

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2016) 40: 824 – 831 © TÜBİTAK doi:10.3906/mat-1508-38

Research Article

On the zero-divisor graphs of finite free semilattices

Kemal TOKER^{*} Department of Mathematics, Çukurova University, Adana, Turkey

Received: 10.08.2015	•	Accepted/Published Online: 06.11.2015	•	Final Version: 16.06.2016

Abstract: Let SL_X be the free semilattice on a finite nonempty set X. There exists an undirected graph $\Gamma(SL_X)$ associated with SL_X whose vertices are the proper subsets of X, except the empty set, and two distinct vertices A and B of $\Gamma(SL_X)$ are adjacent if and only if $A \cup B = X$. In this paper, the diameter, radius, girth, degree of any vertex, domination number, independence number, clique number, chromatic number, and chromatic index of $\Gamma(SL_X)$ have been established. Moreover, we have determined when $\Gamma(SL_X)$ is a perfect graph and when the core of $\Gamma(SL_X)$ is a Hamiltonian graph.

Key words: Finite free semilattice, zero-divisor graph, clique number, domination number, perfect graph, Hamiltonian graph

1. Introduction

The zero-divisor graph was first introduced by Beck in the study of commutative rings [3], and later studied by Anderson et al. [1, 2]. In [6, 7] DeMeyer et al. considered the zero-divisor graph on a commutative semigroup S with 0. If the set of zero-divisor elements in S is Z(S), then the zero-divisor graph $\Gamma(S)$ is defined as an undirected graph with vertices $Z(S) \setminus \{0\}$ and the vertices x and y are adjacent with a single edge if and only if xy = 0. It is known that $\Gamma(S)$ is a connected graph (see [7]).

Let X be a finite nonempty set, and let SL_X be the set consisting of all subsets of X except the empty set. Then SL_X is a commutative semigroup of idempotents with the multiplication $A \cdot B = A \cup B$ for $A, B \in SL_X$ and it is called the free semilattice on X. The zero-divisor graph $\Gamma(SL_X)$ is associated with SL_X and defined by:

- the vertex set of $\Gamma(SL_X)$, denoted by $V(\Gamma(SL_X))$, which is the proper subsets of X except the empty set; and
- the undirected edge set of $\Gamma(SL_X)$, denoted by $E(\Gamma(SL_X))$ and

 $E(\Gamma(SL_X)) = \{A - B \mid A, B \in V(\Gamma(SL_X)); A \cup B = X\}.$

Moreover, we say that A and B are adjacent or A is adjacent to B if $A - B \in E(\Gamma(SL_X))$. Throughout this paper we suppose that |X| = n and that, without loss of generality, $X = \{1, 2, ..., n\}$. Thus, there are $2^n - 2$ vertices in $\Gamma(SL_X)$.

^{*}Correspondence: ktoker@cu.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 20M14, 97K30.

TOKER/Turk J Math

In this paper, the diameter, radius, girth, degree of any vertex, domination number, independence number, clique number, chromatic number, and chromatic index of $\Gamma(SL_X)$ have been established. Moreover, we have determined when $\Gamma(SL_X)$ is a perfect graph and when the core of $\Gamma(SL_X)$ is a Hamiltonian graph.

For graph theoretical terminology see [8], and for semigroup terminology see [9].

2. Some basic properties of $\Gamma(SL_X)$

For any simple graph G, the length of the shortest path between two vertices u and v of G is denoted by $d_G(u, v)$. The eccentricity of a vertex v in a connected simple graph G is the maximum distance (length of the shortest path) between v and any other vertex u of G and it is denoted by ecc(v); that is,

$$\operatorname{ecc}(v) = \max\{d_G(u, v) \mid u \in V(G)\}.$$

The diameter of G, denoted by $\operatorname{diam}(G)$, is

$$\operatorname{diam}(G) = \max\{\operatorname{ecc}(v) \mid v \in V(G)\},\$$

and it is known that the diameter of the zero-divisor graph of any commutative semigroup with zero is at most 3 (see Theorem 1.2 in [7]). The radius of G, denoted by rad(G), is

$$\operatorname{rad}(G) = \min\{\operatorname{ecc}(v) \mid v \in V(G)\}.$$

The central vertex set of G, denoted by C(G), is

$$C(G) = \{ v \in V(G) \mid \operatorname{ecc}(v) = \operatorname{rad}(G) \}.$$

The girth of G is the length of a shortest cycle contained in G and it is denoted by $\operatorname{gr}(G)$. If G does not contain any cycles, then its girth is defined to be infinity. The degree of a vertex $v \in V(G)$ is the number of vertices adjacent to v and denoted by $\operatorname{deg}_G(v)$. Among all degrees, the maximum degree $\Delta(G)$ (the minimum degree $\delta(G)$) of G is the biggest (the smallest) degree in G. A vertex of maximum degree is called a delta-vertex and we denote the set of delta-vertices of G by Λ_G . An independent set of a graph G is a subset of vertices V(G)such that no two vertices in the subset represent an edge of G. Independence number, denoted by $\alpha(G)$, is defined by

