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Abstract: Let S = K[x1, . . . , xn] be a polynomial ring over a field K in n variables and I a squarefree monomial

ideal of S with Schmitt–Vogel number sv(I) . In this paper, we show that sdepth (I) ≥ max {1, n− 1− ⌊ sv(I)
2

⌋}, which
improves the lower bound obtained by Herzog, Vladoiu, and Zheng. As some applications, we show that Stanley’s

conjecture holds for the edge ideals of some special n -cyclic graphs with a common edge.
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1. Introduction

Let S = K[x1, . . . , xn] be a polynomial ring over a field K in n variables and M a finitely generated Zn -

graded S -module. For a homogeneous element u ∈ M and a subset Z ⊆ {x1, . . . , xn} , uK[Z] denotes the

K -subspace of M generated by all the homogeneous elements of the form uv , where v is a monomial in K[Z] .

The Zn -graded K -subspace uK[Z] is said to be a Stanley space of dimension |Z| if it is a free K[Z] -module,

where |Z| denotes the cardinality of Z . A Stanley decomposition of M is a decomposition of M as a finite

direct sum of Zn -graded K -vector spaces

D : M =

r⊕
i=1

uiK[Zi]

where each uiK[Zi] is a Stanley space of M . The number sdepthS (D) = min{|Zi| : i = 1, . . . , r} is called the

Stanley depth of decomposition D and the number

sdepthS (M) := max{sdepth (D) : D is a Stanley decomposition of M}.

is called the Stanley depth of M .

In [4], Schmitt and Vogel introduced the Schmitt–Vogel number, which is given in the following definition.

Definition 1.1 Let I be a monomial ideal and G(I) the set of its minimal monomial generators. The Schmitt–

Vogel number of I , denoted by sv(I) , is the smallest integer t for which there exist subsets P1, . . . , Pt of G(I)

such that

(i)
t∪

i=1

Pi = G(I) ;

∗Correspondence: zhuguangjun@suda.edu.cn

2010 AMS Mathematics Subject Classification: 13C15, 13P10, 13F20.

816



ZHU/Turk J Math

(ii) P1 has exactly one element;

(iii) if p and p′ are different elements of Pi (2 ≤ i ≤ t) , then there is an integer i′ with 1 ≤ i′ < i and

an element in Pi′ that divides pp′ .

They proved that for any monomial ideal I , the Schmitt–Vogel number sv(I) is an upper bound for the

arithmetical rank of I . It is clear that sv(I) ≤ |G(I)| , and this inequality is strict in general. Herzog et al. [1]

proved the following result:

Lemma 1.2 ([1, Proposition 3.4]) Let I ⊂ S be a monomial ideal with |G(I)| = m . Then sdepthS (I) ≥
max{1, n−m+ 1} .

Recall that a monomial v ∈ S is said to be squarefree if the exponent of each xi in v is less than or

equal to 1, and a monomail ideal I is said to be squarefree if it is generated by some squarefree monomials.

The main result in this paper is the following: for a squarefree monomial ideal I , we have that

sdepthS (I) ≥ max {1, n− 1− ⌊sv(I)
2

⌋}.

Our result improves the lower bound obtained by Herzog et al. stated above. As some applications, we

show that Stanley’s conjecture holds for the edge ideals of some special n -cyclic graphs with a common edge.

In this paper, we will focus on the case where I is a squarefree monomial ideal in S and let G(I) =

{v1, . . . , vm} be the set of its minimal squarefree monomial generators.

2. Preliminaries

We first recall some definitions and basic facts about the edge ideal of a graph and the lower bounds for Stanley

depth of some special monomial ideals in order to make this paper self-contained. However, for more details on

the notions, we refer the reader to [2, 3, 6].

Definition 2.1 A finite graph G is an ordered pair G = (V (G), E(G)) where V (G) = {x1, . . . , xn} is the set

of vertices of G , and E(G) is a collection of two-element subsets of V (G) , usually called the edges of G .

In this case, we may suppose that x1, . . . , xn are indeterminates over the field K . The edge ideal of G

in the polynomial ring S = K[x1, . . . , xn] is the squarefree monomial ideal

I(G) = (xixj | {xi, xj} ∈ E(G)).

Definition 2.2 Let Gi = (V (Gi), E(Gi)) be some graphs with vertex set V (Gi) and edge set E(Gi) , for

i = 1, . . . , k . The union of the graphs G1, G2, . . . , Gk , written
k∪

i=1

Gi , is the graph with vertex set
k∪

i=1

V (Gi)

and edge set
k∪

i=1

E(Gi) .

