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Abstract: Let SLX be the free semilattice on a finite nonempty set X . There exists an undirected graph Γ(SLX)

associated with SLX whose vertices are the proper subsets of X , except the empty set, and two distinct vertices A

and B of Γ(SLX) are adjacent if and only if A ∪ B = X . In this paper, the diameter, radius, girth, degree of any

vertex, domination number, independence number, clique number, chromatic number, and chromatic index of Γ(SLX)

have been established. Moreover, we have determined when Γ(SLX) is a perfect graph and when the core of Γ(SLX) is

a Hamiltonian graph.

Key words: Finite free semilattice, zero-divisor graph, clique number, domination number, perfect graph, Hamiltonian

graph

1. Introduction

The zero-divisor graph was first introduced by Beck in the study of commutative rings [3], and later studied by

Anderson et al. [1, 2]. In [6, 7] DeMeyer et al. considered the zero-divisor graph on a commutative semigroup

S with 0. If the set of zero-divisor elements in S is Z(S), then the zero-divisor graph Γ(S) is defined as an

undirected graph with vertices Z(S) \ {0} and the vertices x and y are adjacent with a single edge if and only

if xy = 0. It is known that Γ(S) is a connected graph (see [7]).

Let X be a finite nonempty set, and let SLX be the set consisting of all subsets of X except the

empty set. Then SLX is a commutative semigroup of idempotents with the multiplication A · B = A ∪ B for

A,B ∈ SLX and it is called the free semilattice on X . The zero-divisor graph Γ(SLX) is associated with SLX

and defined by:

• the vertex set of Γ(SLX), denoted by V (Γ(SLX)), which is the proper subsets of X except the empty

set; and

• the undirected edge set of Γ(SLX), denoted by E(Γ(SLX)) and

E(Γ(SLX)) = {A−B | A,B ∈ V (Γ(SLX));A ∪B = X}.

Moreover, we say that A and B are adjacent or A is adjacent to B if A− B ∈ E(Γ(SLX). Throughout this

paper we suppose that |X| = n and that, without loss of generality, X = {1, 2, . . . , n} . Thus, there are 2n − 2

vertices in Γ(SLX).
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In this paper, the diameter, radius, girth, degree of any vertex, domination number, independence number,

clique number, chromatic number, and chromatic index of Γ(SLX) have been established. Moreover, we have

determined when Γ(SLX) is a perfect graph and when the core of Γ(SLX) is a Hamiltonian graph.

For graph theoretical terminology see [8], and for semigroup terminology see [9].

2. Some basic properties of Γ(SLX)

For any simple graph G , the length of the shortest path between two vertices u and v of G is denoted by

dG(u, v). The eccentricity of a vertex v in a connected simple graph G is the maximum distance (length of the

shortest path) between v and any other vertex u of G and it is denoted by ecc(v); that is,

ecc(v) = max{dG(u, v) | u ∈ V (G)}.

The diameter of G , denoted by diam(G), is

diam(G) = max{ecc(v) | v ∈ V (G)},

and it is known that the diameter of the zero-divisor graph of any commutative semigroup with zero is at most

3 (see Theorem 1.2 in [7]). The radius of G , denoted by rad(G), is

rad(G) = min{ecc(v) | v ∈ V (G)}.

The central vertex set of G , denoted by C(G), is

C(G) = {v ∈ V (G) | ecc(v) = rad(G)}.

The girth of G is the length of a shortest cycle contained in G and it is denoted by gr(G). If G does not contain

any cycles, then its girth is defined to be infinity. The degree of a vertex v ∈ V (G) is the number of vertices

adjacent to v and denoted by degG(v). Among all degrees, the maximum degree ∆(G) (the minimum degree

δ(G)) of G is the biggest (the smallest) degree in G . A vertex of maximum degree is called a delta-vertex and

we denote the set of delta-vertices of G by ΛG . An independent set of a graph G is a subset of vertices V (G)

such that no two vertices in the subset represent an edge of G . Independence number, denoted by α(G), is

defined by

α(G) = max{|I| | I is an independent set of G}.

Let D be a nonempty subset of the vertex set V (G) of G . If, for each u ∈ V (G)\D , there exists vu ∈ D

such that u− vu ∈ E(G), then D is called a dominating set. The domination number of G , denoted by γ(G),

is
γ(G) = min{|D| | D is a dominating set of G}.