 $\alpha(G) = \max\{|I| \mid I \text{ is an independent set of } G\}.$

Let D be a nonempty subset of the vertex set V(G) of G. If, for each $u \in V(G) \setminus D$, there exists $v_u \in D$ such that $u - v_u \in E(G)$, then D is called a dominating set. The domination number of G, denoted by $\gamma(G)$, is

 $\gamma(G) = \min\{|D| \mid D \text{ is a dominating set of } G\}.$

The open neighborhood of a vertex $v \in V(G)$, denoted by $N_G(v)$, is the set of vertices that are adjacent to v and the closed neighborhood of v is $N_G[v] = N_G(v) \cup \{v\}$. For a nonempty subset Z of V(G), the closed neighborhood of Z in G, denoted by $N_G[Z]$, is $N_G[Z] = \bigcup_{v \in Z} N_G[v]$. It is clear that $|N_G[v] \cap D| \ge 1$ for each dominating set D, and for each $v \in V(G)$.

In this section, we mainly deal with some graph properties of $\Gamma(SL_X)$, namely the diameter, radius, girth, degree of any vertex, domination number, and independence number of $\Gamma(SL_X)$.

For convenience, we use the notation $\overline{A} = (X \setminus A)$ for each $A \subseteq X$, Γ instead of $\Gamma(SL_X)$ and d(A, B) instead of $d_{\Gamma(SL_X)}(A, B)$. For each pair $A, B \in V(\Gamma)$, notice that

$$A - B \in E(\Gamma) \Leftrightarrow \overline{A} \subseteq B \Leftrightarrow \overline{B} \subseteq A.$$

Theorem 2.1. If $|X| = n \ge 3$ then we have:

(i) $gr(\Gamma) = 3$,

(*ii*) $rad(\Gamma) = 2$ and $diam(\Gamma) = 3$.

Proof (i) Since Γ is a simple graph and from the definiton of Γ it is clear that $\operatorname{gr}(\Gamma) \geq 3$, let $|X| \geq 3$ and $A \in V(\Gamma)$ with $|A| \geq 2$. We consider any 2-partition A_1 and A_2 of A, $B = \overline{A} \cup A_1$ and $C = \overline{A} \cup A_2$. Thus, we have a cycle A - B - C - A in Γ .

(ii) Let $|X| \ge 3$; for proof we show that show that the eccentricity of a vertex $A \in V(\Gamma)$ is either 2 or 3. Let $A \in V(\Gamma)$ with |A| = n - 1, and $B \in V(\Gamma)$. If $A \cap B = \emptyset$ then it is clear that $\overline{B} \subseteq A$ and so d(A, B) = 1 or if $A \cap B \neq \emptyset$ and $\overline{B} \subseteq A$ then d(A, B) = 1. If $A \cap B \neq \emptyset$ and $\overline{B} \not\subseteq A$ it is clear that $d(A, B) \ge 2$ and we have a path A - C - B where $C = \overline{A \cap B}$, and so d(A, B) = 2. Thus, ecc(A) = 2.

Let $A \in V(\Gamma)$ with |A| < n - 1. Then there exists a vertex $D \in V(\Gamma)$ such that $A \cap D = \emptyset$ and $A \cup D \neq X$, and it is clear that $d(A, B) \ge 2$. Assume that there is a vertex $E \in V(\Gamma)$ such that A - E - D in Γ . Then $\overline{A} \subseteq E$ and $\overline{D} \subseteq E$, and so $E \supseteq \overline{A} \cup \overline{D} = \overline{A \cap D} = X$, which is a contradiction. Thus, we have $d(A, D) \ge 3$ and so $ecc(A) \ge 3$. As we said before, since the diameter of the zero-divisor graph of any commutative semigroup with zero is at most 3 (see Theorem 1.2 in [7]), it follows that ecc(A) = 3.