Definition 2.3 Let G = (V (G), E(G)) be a graph. A walk of length m in G is an alternating sequence of

vertices and edges w = {x1, y1, x2, . . . , xm, ym, xm+1} , where yi = {xi, xi+1} is the edge joining xi and xi+1 .

If x1 = xm+1 , we call this walk closed.
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A cycle of length m (m ≥ 3) is a closed walk in which the vertices x1, . . . , xm are distinct. We denote

by Cm the graph consisting of a cycle with m vertices. An n-cyclic graph with a common edge is a graph

consisting of the union of n cycles C3r1 , . . ., C3rk1
, C3s1+1, . . . , C3sk2

+1 , C3t1+2, . . . , C3tk3
+2 connected through

a common edge, where k1 + k2 + k3 = n , and ri, sj , tl are positive integers for any 1 ≤ i ≤ k1 , 1 ≤ j ≤ k2 and

1 ≤ l ≤ k3 .

The Stanley depth of the complete intersection monomial ideal is completely computed by Shen.

Lemma 2.4 ([5, Theorem 2.4]) Let I ⊂ S be a complete intersection monomial ideal with |G(I)| = m . Then

sdepthS (I) = n− ⌊m
2 ⌋ .

Keller and Young [2] and Okazaki [3] independently improved this lower bound stated above; they showed

that:

Lemma 2.5 Let I ⊂ S be a monomial ideal with |G(I)| = m . Then sdepthS (I) ≥ max{1, n− ⌊m
2 ⌋} .

Let mod n
Z(S) denote the category whose objects are finitely generated Zn -graded S -modules and

morphisms are degree-preserving S -homomorphisms, that is, S -homomorphisms f : M → N such that

f(Ma) ⊆ Na for a ∈ Zn . Clearly, the following lemma holds.

Lemma 2.6 Let 0 → L → M → N → 0 be a short exact sequence in mod n
Z(S) . Then sdepthS (M) ≥

min{sdepthS (L), sdepthS (N)} .

Let R = K[x1, . . . , xn−1] . We consider the natural map φ : S → R via φ(xi) = xi for any 1 ≤ i ≤ n− 1

and φ(xn) = 1. Thus, any Zn−1 graded R -module has a structure of Zn -graded S -modules by the map φ .

We need the following lemma.

Lemma 2.7 ([3, Lemma 2.5] ) Let v1, . . . , vm be monomials in S such that xn|vi for i = 1, . . . , r and xn ∤ vi
for i = r + 1, . . . ,m , where 1 ≤ r ≤ m − 1 . Let a = (v1, . . . , vr) , b = (vr+1, . . . , vm) be monomial ideals

generated by v1, . . . , vr and vr+1, . . . , vm , respectively. Let I = a+ b and I ′ = a+ xnb . Then

I/I ′ ∼= b ∩R

as Zn -graded S -modules, where the structure of Zn -graded S -modules b ∩R is given as above.

3. Main results

In this section we provide a lower bound for the Stanley depth of squarefree monomial ideals. This lower bound

is given in terms of the Schmitt–Vogel number sv(I). In the following three propositions, we consider the

behavior of the Schmitt–Vogel number of an arbitrary monomial ideal under the elimination of variables.

Proposition 3.1 Let I ⊂ S be a squarefree monomial ideal with G(I) = {v1, . . . , vm} such that xn|vi for any

1 ≤ i ≤ m . Let v′i = vi/xn , and let I ′ be a monomial ideal of R = K[x1, . . . , xn−1] generated by {v′1, . . . , v′m} .
If sv(I) ≥ 2 , then sv(I ′) = sv(I) .
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Proof Let sv(I) = t . Then vi ̸= xn for any 1 ≤ i ≤ m . Otherwise, m = t = 1, which contradicts with t ≥ 2.

We can assume that P1 = {v1}, P2 = {v2, . . . , vs2}, . . . , Pt = {vst−1+1, . . . , vm} are the subsets of G(I). Then

P ′
1 = {v′1}, P ′

2 = {v′2, . . . , v′s2}, . . . , P
′
t = {v′st−1+1, . . . , v

′
m} are the subsets of G(I ′). Since I is a squarefree

monomial ideal, it is obvious that P1, . . . , Pt satisfy the conditions of Definition 1.1 if and only if P ′
1, . . . , P

′
t

satisfy the conditions of Definition 1.1. Therefore, sv(I ′) = sv(I). This completes the proof. 2

Proposition 3.2 Let I ⊂ S be a squarefree monomial ideal with G(I) = {v1, . . . , vm} such that xn|vi for

i = 1, . . . , r and xn ∤ vi for i = r + 1, . . . ,m , where 2 ≤ r ≤ m − 1 . Let v′i = vi/xn for any 1 ≤ i ≤ r ,

and let I ′ be a squarefree monomial ideal of R = K[x1, . . . , xn−1] generated by {v′1, . . . , v′r, vr+1, . . . , vm} . If

sv(I) ≥ 2 , then sv(I ′) ≤ sv(I) .

