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Abstract: Let f be a nonconstant meromorphic function, a( ̸≡ 0,∞) be a meromorphic function satisfying T (r, a) =

o(T (r, f)) as r → ∞ , and p(z) be a polynomial of degree n ≥ 1 with p(0) = 0. Let P [f ] be a nonconstant differential

polynomial of f . Under certain essential conditions, we prove that p(f) ≡ P [f ] , when p(f) and P [f ] share a with

weight l ≥ 0. Our result generalizes the results due to Zhang and Lü , Banerjee and Majumdar, and Bhoosnurmath and

Kabbur and answers a question asked by Zhang and Lü .
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1. Introduction

Let f be a nonconstant meromorphic function in the complex plane C . We assume that the reader is familiar

with the standard notions of the Nevanlinna value distribution theory such as T (r, f), m(r, f), N(r, f) (see

e.g., [4, 5, 7]). By S(r, f), as usual, we shall mean a quantity that satisfies

S(r, f) = ◦(T (r, f)) as r → ∞,

possibly outside an exceptional set of finite logarithmic measure. A meromorphic function a is said to be a

small function of f , if T (r, a) = S(r, f) as r → ∞ .

For a small function a of f , we write E(a, f) = {z ∈ C : f(z) − a(z) = 0} , where a zero of f − a is

counted according to its multiplicity. Also by E(a, f), we denote the zeros of f − a , where a zero is counted

only once. Let g be another nonconstant meromorphic function. We say that f and g share the function a

CM(counting multiplicity) if E(a, f) = E(a, g). Further, if E(a, f) = E(a, g), then we say that f and g share

the function a IM (ignoring multiplicity). Note that a can be a value in C ∪ {∞} .
A more general concept is the weighted sharing of meromorphic functions. For a nonnegative integer

k , we denote by Ek(a, f) the set of all zeros of f − a , where a zero of multiplicity m is counted m times if

m ≤ k and k + 1 times if m > k . If Ek(a, f) = Ek(a, g), then f and g are said to share the function a with

weight k . We write “f and g share (a, k)” to mean that “f and g share the function a with weight k”. Since

Ek(a, f) = Ek(a, g) implies that Ep(a, f) = Ep(a, g) for any integer p(0 ≤ p < k), if f and g share (a, k), then

f and g share (a, p), 0 ≤ p < k . Moreover, we note that f and g share the function a IM (ignoring multilicity)

or CM (counting multiplicity) if and only if f and g share (a, 0) or (a,∞), respectively. In particular, the

small function a can be a value in C ∪ {∞} .
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For notational purposes, let f and g share 1 IM, and let z0 be a zero of f − 1 with multiplicity p and a

zero of g − 1 with multiplicity q . We denote by N
1)
E (r, 1/(f − 1)) the counting function of the zeros of f − 1

when p = q = 1. By N
(2

E (r, 1/(f − 1)) we denote the counting function of the zeros of f − 1 when p = q ≥ 2

and by NL (r, 1/(f − 1)) we denote the counting function of the zeros of f − 1 when p > q ≥ 1; each point

in these counting functions is counted only once; similarly, the terms N
1)
E (r, 1/(g − 1)), N

(2

E (r, 1/(g − 1)), and

NL (r, 1/(g − 1)). In addition, we denote by Nf>k (r, 1/(g − 1)) the reduced counting function of those zeros

of f − 1 and g − 1 such that p > q = k , and similarly the term Ng>k (r, 1/(f − 1)).

A differential polynomial P [f ] of a nonconstant meromorphic function f is defined as

P [f ] :=

m∑
i=1

Mi[f ],

where Mi[f ] = ai.
∏k

j=0(f
(j))nij with ni0, ni1, . . . , nik as nonnegative integers and ai(̸≡ 0) are meromorphic

functions satisfying T (r, ai) = o(T (r, f)) as r → ∞ . The numbers d(P ) = max1≤i≤m

∑k
j=0 nij and d(P ) =

min1≤i≤m

∑k
j=0 nij are respectively called the degree and lower degree of P [f ] . If d(P ) = d(P ) = d (say),

then we say that P [f ] is a homogeneous differential polynomial of degree d .

Inspired by a uniqueness result due to Mues and Steinmetz [6]: “If f is a non-constant entire function

sharing two distinct values ignoring multiplicity with f ′ , then f ≡ f ′ ”, the study of the uniqueness of f and

f (k) , fn and (fm)(k) , f and P [f ] is carried out by numerous authors. For example, Zhang and Lü [8] proved:

Theorem A. Let k , n be the positive integers, f be a nonconstant meromorphic function, and a(̸≡ 0,∞) be

a meromorphic function satisfying T (r, a) = o(T (r, f)) as r → ∞ . If fn and f (k) share a IM and

(2k + 6)Θ(∞, f) + 4Θ(0, f) + 2δ2+k(0, f) > 2k + 12− n,

or fn and f (k) share a CM and

(k + 3)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > k + 6− n,

then fn ≡ f (k) .

In the same paper, Zhang and Lü asked the following question:

Question 1: What will happen if fn and (f (k))m share a meromorphic function a( ̸≡ 0,∞) satisfying T (r, a) =

o(T (r, f)) as r → ∞ ?

Bhoosnurmath and Kabbur [3] proved:

Theorem B. Let f be a nonconstant meromorphic function and a( ̸≡ 0,∞) be a meromorphic function

satisfying T (r, a) = o(T (r, f)) as r → ∞ . Let P [f ] be a nonconstant differential polynomial of f . If f and

P [f ] share a IM and

(2Q+ 6)Θ(∞, f) + (2 + 3d(P ))δ(0, f) > 2Q+ 2d(P ) + d(P ) + 7,

or if f and P [f ] share a CM and

3Θ(∞, f) + (d(P ) + 1)δ(0, f) > 4,
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then f ≡ P [f ] .

Banerjee and Majumder [2] considered the weighted sharing of fn and (fm)(k) and proved the following

result:

Theorem C. Let f be a nonconstant meromorphic function, k, n,m ∈ N and l be a nonnegative integer.

Suppose a(̸≡ 0,∞) is a meromorphic function satisfying T (r, a) = o(T (r, f)) as r → ∞ such that fn and

(fm)(k) share (a, l) . If l ≥ 2 and

(k + 3)Θ(∞, f) + (k + 4)Θ(0, f) > 2k + 7− n,

or l = 1 and (
k +

7

2

)
Θ(∞, f) +

(
k +

9

2

)
Θ(0, f) > 2k + 8− n,

or l = 0 and
(2k + 6)Θ(∞, f) + (2k + 7)Θ(0, f) > 4k + 13− n,

then fn ≡ (fm)(k) .

Motivated by such uniqueness investigations, it is natural to consider the problem in a more general

setting: Let f be a nonconstant meromorphic function, P [f ] be a nonconstant differential polynomial of f,

p(z) be a polynomial of degree n ≥ 1 , and a(̸≡ 0,∞) be a meromorphic function satisfying T (r, a) = o(T (r, f))

as r → ∞ . If p(f) and P [f ] share (a, l), l ≥ 0 , then is it true that p(f) ≡ P [f ] ?

Generally this is not true, but under certain essential conditions, we prove the following result:

Theorem 1.1 Let f be a nonconstant meromorphic function, a( ̸≡ 0,∞) be a meromorphic function satisfying

T (r, a) = o(T (r, f)) as r → ∞ , and p(z) be a polynomial of degree n ≥ 1 with p(0) = 0 . Let P [f ] be

a nonconstant differential polynomial of f . Suppose p(f) and P [f ] share (a, l) with one of the following

conditions:
(i) l ≥ 2 and

(Q+ 3)Θ(∞, f) + 2nΘ(0, p(f)) + d(P )δ(0, f) > Q+ 3 + 2d(P )− d(P ) + n, (1.1)

(ii) l = 1 and (
Q+

7

2

)
Θ(∞, f) +

5n

2
Θ(0, p(f)) + d(P )δ(0, f) > Q+

7

2
+ 2d(P )− d(P ) +

3n

2
, (1.2)

(iii) l = 0 and

(2Q+ 6)Θ(∞, f) + 4nΘ(0, p(f)) + 2d(P )δ(0, f) > 2Q+ 6 + 4d(P )− 2d(P ) + 3n. (1.3)

Then p(f) ≡ P [f ].

Example 1.2. Consider the function f(z) = cosαz + 1 − 1/α4 , where α ̸= 0,±1,±i and p(z) = z . Then

p(f) and P [f ] ≡ f (iv) share (1, l), l ≥ 0 and none of the inequalities (1.1), (1.2), and (1.3) is satisfied, and

p(f) ̸= P [f ] . Thus the conditions in Theorem 1.1 cannot be removed.

Remark 1.3. Theorem 1.1 generalizes Theorem A , Theorem B , Theorem C (and also generalizes Theorem

1.1 and Theorem 1.2 of [2]) and provides an answer to Question 1 asked by Zhang and Lü [8].

The main tool of our investigations in this paper is Nevanlinna value distribution theory ([4, 5, 7]).
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2. Proof of the main result

We shall use the following results in the proof of Theorem 1.1:

Lemma 2.1 [3] Let f be a nonconstant meromorphic function and P [f ] be a differential polynomial of f .

Then

m

(
r,
P [f ]

fd(P )

)
≤ (d(P )− d(P ))m

(
r,

1

f

)
+ S(r, f), (2.1)

N

(
r,
P [f ]

fd(P )

)
≤ (d(P )− d(P ))N

(
r,

1

f

)
+Q

[
N(r, f) +N

(
r,

1

f

)]
+ S(r, f), (2.2)

N

(
r,

1

P [f ]

)
≤ QN(r, f) + (d(P )− d(P ))m

(
r,

1

f

)
+N

(
r,

1

fd(P )

)
+ S(r, f), (2.3)

where Q = max1≤i≤m{ni0 + ni1 + 2ni2 + ...+ knik} .

Lemma 2.2 [1] Let f and g be two nonconstant meromorphic functions.

(i) If f and g share (1, 0) , then

NL

(
r,

1

f − 1

)
≤ N

(
r,

1

f

)
+N(r, f) + S(r), (2.4)

where S(r) = o(T (r)) as r → ∞ with T (r) = max{T (r, f);T (r, g)} .
(ii) If f and g share (1, 1) , then

2NL

(
r,

1

f − 1

)
+ 2NL

(
r,

1

g − 1

)
+N

(2

E

(
r,

1

f − 1

)
−Nf>2

(
r,

1

g − 1

)
≤ N

(
r,

1

g − 1

)
−N

(
r,

1

g − 1

)
. (2.5)

Proof of Theorem 1.1: Let p(z) = zn + an−1z
n−1 + an−2z

n−2 + ... + a1z , where a1, a2, ..., an−1 are

constants, F = p(f)/a and G = P [f ]/a . Then

F − 1 =
p(f)− a

a
and G− 1 =

P [f ]− a

a
. (2.6)

Since p(f) and P [f ] share (a, l), it follows that F and G share (1, l) except at the zeros and poles of a . Also

note that

N(r, F ) = N(r, f) + S(r, f) and N(r,G) = N(r, f) + S(r, f).

Define

ψ =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
. (2.7)

Claim: ψ ≡ 0.

Suppose on the contrary that ψ ̸≡ 0. Then from (2.7) we have

m(r, ψ) = S(r, f).
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By the second fundamental theorem of Nevanlinna we have

T (r, F ) + T (r,G) ≤ 2N(r, f) +N

(
r,

1

F

)
+N

(
r,

1

F − 1

)
+N

(
r,

1

G

)
+N

(
r,

1

G− 1

)
−N0

(
r,

1

F ′

)
−N0

(
r,

1

G′

)
+ S(r, f), (2.8)

where N0(r, 1/F
′) denotes the counting function of the zeros of F ′ , which are not the zeros of F (F − 1), and

N0(r, 1/G
′) denotes the counting function of the zeros of G′ , which are not the zeros of G(G− 1).

Case 1. When l ≥ 1.

Then from (2.7) we have

N
1)
E

(
r,

1

F − 1

)
≤ N

(
r,

1

ψ

)
+ S(r, f)

≤ T (r, ψ) + S(r, f)

= N(r, ψ) + S(r, f)

≤ N(r, F ) +N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f),

and so

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
= N

1)
E

(
r,

1

F − 1

)
+N

(2

E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+N

(
r,

1

G− 1

)
+ S(r, f)

≤ N(r, f) +N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+N

(2

E

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f). (2.9)

Subcase 1.1: When l = 1.
In this case we have

NL

(
r,

1

F − 1

)
≤ 1

2
N

(
r,

1

F ′ |F ̸= 0

)
≤ 1

2
N(r, F ) +

1

2
N

(
r,

1

F

)
, (2.10)

where N
(
r, 1

F ′ |F ̸= 0
)
denotes the zeros of F ′ , which are not the zeros of F .

573



CHARAK and LAL/Turk J Math

From (2.5) and (2.10) we have

2NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+N

(2

E

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
+NL

(
r,

1

F − 1

)
+ S(r, f)

≤ N

(
r,

1

G− 1

)
+

1

2
N(r, F ) +

1

2
N

(
r,

1

F

)
+ S(r, f)

≤ N

(
r,

1

G− 1

)
+

1

2
N(r, f) +

1

2
N

(
r,

1

p(f)

)
+ S(r, f). (2.11)

Thus, from (2.9) and (2.11) we have

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N(r, f) +N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+

1

2
N(r, f) +

1

2
N

(
r,

1

p(f)

)
+N

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f)

≤ N(r, f) +N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+

1

2
N(r, f) +

1

2
N

(
r,

1

p(f)

)
+ T (r,G)

+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f). (2.12)

From (2.3), (2.8), and (2.12) we obtain

T (r, F ) ≤ 3N(r, f) +N

(
r,

1

F

)
+N (2

(
r,

1

F

)
+N

(
r,

1

G

)
+N (2

(
r,

1

G

)
+

1

2
N(r, f) +

1

2
N

(
r,

1

p(f)

)
+ S(r, f)

≤ 7

2
N(r, f) + 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+

1

2
N

(
r,

1

p(f)

)
+ S(r, f)

≤ 7

2
N(r, f) +

5

2
N

(
r,

1

p(f)

)
+N

(
r,

1

P [f ]

)
+ S(r, f)

≤
(
Q+

7

2

)
N(r, f) +

5

2
N

(
r,

1

p(f)

)
+ (d(P )− d(P ))T (r, f) + d(P )N

(
r,

1

f

)
+ S(r, f)

≤
[(
Q+

7

2

)
{1−Θ(∞, f)}+ 5n

2
{1−Θ(0, p(f))}+ d(P ){1− δ(0, f)}

]
T (r, f)

+ (d(P )− d(P ))T (r, f) + S(r, f).
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That is,

nT (r, f) = T (r, F ) + S(r, f)

≤
[(
Q+

7

2

)
{1−Θ(∞, f)}+ 5n

2
{1−Θ(0, p(f))}+ d(P ){1− δ(0, f)}

]
T (r, f)

+ (d(P )− d(P ))T (r, f) + S(r, f),

which yields that

[(
Q+

7

2

)
Θ(∞, f) +

5n

2
Θ(0, p(f)) + d(P )δ(0, f)−Q− 7

2
− 2d(P ) + d(P )− 3n

2

]
T (r, f)

≤ S(r, f).

That is,

(
Q+

7

2

)
Θ(∞, f) +

5n

2
Θ(0, p(f)) + d(P )δ(0, f) ≤ Q+

7

2
+ 2d(P )− d(P ) +

3n

2
,

which violates (1.2).

Subcase 1.2: When l ≥ 2.

In this case we have

2NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+N

(2

E

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
+ S(r, f).

Thus from (2.9) we obtain

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N(r, f) +N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f)

≤ N(r, f) +N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+ T (r,G)

+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f). (2.13)
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Now from (2.3), (2.8), and (2.13) we obtain

T (r, F ) ≤ 3N(r, f) +N

(
r,

1

F

)
+N (2

(
r,

1

F

)
+N

(
r,

1

G

)
+N (2

(
r,

1

G

)
+ S(r, f)

≤ 3N(r, f) + 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f)

≤ 3N(r, f) + 2N

(
r,

1

p(f)

)
+N

(
r,

1

P [f ]

)
+ S(r, f)

≤ (Q+ 3)N(r, f) + 2N

(
r,

1

p(f)

)
+ (d(P )− d(P ))T (r, f) + d(P )N

(
r,

1

f

)
+ S(r, f)

≤ [(Q+ 3){1−Θ(∞, f)}+ 2n{1−Θ(0, p(f))}+ d(P ){1− δ(0, f)}]T (r, f)

+ (d(P )− d(P ))T (r, f) + S(r, f).

That is,

nT (r, f) = T (r, F ) + S(r, f)

≤ [(Q+ 3){1−Θ(∞, f)}+ 2n{1−Θ(0, p(f))}+ d(P ){1− δ(0, f)}]T (r, f)

+ (d(P )− d(P ))T (r, f) + S(r, f),

which implies that

[{(Q+ 3)Θ(∞, f) + 2nΘ(0, p(f)) + d(P )δ(0, f)} − {(Q+ 3 + 2d(P )− d(P ) + n}]T (r, f) ≤ S(r, f).

That is,

(Q+ 3)Θ(∞, f) + 2nΘ(0, p(f)) + d(P )δ(0, f) ≤ Q+ 3 + 2d(P )− d(P ) + n,

which violates (1.1).

Case 2. When l = 0.

Then we have

N
1)
E

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

G− 1

)
+ S(r, f),

N
(2

E

(
r,

1

F − 1

)
= N

(2

E

(
r,

1

G− 1

)
+ S(r, f),
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and also from (2.7) we have

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N

1)
E

(
r,

1

F − 1

)
+N

(2

E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+N

(
r,

1

G− 1

)
+ S(r, f)

≤ N
1)
E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
+ S(r, f)

≤ N(r, F ) +N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+N

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f). (2.14)

From (2.3), (2.4), (2.8), and (2.14) we obtain

T (r, F ) ≤ 3N(r, f) +N

(
r,

1

F

)
+N (2

(
r,

1

F

)
+N

(
r,

1

G

)
+N (2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, f)

≤ 3N(r, f) + 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+ 2N(r, F ) +N

(
r,

1

G

)
+N(r,G) + S(r, f)

≤ 6N(r, f) + 4N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f)

≤ 6N(r, f) + 4N

(
r,

1

p(f)

)
+ 2N

(
r,

1

P [f ]

)
+ S(r, f)

≤ (2Q+ 6)N(r, f) + 4N

(
r,

1

p(f)

)
+ 2(d(P )− d(P ))T (r, f) + 2d(P )N

(
r,

1

f

)
+ S(r, f)

≤ [(2Q+ 6){1−Θ(∞, f)}+ 4n{1−Θ(0, p(f))}+ 2d(P ){1− δ(0, f)}]T (r, f)

+ 2(d(P )− d(P ))T (r, f) + S(r, f).

That is,

nT (r, f) = T (r, F ) + S(r, f)

≤ [(2Q+ 6){1−Θ(∞, f)}+ 4n{1−Θ(0, p(f))}+ 2d(P ){1− δ(0, f)}]T (r, f)

+ 2(d(P )− d(P ))T (r, f) + S(r, f),

which implies that

[{(2Q+ 6)Θ(∞, f) + 4nΘ(0, p(f)) + 2d(P )δ(0, f)} − {2Q+ 6 + 4d(P )− 2d(P ) + 3n}]T (r, f) ≤ S(r, f).
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That is,

(2Q+ 6)Θ(∞, f) + 4nΘ(0, p(f)) + 2d(P )δ(0, f) ≤ 2Q+ 6 + 4d(P )− 2d(P ) + 3n,

which violates (1.3).

This proves the claim and thus ψ ≡ 0. Therefore, (2.7) implies that

F ′′

F ′ − 2F ′

F − 1
=
G′′

G′ − 2G′

G− 1
,

and so we obtain
1

F − 1
=

C

G− 1
+D, (2.15)

where C ̸= 0 and D are constants.

Here, the following three cases can arise:

Case(i) : When D ̸= 0, −1. Rewriting (2.15) as

G− 1

C
=

F − 1

D + 1−DF
,

we have

N(r,G) = N

(
r,

1

F − (D + 1)/D

)
.

In this case, the second fundamental theorem of Nevanlinna yields

nT (r, f) = T (r, F ) + S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − (D + 1)/D

)
+ S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+N(r,G) + S(r, f)

≤ 2N(r, f) +N

(
r,

1

p(f)

)
+ S(r, f)

= [2{1−Θ(∞, f)}+ n{1−Θ(0, p(f))}]T (r, f) + S(r, f).

⇒
{2Θ(∞, f) + nΘ(0, p(f))} − 2]T (r, f) ≤ S(r, f).

That is,

2Θ(∞, f) + nΘ(0, p(f)) ≤ 2,

which contradicts (1.1), (1.2), and (1.3).

Case(ii) : When D = 0. Then from (2.15) we have

G = CF − (C − 1). (2.16)

Therefore, if C ̸= 1, then

N

(
r,

1

G

)
= N

(
r,

1

F − (C − 1)/C

)
.
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Now the second fundamental theorem of Nevanlinna and (2.3) gives

nT (r, f) = T (r, F ) + S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − (C − 1)/C

)
+ S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f)

≤ N(r, f) +N

(
r,

1

p(f)

)
+N

(
r,

1

P [f ]

)
+ S(r, f)

≤ N(r, f) +N

(
r,

1

p(f)

)
+QN(r, f) + (d(P )− d(P ))m

(
r,

1

f

)
+N

(
r,

1

fd(P )

)
+ S(r, f)

≤ (Q+ 1)N(r, f) +N

(
r,

1

p(f)

)
+ (d(P )− d(P ))T (r, f)

+ d(P )N

(
r,

1

f

)
+ S(r, f)

≤ [(Q+ 1){1−Θ(∞, f)}+ n{1−Θ(0, p(f))}+ d(P ){1− δ(0, f)}]T (r, f)

+ (d(P )− d(P ))T (r, f) + S(r, f).

That is,

[{(Q+ 1)Θ(∞, f) + nΘ(0, p(f)) + d(P )δ(0, f)} − {Q+ 1 + 2d(P )− d(P )}]T (r, f) ≤ S(r, f),

which implies that

(Q+ 1)Θ(∞, f) + nΘ(0, p(f)) + d(P )δ(0, f) ≤ Q+ 1 + 2d(P )− d(P ),

which contradicts (1.1), (1.2), and (1.3).

Thus, C = 1 and so in this case from (2.16) we obtain F ≡ G and so

p(f) ≡ P [f ].

Case(iii) : When D = −1. Then from (2.15) we have

1

F − 1
=

C

G− 1
− 1. (2.17)

Therefore, if C ̸= −1, then

N

(
r,

1

G

)
= N

(
r,

1

F − C/(C + 1)

)
,

and as in case (ii) we find that

nT (r, f) ≤ (Q+ 1)N(r, f) +N

(
r,

1

p(f)

)
+ (d(P )− d(P ))T (r, f)

+ d(P )N

(
r,

1

f

)
+ S(r, f),
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which implies that

[{(Q+ 1)Θ(∞, f) + nΘ(0, p(f)) + d(P )δ(0, f)} − {Q+ 1 + 2d(P )− d(P )}]T (r, f) ≤ S(r, f).

That is,

(Q+ 1)Θ(∞, f) + nΘ(0, p(f)) + d(P )δ(0, f) ≤ Q+ 1 + 2d(P )− d(P ),

which contradicts (1.1), (1.2), and (1.3).

Therefore, C = −1 and so in this case from (2.17) we obtain FG ≡ 1 and so p(f)P [f ] = a2. Thus, in

this case N(r, f) +N (r, 1/f) = S(r, f).

Now, by using (2.1) and (2.2), we have

(n+ d(P ))T (r, f) ≤ T

(
r,

a2

fn+d(P )

)
+ S(r, f)

≤ T

(
r,

[
1 +

an−1

f
+−−−+

a1
fn−1

]
.
P [f ]

fd(P )

)
+ S(r, f)

≤ (n− 1)T (r, f) + T

(
r,
P [f ]

fd(P )

)
+ S(r, f)

= (n− 1)T (r, f) +m

(
r,
P [f ]

fd(P )

)
+N

(
r,
P [f ]

fd(P )

)
+ S(r, f)

≤ (n− 1)T (r, f) + (d(P )− d(P ))m

(
r,

1

f

)
+ (d(P )− d(P ))N

(
r,

1

f

)
+Q

[
N(r, f) +N

(
r,

1

f

)]
+ S(r, f)

≤ (n− 1)T (r, f) + (d(P )− d(P ))T (r, f) + S(r, f).

Thus
(1 + d(P ))T (r, f) ≤ S(r, f),

which is a contradiction. 2
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