Moreover, we have the following immediate corollary.

Corollary 2.2. If $|X| = n \ge 3$ then

$$C(\Gamma) = \{A \in V(\Gamma) \mid |A| = n - 1\}$$

Lemma 2.3. Let $|X| = n \ge 2$ and $A \in V(\Gamma)$. If |A| = r $(1 \le r \le n-1)$ then $\deg_{\Gamma}(A) = 2^r - 1$.

Proof Let $|X| \ge 2$ and $A \in V(\Gamma)$ with |A| = r. For $B \in V(\Gamma)$, since $A - B \in E(\Gamma)$ if and only if $\overline{A} \subseteq B \subsetneq X$, there exists a proper subset Y of A such that $B = \overline{A} \cup Y$, and so $\deg_{\Gamma}(A) = 2^r - 1$.

Corollary 2.4. Let $|X| = n \ge 2$ and $1 \le r \le n-1$. In Γ there are $\binom{n}{r}$ vertices whose vertex degrees are $2^r - 1$. Moreover, $\Delta(\Gamma) = 2^{n-1} - 1$ and $\delta(\Gamma) = 1$.

Theorem 2.5. (i) If |X| = 2 then $\gamma(\Gamma) = 1$ and if $|X| = n \ge 3$ then $\gamma(\Gamma) = n$.

(*ii*) If $|X| = n \ge 2$ then $\alpha(\Gamma) = 2^{n-1} - 1$.

Proof (i) It is clear that $\gamma(\Gamma) = 1$ when |X| = 2. Let $|X| = n \ge 3$ and D be a dominating set of Γ . For each $k \in X$ since the vertex degree of $\{k\}$ is 1, equivalently $N_{\Gamma}[\{k\}] = \{X \setminus \{k\}, \{k\}\}$, and since $|N_{\Gamma}[\{k\}] \cap D| \ge 1$, either $\{k\} \in D$ or $X \setminus \{k\} \in D$. Moreover, for any $i, j \in X$ with $i \ne j$, since $|X| \ge 3$, we have $N_{\Gamma}[\{i\}] \cap N_{\Gamma}[\{j\}] = \emptyset$. Thus, $|D| \ge n$. Now we consider the set

$$D = \{X \setminus \{k\} \mid k \in X\}$$

It is clear that |D| = n and D is a dominating set, and so $\gamma(\Gamma) = n$.

(ii) Let $|X| = n \ge 2$, $i \in X$ and let $B = X \setminus \{i\}$. Then consider the subsets

$$P(B) = \{Y \mid \emptyset \neq Y \subseteq B\} \text{ and } Q(B) = \{X \setminus Y \mid Y \in P(B)\}$$

of $V(\Gamma)$. Notice that $i \notin Y$ for each $Y \in P(B)$, and it follows that $i \in Z$ for each $Z \in Q(B)$. Thus, $P(B) \cap Q(B) = \emptyset$ and $|P(B)| = |Q(B)| = 2^{n-1} - 1$, and it follows that $P(B) \cup Q(B) = V(\Gamma)$. If $A \subseteq V(\Gamma)$ is an independent set, then from the pigeonhole principle, $|A| \leq 2^{n-1} - 1$. (Otherwise, A must contain both Y and $X \setminus Y$ for some Y in P(B), which contradicts the independence of A.) Moreover, since P(B) is an independent set in Γ , then $\alpha(\Gamma) = 2^{n-1} - 1$.

3. Perfectness of $\Gamma(SL_X)$

Let G be a graph. Each of the maximal complete subgraphs of G is called a clique. The number of all the vertices in any clique of G, denoted by $\omega(G)$, is called a clique number. There exists another graph parameter, namely the chromatic number. It is the minimum number of colors needed to assign the vertices of a graph G such that no two adjacent vertices have the same color and it is denoted by $\chi(G)$. It is well known that

$$\chi(G) \ge \omega(G) \tag{1}$$

for any graph G (see Corollary 6.2 in [4]). Moreover, let $V' \subseteq V(G)$. Then the induced subgraph G' = (V', E') is a subgraph of G such that E' consists of those edges whose endpoints are in V'. For each induced subgraph H of G, if $\chi(H) = \omega(H)$, then G is called a perfect graph.

The complement or inverse of a simple graph G is a simple graph on the same vertices such that two distinct vertices are adjacent with a single edge if and only if they are not adjacent in G and it is denoted by G^c . A graph G is called Berge if no induced subgraph of G is an odd cycle of length of at least five or the complement of one.

The edges are called adjacent if they share a common end vertex. An edge coloring of a graph is an assignment of colors to the edges of G such that no two adjacent edges have the same color. The minimum required number of colors for and the edge coloring of G is called the chromatic index of G and is denoted by $\chi'(G)$. A fundamental theorem due to Vizing states that, for any graph G, we have

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

(see [11]). Graph G is called class-1 if $\Delta(G) = \chi'(G)$ and class-2 if $\chi'(G) = \Delta(G) + 1$.

The core of a graph G is defined to be the largest induced subgraph of G such that each edge in the core is part of a cycle and it is denoted by G_{Δ} . Finally, let M be a subset of E(G) for a graph G; if there are no two edges in M that are adjacent, then M is called a matching.

Theorem 3.1. If $|X| = n \ge 2$ then $\omega(\Gamma) = \chi(\Gamma) = n$.

Proof Without loss of generality suppose that $X = \{1, 2, ..., n\}$. Let $A_i = X \setminus \{i\}$ for each $i \in X$, and let Π be the induced subgraph by the subset $\{A_i \mid i \in X\} \subseteq V(\Gamma)$. Then it is clear that Π is a complete graph with n vertices, and so $\omega(\Gamma) \geq n$.

On the other hand, let

$$\mathcal{P}_{1} = \{B \mid \emptyset \neq B \subseteq A_{1}\},$$

$$\mathcal{P}_{2} = \{B \mid \emptyset \neq B \subseteq A_{2} \text{ and } B \notin \mathcal{P}_{1}\},$$

$$\vdots$$

$$\mathcal{P}_{n} = \{B \mid \emptyset \neq B \subseteq A_{n} \text{ and } B \notin \bigcup_{i=1}^{n-1} \mathcal{P}_{i}\}.$$

Then it is easy to see that $\bigcup_{i=1}^{n} \mathcal{P}_{i} = V(\Gamma)$. It is also easy to see that $B \in \mathcal{P}_{1}$ if and only if $1 \notin B$, and for each $2 \leq k \leq n$, $B \in \mathcal{P}_{k}$ if and only if $1, \ldots, k-1 \in B$, but $k \notin B$. Thus, $\mathcal{P}_{i} \neq \emptyset$ for each $1 \leq i \leq n$ and $\mathcal{P}_{i} \cap \mathcal{P}_{j} = \emptyset$ for each $1 \leq i \neq j \leq n$.

For each $1 \le k \le n$, if we choose a different color for each \mathcal{P}_k and assign the chosen color to the all vertices in \mathcal{P}_k , there are no two adjacent vertices that have the same color, and so $\chi(\Gamma) \le n$.

Since $n \ge \chi(\Gamma)$ and $\omega(\Gamma) \ge n$, it follows from equation (1) that

$$\chi(\Gamma) = \omega(\Gamma) = n,$$

as required.

Lemma 3.2. [5] A graph is perfect if and only if it is Berge.

Therefore, a graph G is perfect if and only if neither G nor G^c contains an odd cycle of length of at least 5 as an induced subgraph.

Theorem 3.3. Γ is a perfect graph if |X| = 2, 3, or 4, but Γ is not a perfect graph if $|X| \ge 5$.

Proof For |X| = 2, it is clear.

For |X| = 3 or 4, we assume that there exists an induced subgraph of Γ that is an odd cycle with 2m-1 vertices where $m \ge 3$, say

$$C_1 - C_2 - \dots - C_{2m-1} - C_1$$

Since $C_i \neq X$, it is clear that $|C_i| = 2$ for each $1 \leq i \leq 2m - 1$ for |X| = 3. Similarly for |X| = 4, it is clear that $|C_i| \geq 2$ for each $1 \leq i \leq 2m - 1$. Moreover, if $|C_i| = 3$ for any $1 \leq i \leq 2m - 1$, without loss of generality, say $|C_1| = 3$, then neither C_3 nor C_4 must include $X \setminus C_1$. On the other hand, since C_3 and C_4 are adjacent vertices, one of them must contain $X \setminus C_1$, which is a contradiction. Thus, $|C_i| = 2$ for each $1 \leq i \leq 2m - 1$.

Suppose that the subgraphs of Γ induced by the set of all the vertices whose cardinality is 2 are Φ and Ψ for |X| = 3 and |X| = 4, respectively. Then we have

so the result is clear.

828

TOKER/Turk J Math

Similarly, for |X| = 3 or 4, we assume that there exists an induced subgraph of Γ^c that is an odd cycle with 2m-1 vertices where $m \ge 3$, say

$$C_1 - C_2 - \dots - C_{2m-1} - C_1.$$

For |X| = 3 or 4, $|C_i| \ge 2$ for each $1 \le i \le 2m - 1$; otherwise, if $|C_i| = 1$ for any $1 \le i \le 2m - 1$, then all other vertices are adjacent to C_i except $X \setminus C_i$ in Γ^c . Thus, $|C_i| = 2$ for each $1 \le i \le 2m - 1$ for |X| = 3. Now we show that $|C_i| = 2$ for each $1 \le i \le 2m - 1$ for |X| = 4. If $|C_i| = 3$ for any $1 \le i \le 2m - 1$, without loss of generality, say $|C_1| = 3$. Then C_2 and C_{2m-1} must be subsets of C_1 . It follows that C_2 and C_{2m-1} are adjacent vertices in Γ^c , which is a contradiction. Thus, $|C_i| = 2$ for each $1 \le i \le 2m - 1$. For |X| = 3 it is clear that the subgraph of Γ^c induced by the set of all the vertices with cardinality 2 is the null graph with 3 vertices. For |X| = 4, if Ω is the subgraph of Γ^c induced by the set of all the vertices with cardinality 2, then we have

Since all the vertices in Ω have degree 4, it follows that there does not exist an induced subgraph that is a cycle with 5 vertices. Therefore, Γ is a perfect graph if |X| = 2, 3, or 4.

For $|X| = n \ge 5$, without loss of generality, suppose that $X = \{1, 2, ..., n\}$, $Y = X \setminus \{1, 2, 3, 4, 5\}$, and H is the subgraph induced by the vertex set

$$\{\{1,2,3\} \cup Y, \{1,4,5\} \cup Y, \{2,3,5\} \cup Y, \{1,3,4\} \cup Y, \{2,4,5\} \cup Y\}.$$

Then it is clear that H is a cycle graph of length 5 with the cycle

$$\{1,2,3\} \cup Y - \{1,4,5\} \cup Y - \{2,3,5\} \cup Y - \{1,3,4\} \cup Y - \{2,4,5\} \cup Y - \{1,2,3\} \cup Y.$$

Thus, Γ is not a perfect graph if $|X| \ge 5$.

Lemma 3.4. [10] Consider the graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with the same vertex set. Suppose that E_1 is a matching such that no edge has both end vertices in $N_{G_2}[\Lambda_{G_2}]$. If the union graph $G = G_1 \cup G_2$ has maximum degree $\Delta(G) = \Delta(G_2) + 1$, then G is class-1.

Now we consider the core of Γ . Notice that, from the proof of Theorem 2.1, Γ_{Δ} is the subgraph of Γ induced by the vertex set $\{A \in V(\Gamma) \mid |A| \ge 2\}$.

Theorem 3.5. If $|X| \ge 2$ then $\chi'(\Gamma) = 2^{n-1} - 1$. **Proof** It is clear for |X| = 2. For $|X| = n \ge 3$, consider the graphs

$$G_1 = (V(\Gamma), B)$$
 and
 $G_2 = (V(\Gamma), E(\Gamma_{\Delta}))$

where $B = \{\{i\} - (X \setminus \{i\}) \mid 1 \le i \le n\}$. Thus, B is a matching such that no edge has both end vertices in $N_{G_2}[\Lambda_{G_2}] = V(\Gamma_{\Delta})$. Since $\Gamma = G_1 \cup G_2$ and $\Delta(\Gamma) = \Delta(G_2) + 1$, it follows from Lemma 3.4 that Γ is class-1.

4. Hamiltonian subgraphs of $\Gamma(SL_X)$

A cycle that travels exactly once over each vertex in a graph is called a Hamiltonian cycle. A graph is called a Hamiltonian graph if it has a Hamiltonian cycle. Since all degrees of all vertices in a Hamiltonian graph are at least 2, Γ is not a Hamiltonian graph. However, we may consider the Γ_{Δ} in the following theorem.

