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Abstract: The purpose of this paper is to study anti-invariant Riemannian submersions from Kenmotsu manifolds onto

Riemannian manifolds. Several fundamental results in this respect are proved. The integrability of the distributions

and the geometry of foliations are investigated. We proved the nonexistence of (anti-invariant) Riemannian submersions

from Kenmotsu manifolds onto Riemannian manifolds such that the characteristic vector field ξ is a vertical vector field.

We gave a method to get horizontally conformal submersion examples from warped product manifolds onto Riemannian

manifolds. Furthermore, we presented an example of anti-invariant Riemannian submersions in the case where the

characteristic vector field ξ is a horizontal vector field and an anti-invariant horizontally conformal submersion such that

ξ is a vertical vector field.
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1. Introduction

Riemannian submersions between Riemannian manifolds were studied by O’Neill [16] and Gray [9]. Riemannian

submersions have several applications in mathematical physics. Indeed, Riemannian submersions have their

applications in the Yang–Mills theory [4, 27], Kaluza–Klein theory [5, 10], supergravity and superstring theories

[11, 28], etc. Later such submersions were considered between manifolds with differentiable structures; see

[8]. Furthermore, we have the following submersions: semi-Riemannian submersion and Lorentzian submersion

[8], Riemannian submersion [9], slant submersion [7, 23], almost Hermitian submersion [26], contact-complex

submersion [13], quaternionic submersion [12], almost h -slant submersion and h-slant submersion [19], semi-

invariant submersion [25], h-semi-invariant submersion [20], etc.

Compared with the huge literature on Riemannian submersions, it seems that there are necessary new

studies in anti-invariant Riemannian submersions; an interesting paper connecting these fields is [22]. Şahin

[22] introduced anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian

manifolds. Later, he suggested to investigate anti-invariant Riemannian submersions from almost contact

metric manifolds onto Riemannian manifolds [24]. The present work is another step in this direction, more

precisely from the point of view of anti-invariant Riemannian submersions from Kenmotsu manifolds. Our

work is structured as follows: Section 2 is focused on basic facts for Riemannian submersions and Kenmotsu
manifolds. The third section is concerned with definition of anti-invariant Riemannian submersions from
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Kenmotsu manifolds onto Riemannian manifolds. We investigate the integrability of the distributions and the

geometry of foliations. We proved the nonexistence of (anti-invariant) Riemannian submersions from Kenmotsu

manifolds onto Riemannian manifolds such that the characteristic vector field ξ is a vertical vector field. The last

section is devoted to an example of anti-invariant Riemannian submersions in the case where the characteristic

vector field ξ is a horizontal vector field and an anti-invariant horizontally conformal submersion such that ξ

is a vertical vector field.

2. Preliminaries

In this section we recall several notions and results that will be needed throughout the paper.

Let M be a (2m+1)-dimensional connected differentiable manifold [3] endowed with an almost contact

metric structure (ϕ, ξ, η, g) consisting of a (1, 1)-tensor field ϕ, a vector field ξ, a 1-form η , and a compatible

Riemannian metric g satisfying

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (2.1)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), (2.2)

g(ϕX, Y ) + g(X,ϕY ) = 0, η(X) = g(X, ξ), (2.3)

for all vector fields X,Y ∈ χ(M).

An almost contact metric manifold M is said to be a Kenmotsu manifold [14] if it satisfies

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (2.4)

where ∇ is the Levi-Civita connection of the Riemannian metric g . From the above equation it follows that

∇Xξ = X − η(X)ξ, (2.5)

(∇Xη)Y = g(X,Y )− η(X)η(Y ). (2.6)

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of ϕ equals −2dη ⊗ ξ ) but not Sasakian.

Moreover, it is also not compact since from equation (2.5) we get divξ = 2m . Finally, the fundamental 2-form

Φ is defined by Φ(X,Y ) = g(X,ϕY ). In [14], Kenmotsu showed:

(a) that locally a Kenmotsu manifold is a warped product I×fN of an interval I and a Kaehler manifold

N with warping function f(t) = set, where s is a nonzero constant.

(b) that a Kenmotsu manifold of constant ϕ-sectional curvature is a space of constant curvature −1 and

so it is a locally hyperbolic space.

Now we will give a well-known example, which is a Kenmotsu manifold on R5 by using (a).

Example 1 We consider M = {(x1, x2, y1, y2, z) ∈ R5 : z ̸= 0}. Let η be a 1-form defined by

η = dz.

The characteristic vector field ξ is given by ∂
∂z and its Riemannian metric g and tensor field ϕ are given by

g = e2z
2∑

i=1

((dxi)
2 + (dyi)

2) + (dz)2, ϕ =


0 0 −1 0 0
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
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This gives a Kenmotsu structure on M . The vector fields E1 = e−z ∂
∂y1

, E2 = e−z ∂
∂y2

, E3 = e−z ∂
∂x1

,

E4 = e−z ∂
∂x2

, and E5 = ξ form a ϕ-basis for the Kenmotsu structure. On the other hand, it can be shown

that M(ϕ, ξ, η, g) is a Kenmotsu manifold.

Let (M, gM ) be an m -dimensional Riemannian manifold and let (N, gN ) be an n -dimensional Rieman-

nian manifold. A Riemannian submersion is a smooth map F :M → N that is onto and satisfying the following

axioms:

S1. F has maximal rank.

S2. The differential F∗ preserves the lengths of horizontal vectors.

The fundamental tensors of a submersion were defined by O’Neill [16, 17]. They are (1, 2)-tensors on

M , given by the following formulas:

T (E,F ) = TEF = H∇VEVF + V∇VEHF, (2.7)

A(E,F ) = AEF = V∇HEHF +H∇HEVF, (2.8)

for any vector fields E and F on M. Here ∇ denotes the Levi-Civita connection of gM . These tensors are

called integrability tensors for the Riemannian submersions. Note that we denote the projection morphism on

the distributions kerF∗ and (kerF∗)
⊥ by V and H, respectively.

If the second condition S2. can be changed as F∗ restricted to horizontal distribution of F is a conformal

mapping, we get the horizontally conformal submersion definition [18]. In this case the second condition can

be written in the following way:

gM (X,Y ) = e2λ(p)gN (F∗X,F∗Y ), ∀p ∈M, ∀X,Y ∈ Γ((kerF∗)
⊥), ∃λ ∈ C∞(M). (2.9)

The warped product M = M1 ×f M2 of two Riemannian manifolds (M1 ,g1 ) and (M2 ,g2 ), is the Cartesian

product manifold M1 ×M2, endowed with the warped product metric g = g1 + fg2 , where f is a positive

function on M1 . More precisely, the Riemannian metric g on M1 ×f M2 is defined for pairs of vector fields

X,Y on M1 ×M2 by

g(X,Y ) = g1(π1∗(X), π1∗(Y )) + f2(π1(.))g2(π2∗(X), π2∗(Y )),

where π1 : M1 ×M2 → M1; (p, q) → p and π2 : M1 ×M2 → M2; (p, q) → q are the canonical projections. We

recall that these projections are submersions. If f is not a constant function of value 1, one can prove that

the second projection is a conformal submersion whose vertical and horizontal spaces at any point (p, q) are

respectively identified with TpM1, TqM2.

Let L(M1) and L(M2) be the set of lifts of vector fields on M1 and M2 to M1 ×f M2 , respectively. We

use the same notation for a vector field and for its lift. We denote the Levi-Civita connection of the warped

product metric tensor of g by ∇ .

Proposition 1 [17]M = M1 ×f M2 be a warped Riemannian product manifold with the warping function f

on M1 . If X1, Y1 ∈ L(M1) and X2, Y2 ∈ L(M2) , then

(i)∇X1Y1 is the lift of ∇1
X1
Y1,

(ii)∇X1X2 = ∇X2X1 = (X1f/f)X2,

(iii) nor ∇X2Y2 = −(g(X2, Y2)/f)gradf ,
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(iv) tan ∇X2Y2 ∈ L(M2) is the lift of ∇2
X2
Y2,

where ∇1 and ∇2 are Riemannian connections on M1 and M2 , respectively.

Now we will introduce the following proposition ([6], pp. 86) for Subsection 3.2.

Proposition 2 If ϕ is a submersion of N onto N1 and if ψ :N1 → N2 is a differentiable function, then the

rank of ψ ◦ ϕ at p is equal to the rank of ψ at ϕ(p).

The following lemmas are well known from [16, 17]:

Lemma 1 For any U,W vertical and X,Y horizontal vector fields, the tensor fields T and A satisfy

i)TUW = TWU, (2.10)

ii)AXY = −AYX =
1

2
V [X,Y ] . (2.11)

It is easy to see that T is vertical, TE = TVE , and A is horizontal, A = AHE .

For each q ∈ N, F−1(q) is an (m − n)-dimensional submanifold of M . The submanifolds F−1(q) are

called fibers. A vector field on M is called vertical if it is always tangent to fibers. A vector field on M is

called horizontal if it is always orthogonal to fibers. A vector field X on M is called basic if X is horizontal

and F -related to a vector field X∗ on N, i.e. F∗Xp = X∗F (p) for all p ∈M.

Lemma 2 Let F : (M, gM ) → (N, gN ) be a Riemannian submersion. If X, Y are basic vector fields on M ,

then

i) gM (X,Y ) = gN (X∗, Y∗) ◦ F,
ii) H[X,Y ] is basic and F -related to [X∗, Y∗] ,

iii) H(∇XY ) is a basic vector field corresponding to ∇∗

X∗
Y∗ where ∇∗ is the connection on N.

iv) for any vertical vector field V , [X,V ] is vertical.

Moreover, if X is basic and U is vertical, then H(∇UX) = H(∇XU) = AXU. On the other hand, from

(2.7) and (2.8) we have

∇VW = TVW + ∇̂VW, (2.12)

∇VX = H∇VX + TVX, (2.13)

∇XV = AXV + V∇XV, (2.14)

∇XY = H∇XY +AXY, (2.15)

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW.

Note that T acts on the fibers as the second fundamental form of the submersion and restricted to
vertical vector fields and it can be easily seen that T = 0 is equivalent to the condition that the fibers are

totally geodesic. A Riemannian submersion is called a Riemannian submersion with totally geodesic fibers if T
vanishes identically. Let U1, ..., Um−n be an orthonormal frame of Γ(kerF∗). Then the horizontal vector field

H = 1
m−n

m−n∑
j=1

TUjUj is called the mean curvature vector field of the fiber. If H = 0, then the Riemannian
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submersion is said to be minimal. A Riemannian submersion is called a Riemannian submersion with totally

umbilical fibers if
TUW = gM (U,W )H, (2.16)

for U,W ∈ Γ(kerF∗). For any E ∈ Γ(TM), TE and AE are skew-symmetric operators on (Γ(TM), gM )

reversing the horizontal and the vertical distributions. By Lemma 1, horizontal distribution H is integrable if

and only if A =0. For any D,E,G ∈ Γ(TM), one has

g(TDE,G) + g(TDG,E) = 0 (2.17)

and
g(ADE,G) + g(ADG,E) = 0. (2.18)

Finally, we recall the notion of harmonic maps between Riemannian manifolds. Let (M, gM ) and (N, gN )

be Riemannian manifolds and suppose that φ :M → N is a smooth map between them. Then the differential

φ∗ of φ can be viewed as a section of the bundle Hom(TM,φ−1TN) → M, where φ−1TN is the pullback

bundle that has fibers (φ−1TN)p = Tφ(p)N, p ∈M. Hom(TM,φ−1TN) has a connection ∇ induced from the

Levi-Civita connection ∇M and the pullback connection. Then the second fundamental form of φ is given by

(∇φ∗)(X,Y ) = ∇φ
Xφ∗(Y )− φ∗(∇M

X Y ), (2.19)

for X,Y ∈ Γ(TM), where ∇φ is the pullback connection. It is known that the second fundamental form is

symmetric. If φ is a Riemannian submersion, it can be easily proved that

(∇φ∗)(X,Y ) = 0, (2.20)

for X,Y ∈ Γ((kerF∗)
⊥). A smooth map φ : (M, gM ) → (N, gN ) is said to be harmonic if trace(∇φ∗) = 0. On

the other hand, the tension field of φ is the section τ(φ) of Γ(φ−1TN) defined by

τ(φ) = divφ∗ =
m∑
i=1

(∇φ∗)(ei, ei), (2.21)

where {e1, ..., em} is the orthonormal frame on M . Then it follows that φ is harmonic if and only if τ(φ) = 0,

(for details, see [2]).

Let g be a Riemannian metric tensor on the manifold M = M1 ×M2 and assume that the canonical

foliations DM1 and DM2 intersect perpendicularly everywhere. Then g is the metric tensor of a usual product

of Riemannian manifolds if and only if DM1 and DM2 are totally geodesic foliations [21].

3. Anti-invariant Riemannian submersions

In this section, we are going to define anti-invariant Riemannian submersions from Kenmotsu manifolds and

investigate the geometry of such submersions.

Definition 1 Let M(ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) a Riemannian manifold. A Riemannian

submersion F :M(ϕ, ξ, η, gM ) → (N, gN ) is called an anti-invariant Riemannian submersion if kerF∗ is anti-

invariant with respect to ϕ , i.e. ϕ(kerF∗) ⊆ (kerF∗)
⊥.
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Let F : M(ϕ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion from a Kenmotsu

manifold M(ϕ, ξ, η, gM ) to a Riemannian manifold (N, gN ). First of all, from Definition 1, we have ϕ(kerF∗)
⊥∩

(kerF∗) ̸= {0} . We denote the complementary orthogonal distribution to ϕ(kerF∗) in (kerF∗)
⊥ by µ. Then

we have

(kerF∗)
⊥ = ϕ kerF∗ ⊕ µ. (3.1)

3.1. Anti-invariant Riemannian submersions admitting a horizontal structure vector field

In this subsection, we will study anti-invariant Riemannian submersions from a Kenmotsu manifold onto a

Riemannian manifold such that the characteristic vector field ξ is a horizontal vector field. Using (3.1), we have

µ = ϕµ⊕ {ξ}. For any horizontal vector field X we put

ϕX = BX + CX, (3.2)

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ).

Now we suppose that V is a vertical and X is a horizontal vector field. Using the above relation and

(2.2), we obtain

gM (CX,ϕV ) = 0. (3.3)

By virtue of (2.2) and (3.2), we get

gM (CX,ϕU) = gM (ϕX −BX,ϕU) (3.4)

= gM (X,U)− η(X)η(U)− gM (BX,ϕU).

Since ϕU ∈ Γ((kerF∗)
⊥) and ξ ∈ Γ(kerF∗)

⊥, (3.4) implies (3.3). From this last relation we have gN (F∗ϕV, F∗CX) =

0, which implies that

TN = F∗(ϕ(kerF∗))⊕ F∗(µ). (3.5)

The proof of the following result is the same as Theorem 10 of [15]; therefore, we omit its proof.

Theorem 1 Let M(ϕ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m + 1 and (N, gN ) a Riemannian

manifold of dimension n. Let F :M(ϕ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion such

that (kerF∗)
⊥ = ϕ kerF∗ ⊕ {ξ}. Then m+ 1 = n .

Remark 1 We note that Example 2 satisfies Theorem 1.

Lemma 3 Let F be an anti-invariant Riemannian submersion from a Kenmotsu manifold M(ϕ, ξ, η, gM ) to a

Riemannian manifold (N, gN ) . Then we have

AXξ = 0, (3.6)

TUξ = U, (3.7)

gM (∇Y CX,ϕU) = −gM (CX,ϕAY U), (3.8)

for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).
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Proof Using (2.15) and (2.5), we have (3.6). Using (2.13) and (2.5), we obtain (3.7). Now using (3.3), we get

gM (∇Y CX,ϕU) = −gM (CX,∇Y ϕU),

for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). Then (2.14) and (2.4) imply that

gM (∇Y CX,ϕU) = −gM (CX,ϕAY U)− gM (CX,ϕ(V∇Y U)).

Since ϕ(V∇Y U) ∈ Γ((kerF∗)
⊥), we obtain (3.8). 2

We now study the integrability of the distribution (kerF∗)
⊥ and then we investigate the geometry of

leaves of kerF∗ and (kerF∗)
⊥ .

Theorem 2 Let F be an anti-invariant Riemannian submersion from a Kenmotsu manifold M(ϕ, ξ, η, gM ) to

a Riemannian manifold (N, gN ) . Then the following assertions are equivalent to each other:

i) (kerF∗)
⊥ is integrable,

ii) gN ((∇F∗)(Y,BX), F∗ϕV ) = gN ((∇F∗)(X,BX), F∗ϕV )

+gM (CY, ϕAXV )− gM (CX,ϕAY V ),

iii) gM (AXBY −AYBX,ϕV ) = gM (CY, ϕAXV )− gM (CX,ϕAY V )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof From (2.2) and (2.4), one easily obtains

gM ([X,Y ] , V ) = gM (∇XY, V )− gM (∇YX,V )

= gM (∇XϕY, ϕV )− gM (∇Y ϕX, ϕV ).

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗). Then from (3.2), we have

gM ([X,Y ] , V ) = gM (∇XBY, ϕV ) + gM (∇XCY, ϕV )− gM (∇YBX,ϕV )

−gM (∇Y CX,ϕV ).

Taking into account that F is a Riemannian submersion and using (2.8), (2.14), and (3.8), we obtain

gM ([X,Y ] , V ) = gN (F∗∇XBY,F∗ϕV )− gM (CY, ϕAXV )

−gN (F∗∇YBX,F∗ϕV ) + gM (CX,ϕAY V ).

Thus, from (2.19) we have

gM ([X,Y ] , V ) = gN (−(∇F∗)(X,BY ) + (∇F∗)(Y,BX), F∗ϕV )

+gM (CX,ϕAY V )− gM (CY, ϕAXV )

which proves (i) ⇔ (ii). On the other hand, using (2.19), we get

(∇F∗)(Y,BX)− (∇F∗)(X,BY ) = −F∗(∇YBX −∇XBY ).

Then (2.14) implies that

(∇F∗)(Y,BX)− (∇F∗)(X,BY ) = −F∗(AYBX −AXBY ).

From (2.8) it follows that AYBX −AXBY ∈ Γ((kerF∗)
⊥); this shows that (ii) ⇔ (iii). 2
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Remark 2 We assume that (kerF∗)
⊥ = ϕ kerF∗ ⊕ {ξ}. Using (3.2) one can prove that CX = 0 for X ∈

Γ((kerF∗)
⊥) .

Hence we can give the following corollary.

Corollary 1 Let M(ϕ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m + 1 and (N, gN ) a Riemannian

manifold of dimension n. Let F :M(ϕ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion such

that (kerF∗)
⊥ = ϕ kerF∗ ⊕ {ξ}. Then the following assertions are equivalent to each other:

i) (kerF∗)
⊥ is integrable,

ii) (∇F∗)(X,ϕY ) = (∇F∗)(ϕX, Y ), X, Y ∈ Γ((kerF∗)
⊥),

iii) AXϕY = AY ϕX.

Theorem 3 Let M(ϕ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m + 1 and (N, gN ) a Riemannian

manifold of dimension n. Let F : M(ϕ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion.

Then the following assertions are equivalent to each other:

i) (kerF∗)
⊥ defines a totally geodesic foliation on M,

ii) gM (AXBY, ϕV ) = gM (CY, ϕAXV ),

iii) gN ((∇F∗)(X,ϕY ), F∗ϕV ) = −gM (CY, ϕAXV ),

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof From (2.2) and (2.4), we obtain

gM (∇XY, V ) = gM (∇XϕY, ϕV ),

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗). By virtue of (3.2), we get

gM (∇XY, V ) = gM (∇XBY +∇XCY, ϕV ).

Using (2.14) and (3.8), we have

gM (∇XY, V ) = gM (AXBY + V∇XBY, ϕV )− gM (CY, ϕAXV ).

The last equation shows (i) ⇔ (ii).

For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗),

gM (AXBY, ϕV ) = gM (CY, ϕAXV ) (3.9)

Since differential F∗ preserves the lengths of horizontal vectors the relation (3.9) forms

gM (CY, ϕAXV ) = gN (F∗AXBY,F∗ϕV ) (3.10)

By using (2.14) and (2.19) in (3.10), we obtain

gM (CY, ϕAXV ) = gN (−(∇F∗)(X,ϕY ), F∗ϕV )

which tells that (ii) ⇔ (iii). 2
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Corollary 2 Let F : M(ϕ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion such that

(kerF∗)
⊥ = ϕ kerF∗ ⊕ {ξ} , where M(ϕ, ξ, η, gM ) is a Kenmotsu manifold and (N, gN ) is a Riemannian mani-

fold. Then the following assertions are equivalent to each other:

i) (kerF∗)
⊥ defines a totally geodesic foliation on M,

ii) AXϕY = 0,

iii) (∇F∗)(X,ϕY ) = 0 for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) .

The following result is a consequence from (2.12) and (3.7).

Theorem 4 Let F be an anti-invariant Riemannian submersion from a Kenmotsu manifold M(ϕ, ξ, η, gM ) to

a Riemannian manifold (N, gN ) . Then (kerF∗) does not define a totally geodesic foliation on M.

Using Theorem 4, one can give the following result.

Theorem 5 Let F :M(ϕ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion where M(ϕ, ξ, η, gM )

is a Kenmotsu manifold and (N, gN ) is a Riemannian manifold. Then F is not a totally geodesic map.

Remark 3 Now we suppose that {e1, ..., em} is a local orthonormal frame of Γ(kerF∗) . From the well-known

equation H = 1
m

m∑
i=1

Teiei , (2.12), and (2.17) we have

mg(H, ξ) = g(Te1e1, ξ) + g(Te2e2, ξ) + · · ·+ g(Temem, ξ)

= −g(Te1ξ, e1)− g(Te2ξ, e2)− · · · − g(Temξ, em)

= −g(e1, e1)− g(e2, e2)− · · · − g(em, em)

= −m

We get g(H, ξ) = −1. Therefore, kerF∗ does not have minimal fibers.

By virtue of Remark 3, we have the following theorem.

Theorem 6 Let F :M(ϕ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion where M(ϕ, ξ, η, gM )

is a Kenmotsu manifold and (N, gN ) is a Riemannian manifold. Then F is not harmonic.

3.2. Anti-invariant Riemannian submersions admitting a vertical structure vector field

In this subsection, we will prove that there do not exist (anti-invariant) Riemannian submersions from Kenmotsu

manifolds onto Riemannian manifolds such that characteristic vector field ξ is a vertical vector field. Moreover,

we will give a method to get horizontally conformal submersion examples from warped product manifolds onto

Riemannian manifolds.

It is easy to see that µ is an invariant distribution of (kerF∗)
⊥, under the endomorphism ϕ . Thus, for

X ∈ Γ((kerF∗)
⊥), we have

ϕX = BX + CX, (3.11)

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ). On the other hand, since F∗((kerF∗)
⊥) = TN and F is a Riemannian

submersion, using (3.11) we derive gN (F∗ϕV, F∗CX) = 0, for every X ∈ Γ((kerF∗))
⊥ and V ∈ Γ(kerF∗),
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which implies that

TN = F∗(ϕ(kerF∗))⊕ F∗(µ). (3.12)

Theorem 7 Let (Mm+1 = I ×f L
m, gM = dt2 + f2gL) be a warped product manifold of an interval I and a

Riemannian manifold L . If F : (Mm+1, gM ) → (Nn, gN ) is a Riemannian submersion with vertical vector

field ∂
∂t = ∂t then the warped product manifold is a Riemannian product manifold.

Proof Let σ = (t, x1, x2, ..., xm) be a coordinate system for M at p ∈ M and y1, y2, ..., yn be a coordinate

system for N at F (p). Since ∂t is a vertical vector field, we have

0 = F∗(∂t)p =

n∑
i=1

∂(yi ◦ F )
∂t

(p)
∂

∂yi
|F (p) .

Therefore, the component functions yi ◦ F = fi of F do not contain t parameter. Namely,

F : I ×f L→ N, (t, x) → F (t, x) = (f1(x), ..., fn(x)),

where x = (x1, x2, ..., xm) and also (kerF∗)
⊥ |(t,x)⊆ T(t,x)({t} × L) ∼= TxL at point p = (t, x) ∈ M . That is,

if X̃ ∈ (kerF∗)
⊥ , there is a vector field X ∈ Γ(TN) such that the lift of X to I × L is the vector field X̃ ,

π2∗(X̃p) = Xπ2(p) for all p ∈M . For the sake of simplification we use the same notation for a vector field and

for its lift.

Using Proposition 1 (ii), we obtain

∇X∂t =
f ′

f
X (3.13)

for X ∈ Γ((kerF∗)
⊥). From (2.14) and (3.13) we have

AX∂t =
f ′

f
X (3.14)

for X ∈ Γ((kerF∗)
⊥).

By applying (2.11), (2.18), and (3.14), we find

gM (AXY, ∂t) = −f
′

f
gM (X,Y ) = −f

′

f
gM (Y,X) = gM (AYX, ∂t) = −gM (AXY, ∂t)

for X,Y ∈ Γ((kerF∗)
⊥). Thus, we obtain

gM (AXY, ∂t) = −f
′

f
gM (X,Y ) = 0. (3.15)

It follows from (3.15) that f ′ = 0 . Hence warping function f must be constant. Therefore, up to a change of

scale, M is a Riemannian product manifold. 2
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Theorem 8 Let M(ϕ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m+ 1 and (N, gN ) is a Riemannian

manifold of dimension n . There is no Riemannian submersion F : M(ϕ, ξ, η, gM ) → (N, gN ) such that the

characteristic vector field ξ is a vertical vector field.

Proof From [14] we know that locally a Kenmotsu manifold is a warped product I ×f L of an interval I and

a Kaehler manifold L with metric gM = dt2 + f2gL and warping function f(t) = set , where s is a positive

constant. Let ξ = ∂
∂t = ∂t be a vertical vector field. It follows from Theorem 7 that M is a Riemannian

product manifold. Since f(t) = set is not constant, M cannot be a Riemannian product manifold. This is a

contradiction that completes the proof of theorem. 2

Theorem 9 Let M =M1×fM2 be a warped product manifold with metric g = g1+f
2g2 , π2 :M1×M2 →M2

second canonical projection, and (M3, g3) Riemannian manifold. If f1 is a Riemannian submerison from M2

onto M3 then f2 = f1 ◦ π2 : M →M3 is a horizontally conformal submersion.

Proof Since f1 is a Riemannian submersion, rank f1 = dimM3 . Using Proposition 2, we have rank f2|(p,q) =

rank f1 |f1(q)= dimM3 for any point (p, q) ∈ M. Consequently f2 is a submersion. Since π2 is a natural

horizontally conformal submersion for a warped product manifold, we get kerπ2∗|(p,q) = T(p,q)M1 ≡ T(p,q)(M1×

{q}) ∼= TpM1. Therefore, ker f2∗|(p,q)
∼= TpM1 × ker f1∗q and (ker f2∗)

⊥
|(p,q) = {p} × (ker f1∗)

⊥
|q

∼= (ker f1∗)
⊥
|q.

Hence,

g(X,Y ) = f2(p)g2(π2∗(X), π2∗(Y ))

= f2(p)g3(f1∗(π2∗(X)), f1∗(π2∗(Y ))

= f2(p)g3(f2∗(X), f2∗(Y ))

for X,Y ∈ Γ((ker f2∗)
⊥). Thus we get the requested result. 2

Remark 4 Theorem 9 gives a chance to produce horizontally conformal submersion examples.

4. Examples

We now give some examples for anti-invariant submersion and anti-invariant horizontally conformal submersions

from Kenmotsu manifolds.

Example 2 Let M be a Kenmotsu manifold as in Example 1 . Let N be R ×ez R2 . The Riemannian metric

tensor field gN is defined by gN = e2z(du⊗ du+ dv ⊗ dv) + dz ⊗ dz on N .

Let F : M → N be a map defined by F (x1, x2, y1, y2, t) = (x1+y2√
2
, x2+y1√

2
, z) . Then a simple calculation

gives

kerF∗ = span{V1 =
1√
2
(E2 − E3), V2 =

1√
2
(E1 − E4)}

and

(kerF∗)
⊥ = span{H1 =

1√
2
(E1 + E4), H2 =

1√
2
(E2 + E3), H3 = E5 = ξ}.
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Then it is easy to see that F is a Riemannian submersion. Moreover, ϕV1 = −H1 , ϕV2 = −H2 imply that

ϕ(kerF∗) ⊂ (kerF∗)
⊥ = ϕ(kerF∗)⊕ {ξ} . Thus F is an anti-invariant Riemannian submersion such that ξ is

a horizontal vector field.

Example 3 Let M be a Kenmotsu manifold as in Example 1 and N be R2. The Riemannian metric tensor

field gN is defined by gN = e2z(du⊗ du+ dv ⊗ dv) on N .

Let F :M → N be a map defined by F (x1, x2, y1, y2, z) = (x1+y2√
2
, x2+y1√

2
) . Then by direct calculations we

have

kerF∗ = span{V1 =
1√
2
(E3 − E2), V2 =

1√
2
(E4 − E1), V3 = E5 = ξ =

∂

∂z
}

and

(kerF∗)
⊥ = span{H1 =

1√
2
(E3 + E2), H2 =

1√
2
(E4 + E1)}.

Then it is easy to see that F is a horizontally conformal submersion. Moreover, ϕV1 = H2, ϕV2 = H1, ϕV3 = 0

imply that ϕ(kerF∗) = (kerF∗)
⊥. As a result, F is an anti-invariant horizontally conformal submersion such

that ξ is a vertical vector field.

Remark 5 Recently Akyol and Şahin [1] studied conformal anti-invariant submersions from almost Hermi-

tian manifolds onto Riemannian manifolds. Therefore, it will be worth examining this study area, which is

anti-invariant (horizontally) conformal submersion from almost contact metric manifolds onto Riemannian

manifolds.
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[23] Şahin B. Slant submersions from almost Hermitian manifolds. Bull Math Soc Sci Math Roumanie Tome 2011; 54:

93-105.
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