Proof Note that for any 1 ≤ i ≤ r , vi ̸= xn . Otherwise, r = 1, and this contradicts with r ≥ 2. Let π

be a permutation of the set {1, . . . ,m} and sv(I) = t , and let P1 = {vπ(1)}, P2 = {vπ(2), . . . , vπ(s2)}, . . . , Pt =

{vπ(st−1+1), . . . , vπ(m)} be the subsets of G(I). Then P ′
1 = {v′π(1)}, P

′
2 = {v′π(2), . . . , v

′
π(s2)

}, . . . , P ′
t = {v′π(st−1+1),

. . . , v′π(m)} are the subsets of G(I ′) such that
t∪

i=1

P ′
i = G(I ′), where v′i , for i = 1, . . . ,m is the monomial ob-

tained by substitution of 1 to xn in vi . Hence, in order to prove the assertion, it is enough to prove that the

sets P ′
1, . . . , P

′
t satisfy conditions (ii) and (iii) of Definition 1.1. It is clear that P ′

1 ̸= ∅ . Assume that v′π(i)

and v′π(j) are different elements of P ′
k for some k with 2 ≤ k ≤ t . Then vπ(i) and vπ(j) are different elements

of Pk . Since P1, . . . , Pt satisfy condition (iii) of Definition 1.1, it follows that there exists an integer s with

1 ≤ s < k and some monomial vπ(l) ∈ Ps such that vπ(l)|vπ(i)vπ(j) . Since vπ(l) , vπ(i) and vπ(j) are squarefree,

we have that v′π(l)|v
′
π(i)v

′
π(j) . Thus, v

′
π(l) ∈ P ′

s . Therefore, sv(I
′) ≤ sv(I). This completes the proof. 2

Proposition 3.3 Let I ⊂ S be a squarefree monomial ideal with G(I) = {v1, . . . , vm} such that xn|vi for

i = 1, . . . , r and xn ∤ vi for i = r + 1, . . . ,m , where 2 ≤ r ≤ m − 1 . Let I ′ be a squarefree monomial ideal of

K[x1, . . . , xn−1] generated by {vr+1, . . . , vm} . If sv(I) ≥ 2 , then sv(I ′) ≤ sv(I) .

Proof Let R = K[x1, . . . , xn−1] ; then G(I ′) = G(I) ∩ R . Note that for any 1 ≤ i ≤ r , vi ̸= xn from the

proof of Proposition 3.2. Let sv(I) = t , and P1, . . . , Pt be the subsets of G(I) that satisfy the conditions of

Definition 1.1. Set P ′
i = Pi ∩R for any 1 ≤ i ≤ t and P1 = {u} . We distinguish two cases:

(1) If xn ∤ u , then P ′
1 ̸= ∅ and it is obviously seen that P ′

1, . . . , P
′
t are the subsets of G(I ′) that satisfy

the conditions of Definition 1.1. Thus, sv(I ′) ≤ sv(I).

(2) If xn|u , then P ′
1 = ∅ . Thus, there exist integers 2 ≤ i1 < i2 < · · · < il ≤ t such that P ′

ik
̸= ∅ for any

1 ≤ k ≤ l and P ′
j = ∅ for any j /∈ {i1, . . . , il} . It is clear that G(I ′) =

l∪
k=1

P ′
ik
. Since i1 ≥ 2, it follows that

l ≤ t− 1. We claim that the sets P ′
i1
, . . . , P ′

il
satisfy conditions (ii) and (iii) of Definition 1.1.

We first verify condition (ii). Assume that |P ′
i1
| ≥ 2. This implies that there exist two different monomials

µ1, µ2 in Pi1 that are not divisible by xn . Thus, by condition (iii) of Definition 1.1, there exists an integer

q < i1 and some monomial µ3 ∈ Pq with µ3|µ1µ2 . However, this is not possible because P ′
q = ∅ and therefore

every element of Pq and in particular µ3 is divisible by xn . This proves condition (ii).

819



ZHU/Turk J Math

Now we verify condition (iii). Let ν1, ν2 be two different monomials in P ′
ik

for some k with 2 ≤ k ≤ l .

Then ν1, ν2 ∈ Pik and since P1, . . . , Pt satisfy condition (iii) of Definition 1.1, it follows that there exists an

integer s with 1 ≤ s < ik and some monomial ν3 ∈ Ps , such that ν3|ν1ν2 . Since ν1 and ν2 are not divisible

by xn , we conclude that xn ∤ ν3 . Thus, s ∈ {i1, . . . , il} and ν3 ∈ P ′
s . This verifies condition (iii) of Definition

1.1. Thus, sv(I ′) ≤ sv(I)− 1. This completes the proof. 2

Now we state and prove the main result of this section.

Theorem 3.4 Let I be a squarefree monomial ideal of S with Schmitt–Vogel number sv(I) . Then:

sdepthS (I) ≥ max {1, n− 1− ⌊sv(I)
2

⌋}.

Proof It suffices to show that sdepthS (I) ≥ n − 1 − ⌊ sv(I)
2 ⌋ by Lemma 1.2. Let G(I) = {v1, . . . , vm} . We

use induction on n . If n = 1 or sv(I) = 1, then I is a principal ideal, so we have sdepthS (I) = n . Thus,

the assertion holds. Now we assume that n ≥ 2 and the assertion holds for n − 1. It suffices to consider

only the case sv(I) ≥ 2. For i = 1, . . . , n , we set ti(I) = |{vj ∈ G(I) | xi divides vj}| . If ti(I) ≤ 1 for any

1 ≤ j ≤ m , then I is a complete intersection and sv(I) = |G(I)| = m , and hence we obtain that the assertion

holds by Lemma 2.4. Thus, we may assume that ti(I) ≥ 2 for some i , and hence, without loss of generality,

that tn(I) ≥ 2. We distinguish the following two cases:

(1) If tn(I) = m , then xn|vi for any 1 ≤ i ≤ m . Set v′i = vi/xn , and let I ′ be a squarefree monomial

ideal of S generated by v′1, . . . , v
′
m . It is readily seen that I ′ is naturally isomorphic to I in mod n

Z(S) up to

degree shifting, and it follows that sdepthS (I) = sdepthS (I ′). Note that I ′ is also a squarefree monomial ideal

of R = K[x1, . . . , xn−1] . By inductive hypothesis, Proposition 3.1, and [1, Lemma 3.6 ], we have

sdepthS (I) = sdepthS (I ′) = sdepthR (I ′) + 1 ≥ (n− 1)− ⌊sv(I
′)

2
⌋+ 1 > n− 1− ⌊sv(I)

2
⌋.

(2) If 2 ≤ tn(I) ≤ m − 1, we set r = tn(I). Without loss of generality, we may assume that xn|vi for

i = 1, . . . , r and xn ∤ vi for i = r + 1, . . . ,m . Let a = (v1, . . . , vr), b = (vr+1, . . . , vm) be squarefree monomial

ideals generated by v1, . . . , vr and vr+1, . . . , vm , respectively. Then I = a + b . Set I ′ = a + xnb ; thus, each

minimal generator of I ′ can be divided by xn . Set v′i = vi/xn for 1 ≤ i ≤ r , and let I ′′ be the squarefree

monomial ideal generated by {v′1, . . . , v′r, vr+1, . . . , vm} . By the same argument as in case (1), we have that

sdepthS (I ′′) = sdepthS (I ′). Applying our inductive hypothesis and Proposition 3.2, we have

sdepthS (I ′) = sdepthS (I ′′) ≥ n− 1− ⌊sv(I
′′)

2
⌋ ≥ n− 1− ⌊sv(I)

2
⌋.

We consider the exact sequence

0 → I ′ → I → I/I ′ → 0.

It follows from Lemma 2.6 that

sdepthS (I) ≥ min{sdepthS (I ′), sdepthS (I/I ′)}.

As for sdepthS (I/I ′), we can apply Lemma 2.7, and it follows that

sdepthS (I/I ′) = sdepthS (b ∩R).
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Note that b∩R is minimally generated by vr+1, . . . , vm as an ideal of R . By inductive hypothesis, Proposition

3.3, and [1, Lemma 3.6 ], we have

sdepthS (b ∩R) = sdepthR (b ∩R) + 1

≥ (n− 2)− ⌊sv(b ∩R)

2
⌋+ 1

= n− 1− ⌊sv(b ∩R)

2
⌋

≥ n− 1− ⌊sv(I)
2

⌋.

Summing up, we conclude that sdepthS (I) ≥ n− 1− ⌊ sv(I)
2 ⌋, which completes the proof.

2

Lemma 3.5 (Auslander–Buchsbaum). Let M be a finitely generated graded S -module. Then

pdS (M) + depth (M) = dim (S),

where pdS (M) is the projective dimension of M .

Zhu et al. [6] provided some upper bounds for Schmitt–Vogel number sv(I(G)) of the edge ideals I(G)

of some special graphs G with a common edge and the lower bounds for the projective dimensions of their

quotient ring S/I(G).

Lemma 3.6 (1) Let G be a graph consisting of the union of k1 cycles C3r1
, . . . , C3r

k1
with a common edge.

Then pdS (S/I(G)) = 1 +
k1∑
i=1

(2ri − 1) and sv(I(G)) ≤ 1 +
k1∑
i=1

(2ri − 1) .

(2) Let G be a graph consisting of the union of k2 cycles C3s1+1, . . . , C3s
k2

+1 with a common edge. Then

pdS (S/I(G)) ≥ 2− k2 + 2
k2∑
i=1

si and sv(I(G)) ≤ 1 + 2
k2∑
i=1

si .

(3) Let G be a graph consisting of the union of k3 cycles C3t1+2, . . . , C3t
k3

+2 with a common edge. Then

pdS (S/I(G)) = 1 + 2
k3∑
i=1

ti and sv(I(G)) ≤ 1 + 2
k3∑
i=1

ti .

As a consequence of Theorem 3.4 and Lemma 3.6, we have the following results.

Theorem 3.7 (1) Let G be a graph consisting of the union of k1 cycles C3r1
, . . . , C3r

k1
with a common edge.

Then Stanley’s conjecture holds for I(G) .

(2)Let G be a graph consisting of the union of k2 cycles C3s1+1, . . . , C3s
k2

+1 with a common edge. Then

Stanley’s conjecture holds for I(G) .

(3) Let G be a graph consisting of the union of k3 cycles C3t1+2, . . . , C3t
k3

+2 with a common edge. Then

Stanley’s conjecture holds for I(G) .
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Proof Cases (1) and (3) can be shown by similar arguments, so we only prove case (1). Note that the number

of vertices of the graph G is n =
k1∑
i=1

3ri − 2(k1 − 1). Thus, by Lemma 3.6 (1), we have

n− 1− ⌊sv(I)
2

⌋ ≥
k1∑
i=1

3ri − 2(k1 − 1)− 1− ⌊
1 +

k1∑
i=1

(2ri − 1)

2
⌋

= 1 +

k1∑
i=1

ri − k1 + ⌈
1 +

k1∑
i=1

(2ri − 1)

2
⌉,

and

depth (I(G)) = depth (S/I(G)) + 1 = n− pdS (S/I(G)) + 1

≤
k1∑
i=1

3ri − 2(k1 − 1)− (1 +

k1∑
i=1

(2ri − 1)) + 1

= 1 +

k1∑
i=1

ri − k1 + 1.

Since k1 ≥ 2 and ri ≥ 1 for any 1 ≤ i ≤ k1 , we have that ⌈
1+

k1∑
i=1

(2ri−1)

2 ⌉ ≥ 1. Therefore, by Theorem 3.4, we

have that

sdepthS (I(G)) ≥ n− 1− ⌊sv(I(G))

2
⌋ ≥ depth (I(G)).

(2) Note that the number of vertices of the graph G is n =
k2∑
i=1

(3si + 1) − 2(k2 − 1). Thus, by Lemma

3.6 (2), we have

n− 1− ⌊sv(I)
2

⌋ ≥
k2∑
i=1

(3si + 1)− 2(k2 − 1)− 1− ⌊
1 + 2

k2∑
i=1

si

2
⌋

= 1 +

k2∑
i=1

si +

k2∑
i=1

(si − 1),

and

depth (I(G)) = depth (S/I(G)) + 1 = n− pdS (S/I(G)) + 1

≤
k2∑
i=1

(3si + 1)− 2(k2 − 1)− (2− k2 + 2

k2∑
i=1

si) + 1

= 1 +

k2∑
i=1

si.
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Therefore, by Theorem 3.4, we have that

sdepthS (I(G)) ≥ n− 1− ⌊sv(I(G))

2
⌋ = 1 +

k2∑
i=1

si +

k2∑
i=1

(si − 1) ≥ depth (I(G)).

2
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