Theorem 4.1. Γ_{Δ} is a Hamiltonian graph if |X| = 3, 4, or 5, but Γ_{Δ} is not a Hamiltonian graph if $|X| \ge 6$. **Proof** Without loss of generality suppose that $X = \{1, 2, ..., n\}$. If |X| = 3 then

$$\{1,2\}-\{1,3\}-\{2,3\}-\{1,2\}$$

is Hamiltonian a cycle in Γ_{Δ} . If |X| = 4 then

$$\{1,2\} - \{3,4\} - \{1,2,4\} - \{1,3\} - \{2,4\} - \{1,3,4\} - \{2,3\} - \\ \{1,4\} - \{1,2,3\} - \{2,3,4\} - \{1,2\}$$

is a Hamiltonian cycle in Γ_{Δ} . If |X| = 5 then

$$\{3,4\} - \{1,2,5\} - \{3,4,5\} - \{1,2\} - \{1,3,4,5\} - \{2,5\} - \{1,3,4\} - \{2,4,5\} - \{1,3\} - \{1,2,4,5\} - \{2,3\} - \{1,4,5\} - \{1,2,3\} - \{4,5\} - \{1,2,3,4\} - \{3,5\} - \{1,2,4\} - \{2,3,5\} - \{1,4\} - \{2,3,4,5\} - \{1,5\} - \{2,3,4\} - \{1,3,5\} - \{1,2,4\} - \{1,2,3,5\} - \{3,4\}$$

is a Hamiltonian cycle in Γ_{Δ} . Therefore, Γ_{Δ} is a Hamiltonian graph for |X| = 3, 4 or 5.

Suppose that $|X| \ge 6$. Then consider the subsets

$$\begin{array}{lll} \mathcal{A} & = & \{ U \in V(\Gamma) \mid |U| = 2 \}, \\ \mathcal{B} & = & \{ T \in V(\Gamma) \mid |T| = n - 2 \}, \\ \mathcal{C} & = & \{ W \in V(\Gamma) \mid |W| = n - 1 \} \end{array}$$
 and

of $V(\Gamma)$. Notice that, for any $U \in \mathcal{A}$, each adjacent vertex of U must be in $\mathcal{B} \cup \mathcal{C}$, and that, if $T \in \mathcal{B}$ is an adjacent vertex, then $T = X \setminus U$. Now suppose that Γ_{Δ} is a Hamiltonian graph. Then we have a Hamiltonian cycle in Γ_{Δ} of the form

$$U_1 - Y_1 - \dots - Z_1 - U_2 - Y_2 - \dots - Z_{k-1} - U_k - Y_k - \dots - Z_k - U_1$$

, where $U_i \in \mathcal{A}$; $Y_i, Z_i \in \mathcal{B} \cup \mathcal{C}$ for $1 \le i \le k = \binom{n}{2}$. Since $|\mathcal{C}| = n$, there are at most n pairs (Y_i, Z_i) such that $Y_i = Z_i \in \mathcal{C}$ for $1 \le i \le k$. Since we need at least $n + 2\binom{n}{2} - n$ vertices from $\mathcal{B} \cup \mathcal{C}$, then we have

$$n+2\left(\binom{n}{2}-n\right)\leq n+\binom{n}{2}=|\mathcal{B}\cup\mathcal{C}|,$$

which contradicts $|X| = n \ge 6$. Therefore, Γ_{Δ} is not a Hamiltonian graph for $|X| \ge 6$.

Open Problem 4.2. What is the maximal cycle length in Γ for $|X| \ge 6$?

TOKER/Turk J Math

References

- [1] Anderson DF, Badawi A. On the zero-divisor graph of a ring. Commun Algebra 2008; 36: 3073-3092.
- [2] Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. J Algebra 1999; 217: 434-447.
- [3] Beck I. Coloring of commutative rings. J Algebra 1988; 116: 208-226.
- [4] Chartrand G, Zhang P. Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 2009.
- [5] Chudnovsky M, Robertson N, Seymour P, Thomas R. The strong perfect graph theorem. Ann Math 2006; 164: 51-229.
- [6] DeMeyer F, DeMeyer L. Zero divisor graphs of semigroups. J Algebra 2005; 283: 190-198.
- [7] DeMeyer F, McKenzie T, Schneider K. The zero-divisor graph of a commutative semigroup. Semigroup Forum 2002; 65: 206-214.
- [8] Gross JL, Yellen J. Handbook of Graph Theory. Boca Raton, FL, USA: CRC Press, 2004.
- [9] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
- [10] Machado RCS, Figueiredo CMH. Decompositions for edge-coloring join graphs and cobipartite graphs. Discrete Appl Math 2010; 158: 1336-1342.
- [11] Vizing VG. On an estimate of the chromatic class of a p-graph. Diskret Analiz 1964; 3: 25-30 (in Russian).