The open neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the set of vertices that are adjacent to

v and the closed neighborhood of v is NG[v] = NG(v) ∪ {v} . For a nonempty subset Z of V (G), the closed

neighborhood of Z in G , denoted by NG[Z] , is NG[Z] =
∪

v∈Z

NG[v] . It is clear that |NG[v] ∩D| ≥ 1 for each

dominating set D , and for each v ∈ V (G).

In this section, we mainly deal with some graph properties of Γ(SLX), namely the diameter, radius,

girth, degree of any vertex, domination number, and independence number of Γ(SLX).
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For convenience, we use the notation A = (X \ A) for each A ⊆ X , Γ instead of Γ(SLX) and d(A,B)

instead of dΓ(SLX)(A,B). For each pair A,B ∈ V (Γ), notice that

A−B ∈ E(Γ) ⇔ A ⊆ B ⇔ B ⊆ A.

Theorem 2.1. If |X| = n ≥ 3 then we have:

(i) gr(Γ) = 3 ,

(ii) rad(Γ) = 2 and diam(Γ) = 3 .

Proof (i) Since Γ is a simple graph and from the definiton of Γ it is clear that gr(Γ) ≥ 3, let |X| ≥ 3 and

A ∈ V (Γ) with |A| ≥ 2. We consider any 2-partition A1 and A2 of A , B = A ∪ A1 and C = A ∪ A2 . Thus,

we have a cycle A−B − C −A in Γ.

(ii) Let |X| ≥ 3; for proof we show that show that the eccentricity of a vertex A ∈ V (Γ) is either 2 or 3.

Let A ∈ V (Γ) with |A| = n− 1, and B ∈ V (Γ). If A∩B = ∅ then it is clear that B ⊆ A and so d(A,B) = 1

or if A ∩B ̸= ∅ and B ⊆ A then d(A,B) = 1. If A ∩B ̸= ∅ and B ̸⊆ A it is clear that d(A,B) ≥ 2 and we

have a path A− C −B where C = A ∩B , and so d(A,B) = 2. Thus, ecc(A) = 2.

Let A ∈ V (Γ) with |A| < n − 1. Then there exists a vertex D ∈ V (Γ) such that A ∩ D = ∅ and

A ∪D ̸= X , and it is clear that d(A,B) ≥ 2. Assume that there is a vertex E ∈ V (Γ) such that A − E −D

in Γ. Then A ⊆ E and D ⊆ E , and so E ⊇ A ∪ D = A ∩D = X , which is a contradiction. Thus, we

have d(A,D) ≥ 3 and so ecc(A) ≥ 3. As we said before, since the diameter of the zero-divisor graph of any

commutative semigroup with zero is at most 3 (see Theorem 1.2 in [7]), it follows that ecc(A) = 3. Thus,

rad(Γ) = 2 and diam(Γ) = 3.

Moreover, we have the following immediate corollary.

Corollary 2.2. If |X| = n ≥ 3 then

C(Γ) = {A ∈ V (Γ) | |A| = n− 1}.

Lemma 2.3. Let |X| = n ≥ 2 and A ∈ V (Γ) . If |A| = r (1 ≤ r ≤ n− 1) then degΓ(A) = 2r − 1 .

Proof Let |X| ≥ 2 and A ∈ V (Γ) with |A| = r . For B ∈ V (Γ), since A−B ∈ E(Γ) if and only if A ⊆ B ⊊ X ,

there exists a proper subset Y of A such that B = A ∪ Y , and so degΓ(A) = 2r − 1.

Corollary 2.4. Let |X| = n ≥ 2 and 1 ≤ r ≤ n − 1 . In Γ there are
(
n
r

)
vertices whose vertex degrees are

2r − 1 . Moreover, ∆(Γ) = 2n−1 − 1 and δ(Γ) = 1 . □

Theorem 2.5. (i) If |X| = 2 then γ(Γ) = 1 and if |X| = n ≥ 3 then γ(Γ) = n .

(ii) If |X| = n ≥ 2 then α(Γ) = 2n−1 − 1 .

Proof (i) It is clear that γ(Γ) = 1 when |X| = 2. Let |X| = n ≥ 3 and D be a dominating set of

Γ. For each k ∈ X since the vertex degree of {k} is 1, equivalently NΓ[{k}] = {X \ {k}, {k}} , and since

|NΓ[{k}] ∩D| ≥ 1, either {k} ∈ D or X \ {k} ∈ D . Moreover, for any i, j ∈ X with i ̸= j , since |X| ≥ 3, we

have NΓ[{i}] ∩NΓ[{j}] = ∅ . Thus, |D| ