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Abstract: In this paper, we classify evolute offsets of a ruled surface in Minkowski 3-space L3 with constant Gaussian

curvature and mean curvature. As a result, we investigate linear Weingarten evolute offsets of a ruled surface in L3 .
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1. Introduction

The geometry of curves and surfaces in Euclidean 3-space E3 represented for many years a popular topic in the

field of classical differential geometry. Increasing interest in the theory of curves has led to the development of

special curves to be examined. A way for the characterizations and classifications for curves is the relationship

between the Frenet curvatures of the curves. Some of the curves are offsets of curves, in particular, involute-

evolute offsets, Bertrand offsets, Mannheim offsets etc. [1, 4, 8–10, 17, 18]. As the study of offsets of surfaces,

many authors studied them for various aspects. Farouki [5] developed methods for the generation of parallel

offsets for a certain class of surfaces. Ravani and Ku [15] generalized the theory of Bertrand offsets of curves

for ruled and developable surfaces using lines instead of points as the geometric building blocks of space. In

[6] Kasap and Kuruoğlu initiated the study of Bertrand offsets of ruled surfaces in Minkowski 3-space. Önder

[11] studied dual geodesic trihedra of Bertrand offsets of timelike surfaces in dual Lorentzian space and found

some relations between certain invariants of the offsets. As a result, he gave some characterizations of Bertrand

offsets of timelike ruled surfaces in view of the dual geodesic trihedron. Another type of offsets of surfaces

is Mannheim offsets. In [14] the authors investigated the properties of Mannheim offsets of developable ruled

surfaces in terms of the geodesic curvature and arc-length of spherical indicatrix of the director spherical curve

of the surfaces. Moreover, Önder and Uğurlu [12] obtained the relationships between invariants of Mannheim

offsets of timelike surfaces, and they gave the conditions for these surface offsets to be developable. Recently,

in [7] Kasap et al. studied involute-evolute offsets of ruled surfaces in Euclidean 3-space E3 .

In this paper, we study offsets of ruled surfaces in Minkowski 3-space L3 . We also study an evolute offset

with constant Gaussian curvature and constant mean curvature and give examples. As the results, we classify

a linear Weingarten evolute offset of ruled surfaces. A linear Weingarten surface is the surface having a linear

equation between the Gaussian curvature and the mean curvature of a surface.
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2. Preliminaries

The Minkowski 3-space L3 is a real space R3 provided with the standard flat metric given by

⟨ , ⟩ = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of R3 . An arbitrary vector x of L3 is said to be space-like

if ⟨x,x⟩ > 0 or x = 0, time-like if ⟨x,x⟩ < 0, and null if ⟨x,x⟩ = 0 and x ̸= 0. A time-like or null vector in L3

is said to be causal. Similarly, an arbitrary curve γ = γ(s) is space-like, time-like, or null if all of its tangent

vectors γ′(s) are space-like, time-like, or null, respectively. Here ”prime” denotes the derivative with respect

to the parameter s .

We now define some typical surfaces in L3 as follows:

S21 = {(x1, x2, x3) ∈ L3| − x2
1 + x2

2 + x2
3 = 1},

H2 = {(x1, x2, x3) ∈ L3| − x2
1 + x2

2 + x2
3 = −1}.

We call S21 and H2 de Sitter 2-space and hyperbolic space, respectively.

Let γ : I −→ L3 be a space-like or time-like curve in Minkowski 3-space L3 parameterized by its

arc-length s . Denote by {t,n,b} the Frenet frame field along γ(s).

If γ(s) is a space-like curve in L3 , the Frenet formulae of γ(s) are given by ([16])

γ′(s) = t(s),

t′(s) = κ(s)n(s),

n′(s) = −ϵκ(s)t(s) + τ(s)b(s),

b′(s) = ϵτ(s)n(s),

(2.1)

where ⟨t, t⟩ = 1, ⟨n,n⟩ = ϵ(= ±1), ⟨b,b⟩ = −ϵ. Here the functions κ(s) and τ(s) are the curvature function

and torsion function of γ(s).

If γ(s) is a time-like curve in L3 , the Frenet formulae of γ(s) are given by ([16])

γ′(s) = t(s),

t′(s) = κ(s)n(s),

n′(s) = −κ(s)t(s) + τ(s)b(s),

b′(s) = −τ(s)n(s),

(2.2)

where ⟨t, t⟩ = −1, ⟨n,n⟩ = ⟨b,b⟩ = 1. Here κ(s) and τ(s) are the curvature function and torsion function of

a time-like curve γ(s).

If γ(s) is a space-like or time-like pseudospherical curve parametrized by arc-length s in S21 or H2 , let

t(s) = γ′(s) and g(s) = γ(s)× γ′(s). Then we have a pseudoorthonormal frame {γ(s), t(s),g(s)} along γ(s).

It is called the pseudospherical Frenet frame of the pseudospherical curve γ(s). If γ is a space-like curve, then

the vector g is time-like when γ is on S21 , and the vector g is space-like when γ is on H2 . Similarly, if the

curve γ is time-like, then the vector g is space-like. The following theorem can be easily obtained.
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Theorem 2.1 ([2, 3]). Under the above notations, we have the following pseudospherical Frenet formulae of
γ :

(1) If γ is a pseudospherical space-like curve,

γ′(s) = t(s),

t′(s) = ϵγ(s) + ϵκg(s)g(s),

g′(s) = −κg(s)t(s).

(2.3)

Here γ is on H2 when ϵ = 1 , and γ is on S21 when ϵ = −1 .

(2) If γ is a pseudospherical time-like curve,

γ′(s) = t(s),

t′(s) = γ(s) + κg(s)g(s),

g′(s) = κg(s)t(s).

(2.4)

The function κg(s) is called the geodesic curvature of the pseudospherical curve γ .

3. Evolute offset of ruled surfaces

In this section, we first define a ruled surface in Minkowski 3-space L3 . Let I1 and I2 be some open intervals

in the real line R . Let c = c(u) be a curve in L3 defined on I1 and e = e(u) a transversal vector field along

c . Then a parametrization of a ruled surface is given by

φ(u, v) = c(u) + ve(u), u ∈ I1, v ∈ I2. (3.1)

For such a ruled surface, c and e are called the base curve and the director curve, respectively.

Suppose that a director curve e is a pseudospherical curve such that

⟨e(u), e(u)⟩ = ϵ1 = ±1, ⟨e′(u), e′(u)⟩ = ϵ2 = ±1, ⟨c′(u), e′(u)⟩ = 0. (3.2)

In this case, the parameter u is arc-length of the pseudospherical curve e . A curve e can be regarded as a

vector and it is called the pseudospherical indicatrix vector of φ(u, v). c is said to be the striction curve of

φ(u, v).

From now on, we shall often not write the parameter u explicitly in our formulae. We put t = e′ and

g = e × e′ . Then the set {e, t,g} is the pseudospherical Frenet frame of e and the vectors t and g are

said to be the pseudocentral normal and the pseudoasymptotic normal of φ(u, v), respectively ([13]). For the

pseudospherical Frenet frame {e, t,g} , the following equations hold:

e′ = t,

t′ = ϵ1ϵ2(−e+ Jg),

g′ = ϵ2Jt,

(3.3)

where J = ⟨e′′, e′ × e⟩ denotes the geodesic curvature κg of a pseudospherical curve e .
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On the other hand, the derivative of the striction curve c is given by

c′ = ϵ1Fe− ϵ1ϵ2Qg, (3.4)

where F = ⟨c′, e⟩ and Q = ⟨c′, e× e′⟩ . The function Q is called the parameter of distribution of φ(u, v). The

functions J, F, and Q of φ(u, v) are called structure functions of a ruled surface φ(u, v) in Minkowski 3-space

L3 .

