H(a, a)

λn−2
+O

( log(λd)
(λd)n

)
.

Lemma A. 7 ∫
Ω

Pδ
n+2
n−2λ

∂Pδ

∂λ
= 2
⟨
Pδ, λ

∂Pδ

∂λ

⟩
+O

( log(λd)
(λd)n

)
.

Lemma A. 8 For i ̸= j⟨
Pδj , λ

∂Pδi
∂λi

⟩
= c1

(
λi

∂εij
∂λi

+
n− 2

2

H(ai, aj)

(λiλj)(n−2)/2

)
+O

(
ε

n
n−2

ij log(ε−1
ij ) +

∑
k=i,j

log(λkdk)

(λkdk)n

)
.

Lemma A. 9 For i ̸= j∫
Ω

Pδ
n+2
n−2

j λi
∂Pδi
∂λi

=
⟨
Pδj , λ

∂Pδi
∂λi

⟩
+O

(
ε

n
n−2

ij log(ε−1
ij ) +

∑
k=i,j

log(λkdk)

(λkdk)n

)
.
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Lemma A. 10 For i ̸= j

n+ 2

n− 2

∫
Ω

Pδj

(
Pδ

4
n−2

i λi
∂Pδi
∂λi

)
=
⟨
Pδj , λ

∂Pδi
∂λi

⟩
+O

(
ε

n
n−2

ij log(ε−1
ij ) +

∑
k=i,j

log(λkdk)

(λkdk)n

)
.

Lemma A. 11 ⟨
Pδ,

1

λ

∂Pδ

∂a

⟩
=

−1

2

c1
λn−1

∂H

∂a
(a, a) +O

( 1

(λd)n

)
.

Lemma A. 12 ∫
Ω

Pδ
n+2
n−2

1

λ

∂Pδ

∂a
= 2
⟨
Pδ,

1

λ

∂Pδ

∂a

⟩
+O

( log(λd)
(λd)n

)
.

Lemma A. 13 For i ̸= j⟨
Pδj ,

1

λ

∂Pδi
∂ai

⟩
= − c1

(λiλj)(n−2)/2

1

λi

∂H

∂ai
(ai, aj) + c1

1

λi

∂εij
∂ai

+O
( ∑

k=i,j

1

(λkdk)n
+ ε

n+1
n−2

ij λj |ai − aj |
)
.

Lemma A. 14 ∫
Ω

Pδ
n+2
n−2

j

1

λi

∂Pδi
∂ai

=
⟨
Pδj ,

1

λi

∂Pδi
∂ai

⟩
+O

( ∑
k=i,j

1

(λkdk)n
+ ε

n
n−2

ij log(ε−1
ij )
)
.

Lemma A. 15 For n ≥ 5 , we have ∫
Ω

Pδ2i =
c2
λ2
i

+O
( 1

(λidi)n−2

)
,

where c2 is defined in Proposition 2.3.

Lemma A. 16 For n ≥ 5 , we have∫
Ω

Pδiλi
∂Pδi
∂λi

= − c2
λ2
i

+O
( 1

(λidi)n−2

)
.

Lemma A. 17 ∫
Ω

Pδi
1

λi

∂Pδi
∂ai

= O
( 1

(λidi)n−1

)
.

Lemma A. 18 For i ̸= j ∫
Ω

δiδj = O(εij).

Lemma A. 19 For v ∈ E , we have∫
Ω

Pδ
4

n−2

i λi
∂Pδi
∂λi

v = ∥v∥O
(
( if n ≤ 5)

1

(λidi)n−2
+ ( if n = 6)

log(λidi)

(λidi)4
+

1

(λidi)
n+2
2

)
.

Lemma A. 20 For v ∈ E , we have∫
Ω

Pδ
4

n−2

i

1

λi

∂Pδi
∂ai

v = ∥v∥O
(
( if n ≤ 5)

1

(λidi)n−2
+ ( if n = 6)

log(λidi)

(λidi)4
+

1

(λidi)
n+2
2

)
.
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