On the other hand, the parameter u is arc-length parameter of the curve e , but usually it is not arc-length

parameter of the curve c . By (3.4), we have

Proposition 3.1 Let φ(u, v) be a ruled surface satisfying (3.2) in L3 . If the parameter u is also arc-length

parameter of the striction curve c of φ(u, v) , the structure functions F and Q of φ(u, v) satisfy |F 2−ϵ2Q
2| = 1 .

Now we compute the Gaussian curvature and the mean curvature of a ruled surface φ(u, v) in L3 . From

(3.3) and (3.4) the coefficients of the first fundamental form of φ(u, v) are given by

E = ϵ1F
2 − ϵ1ϵ2Q

2 + ϵ2v
2, F = ⟨c′, e⟩, G = ϵ1.

The unit normal vector u of φ(u, v) is written as

u =
1

D
(ϵ2Qt− vg),

where D =
√
|EG− F 2| =

√
|Q2 − ϵ1v2| . This leads to the coefficients L,M, and N of the second fundamental

form as

L =
1

D
(ϵ1Q(F −QJ)−Q′v + Jv2), M =

Q

D
, N = 0.

Thus, using the data described above, the Gaussian curvature K and the mean curvature H of φ(u, v) are

given respectively by

K =
Q2

D4
,

H =
1

2D3
(ϵ1Jv

2 − ϵ1Q
′v −Q(QJ + F )).

(3.5)

Definition 3.2 Let φ(u, v) and φ∗(u, v) be two ruled surfaces in L3 . A surface φ(u, v) is said to be an involute

offset of φ∗(u, v) if there exists a one-to-one correspondence between their rulings such that the pseudocentral

normal of φ(u, v) and the pseudospherical indicatrix vector of φ∗(u, v) are linearly dependent at the striction

points of their corresponding rulings. In this case, φ∗(u, v) is said to be an evolute offset of φ(u, v) .

Let φ∗(u, v) be an evolute offset of a ruled surface φ(u, v) satisfying (3.2) in Minkowski 3-space L3 .

Then the surface φ∗(u, v) can be written as

φ∗(u, v) = c∗(u) + ve∗(u) = c(u) + (R(u) + v)t(u), (3.6)
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where R is the distance between the corresponding striction points of φ(u, v) and φ∗(u, v). By using (3.3) and

(3.4) the coefficients of the first fundamental form of φ∗(u, v) are

E∗ = ϵ1F
2 − ϵ1ϵ2Q

2 + 2ϵ1ϵ2(JQ− F )(R+ v) + ϵ1(1− ϵ2J
2)(R+ v)2 + ϵ2R

′2,

F ∗ = ϵ2R
′,

G∗ = ϵ2.

Moreover, the unit normal vector u∗ of φ∗(u, v) is given by

u∗ =
1

D∗ [(ϵ2Q− ϵ2J(R+ v))e+ (−ϵ2F + (R+ v))g],

where D∗ =
√
|E∗G∗ − F ∗2| =

√
|(Q− J(R+ v))2 − ϵ2(−ϵ2F +R+ v)2|. From this, we get the coefficients of

the second fundamental form as follows:

L∗ =
1

D∗ [ϵ2(F
′ − 2ϵ2R

′)(Q− J(R+ v))− (−ϵ2F +R+ v)(2R′J −Q′ + (R+ v)J ′)],

M∗ =
1

D∗ (ϵ2FJ −Q),

N∗ = 0.

By a direct computation, we can show that the Gaussian curvature K∗ and the mean curvature H∗ of φ∗(u, v)

are given by

K∗ = − 1

D∗4
(ϵ2FJ −Q)2 (3.7)

and

H∗ =
1

2D∗3
H∗

1 , (3.8)

where H∗
1 = −ϵ2J

′v2 + (FJ ′ − F ′J − 2ϵ2RJ ′ + ϵ2Q
′)v + (F ′Q− FQ′ − F ′JR+ FJ ′R+ ϵ2RQ′ − ϵ2R

2J ′).

From (3.7), we have

Theorem 3.3 Let φ∗(u, v) be an evolute offset of a ruled surface φ(u, v) satisfying (3.2). Then φ∗(u, v) is

flat if and only if the structure functions Q, J, and F of φ(u, v) satisfy Q = ϵ2JF .

Remark 3.4 Let φ(u, v) = e′(u)+ve(u) be a ruled surface with c(u) = e′(u), ⟨e(u), e(u)⟩ = 1 and ⟨e′(u), e′(u)⟩ =
−1. Then we have F = 1 and Q = −J . In this case, the surface φ(u, v) has a nonzero Gaussian curvature,

but the evolute offset φ∗(u, v) of φ(u, v) has a zero Gaussian curvature, that is, it is a flat surface.

Example 3.5 We consider e(u) = (x(u), y(u), z(u)) with ⟨e(u), e(u)⟩ = 1 and ⟨e′(u), e′(u)⟩ = −1 . Then the

following relations hold:

−x2 + y2 + z2 = 1, (3.9)

−x′2 + y′
2
+ z′

2
= −1. (3.10)
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We now try to solve the above equations. From (3.9), we may put x = x(u) and y = y(u) by

x(u) =
√
1− z2 sinh θ(u), 1− z2 > 0

y(u) =
√
1− z2 cosh θ(u),

(3.11)

and then determine the function θ = θ(u) satisfying (3.10). By using (3.10) and (3.11) we have

θ′
2
=

z′
2
+ z2 − 1

(1− z2)2
.

We assume that z′
2
+ z2−1 > 0 (when z′

2
+ z2−1 = 0 , θ is constant). Then the function θ(u) is of the form

θ(u) = ±
∫ u

0

√
z′(t)

2
+ z(t)2 − 1

1− z(t)2
dt (3.12)

and without loss of generality we may assume that the signature is positive. Since z′
2
+ z2 > 1 , we take

z(u) =
√
2 cosu . Then we have

θ(u) = − tanh−1(tanu).

From this, the spherical curve e(u) can be expressed as

e(u) =
(
−
√

1− 2 cos2 u sinh(tanh−1(tanu)),
√
1− 2 cos2 u cosh(tanh−1(tanu)),

√
2 cosu

)
. (3.13)

Thus, the ruled surface φ(u, v) = e′(u)+ve(u) has a nonzero Gaussian curvature, but its evolute offset φ∗(u, v)

has a zero Gaussian curvature.

Theorem 3.6 Let φ∗(u, v) be an evolute offset of a ruled surface φ(u, v) satisfying (3.2) in L3 . Then an

evolute offset φ∗(u, v) has a zero mean curvature if and only if the structure functions satisfy Q = ϵ2JF and

J = constant .

Proof If φ∗(u, v) has a zero mean curvature, then from (3.8) we have

FQ′ = F ′Q,

Q′ = ϵ2F
′J,

J ′ = 0,

(3.14)

which imply we can show that J is constant and Q = ϵ2JF . The converse assertion is trivial. Hence the

theorem is proved. 2

Now we will construct an evolute offset with zero mean curvature. From Theorem 3.6 and (3.3) we have

the following ordinary differential equation

e′′′ = ϵ1(J
2 − ϵ2)e

′. (3.15)

Case 1. ϵ1(J
2 − ϵ2) = k2 for some real number k .
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Let ϵ2 = 1. Without loss of generality, we may assume e′(0) = (0, 1, 0). Thus, e′′′(u) = k2e′(u) implies

e′(u) = (B1 sinh ku, cosh ku+B2 sinh ku,B3 sinh ku)

for some constants B1, B2, and B3 . Since ϵ2 = 1, we have B2
1 −B2

3 = 1 and B2 = 0. From this, we can obtain

e(u) =

(
B1

k
cosh ku+D1,

1

k
sinh ku,

B3

k
cosh ku+D3

)
(3.16)

for some constants D1, D3 satisfying D2
3 −D2

1 = 1
k2 + ϵ1 , B1D1 = B3D3 and B2

1 − B2
3 = 1. We now change

the coordinates by x̄, ȳ, z̄ such that x̄ = B1x−B3z , ȳ = y , z̄ = −B3x+B1z , that is, x̄
ȳ
z̄

 =

 B1 0 −B3

0 1 0
−B3 0 B1

 x
y
z

 .

With respect to the coordinates (x̄, ȳ, z̄), e(u) turns into

e(u) =

(
1

k
cosh ku,

1

k
sinh ku,D

)
(3.17)

for a constant D = B1D3 − B3D1 with D2 = 1
k2 + ϵ1 . By (3.4) and (3.17), the striction curve c can be

expressed as

c(u) =

(
ϵ1(

1

k
− JD)

∫
F (u) cosh kudu, ϵ1(

1

k
− JD)

∫
F (u) sinh kudu,

ϵ1(D − J

k
)

∫
F (u)du

)
+D0

(3.18)

for some constant vector D0 . Thus, up to a rigid motion the evolute offset φ∗(u, v) of the ruled surface φ(u, v)

given by (3.17) and (3.18) has the parametrization of the form

φ∗(u, v) =

(
ϵ1(

1

k
− JD)

∫
F (u) cosh kudu+ (R(u) + v) sinh ku,

ϵ1(
1

k
− JD)

∫
F (u) sinh kudu+ (R(u) + v) cosh ku, ϵ1(D − J

k
)

∫
F (u)du

)
.

(3.19)

Next let (ϵ1, ϵ2) = (1,−1). We now consider an initial condition e′(0) = (1, 0, 0) of the ODE (3.15).

Quite similarly as we did, we obtain

e(u) =

(
1

k
sinh ku,

B2

k
cosh ku+D2,

B3

k
cosh ku+D3

)
satisfying B2

2 +B2
3 = 1, B2D2 +B3D3 = 0 and D2

2 +D2
3 = 1− 1

k2 .

If we adopt the coordinates transformation such that x̄
ȳ
z̄

 =

 1 0 0
0 B2 B3

0 −B3 B2

 x
y
z

 ,
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with respect to the new coordinates (x̄, ȳ, z̄), the vector e(u) becomes

e(u) =

(
1

k
sinh ku,

1

k
cosh ku,D

)
(3.20)

and the striction curve is given by

c(u) =

(
(
1

k
− JD)

∫
F (u) sinh kudu, (

1

k
− JD)

∫
F (u) cosh kudu,

(D − J

k
)

∫
F (u)du

)
+D0,

(3.21)

where D = B2D3 −B3D2 with D2 = 1− 1
k2 and D0 is a constant vector.

Thus, up to a rigid motion, the evolute offset φ∗(u, v) of the ruled surface φ(u, v) given by (3.20) and

(3.21) has the parametrization of the form

φ∗(u, v) =

(
(
1

k
− JD)

∫
F (u) sinh kudu+ (R(u) + v) cosh ku,

(
1

k
− JD)

∫
F (u) cosh kudu+ (R(u) + v) sinh ku, (D − J

k
)

∫
F (u)du

)
.

(3.22)

Case 2. ϵ1(J
2 − ϵ2) = −k2 for some real number k .

Let ε2 = 1. We may give the initial condition by e′(0) = (0, 1, 0) for the ordinary differential equation

e′′′ + k2e′ = 0. Under such initial condition, a vector e is given by

e(u) =

(
−B1

k
cos ku+D1,

1

k
sin ku,−B3

k
cos ku+D3

)
, (3.23)

where B1, B3, D1, and D3 are some constants satisfying B2
3 −B2

1 = 1, B1D1 = B3D3 , and D2
1 −D2

3 = 1
k2 − ϵ1 .

If we take another coordinate system (x̄, ȳ, z̄) such that

x̄ = −B3x+B1z, ȳ = y, z̄ = B1x−B3z,

then a vector e takes the form

e(u) =

(
D,

1

k
sin ku,

1

k
cos ku

)
, (3.24)

where D = B1D3 −B3D1 satisfying D2 = 1
k2 − ϵ1 . Therefore, the striction curve c is determined by

c(u) =

(
ϵ1(D +

J

k
)

∫
F (u)du, ϵ1(

1

k
− JD)

∫
F (u) sin kudu,

ϵ1(
1

k
− JD)

∫
F (u) cos kudu

)
+D0,

(3.25)
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Figure 1. Figure 2.

where D0 is a constant vector. Thus, up to a rigid motion the parametrization of the evolute offset φ∗(u, v) of

the ruled surface φ(u, v) given by (3.24) and (3.25) can be expressed as

φ∗(u, v) =

(
ϵ1(D +

J

k
)

∫
F (u)du, ϵ1(

1

k
− JD)

∫
F (u) sin kudu+ (R(u) + v) cos ku,

ϵ1(
1

k
− JD)

∫
F (u) cos kudu− (R(u) + v) sin ku

)
.

(3.26)

For specific functions F (u) = u and R(u) = cosu , the ruled surface φ(u, v), generated by (3.24) and

(3.25), is shown in Figure 1 and its evolute offset φ∗(u, v), given by (3.26), is shown in Figure 2.

Case 3. J2 − ϵ2 = 0.

In this case ϵ2 = 1 and J = ±1, which imply Q = ±F . It contradicts the definition of D∗ . Thus, there

is no minimal evolute offset φ∗(u, v) satisfying e′′′ = 0.

Consequently, we have

Theorem 3.7 Let φ∗(u, v) be an evolute offset of a ruled surface φ(u, v) satisfying (3.2) in L3 . Then φ∗(u, v)

has a zero mean curvature if and only if φ∗(u, v) is part of a surface of the form (3.19), (3.22), or (3.26).

If a ruled surface φ(u, v) is minimal, then J = F = 0 and Q′ = 0. Thus, the following theorem holds:

Theorem 3.8 An evolute offset of a minimal ruled surface in L3 is minimal.

4. Linear Weingarten offsets of ruled surfaces

In this section, we study a linear Weingarten offset of a ruled surface φ(u, v) in Minkowski 3-space L3 .
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Let φ∗(u, v) be an evolute offset of a ruled surface φ(u, v) in L3 . If φ∗(u, v) satisfies the linear Weingarten

surface equation

aK∗ + bH∗ = c, (4.1)

where a, b, c are constant with (a, b, c) ̸= (0, 0, 0), then from (3.7) and (3.8) we have

b2D∗2H∗
1
2 −

(
2a(ϵ2JF −Q)2 + 2cD∗4

)2

= 0. (4.2)

On the other hand, (4.2) is a polynomial in v with functions of u as coefficients. Thus, all the coefficients must

be zero. The coefficient of the highest degree v8 of the left hand side of (4.2) is

−4c2(J2 − ϵ2)
4.

From this, c = 0 or J2 = 1 in other words, ϵ2 = 1.

Case 1. c = 0.

In this case, (4.2) can be rewritten as

b2D∗2H∗
1
2 − 4a2(ϵ2JF −Q)4 = 0. (4.3)

Moreover, the coefficient of the term v6 in (4.3) must be zero, that is

b2(J2 − ϵ2)J
′2 = 0,

which yields bJ ′ = 0.

If J is constant, the coefficient of v4 in (4.3) is b2(J2 − ϵ2)(ϵ2Q
′ − F ′J). Therefore, we get Q′ = ϵ2F

′J,

which implies from the coefficients of v2 , v1 and v0 we infer that Q = ϵ2JF . According to Theorem 3.6,

φ∗(u, v) is minimal.

If b = 0, from (4.3) the structure functions satisfy Q = ϵ2JF because of a ̸= 0. Thus, the surface

φ∗(u, v) is flat.

Case 2. J2 = 1.

In this case, we can find the coefficient of the highest degree of the left-hand side of (4.2), and from this

we have Q = ±F . It is a contradiction according to Case 3 in Section 3.

Consequently, we have

Theorem 4.1 Let φ∗(u, v) be an evolute offset of a ruled surface φ(u, v) in L3 . If φ∗(u, v) is a linear

Weingarten surface, then φ∗(u, v) is either flat or minimal.
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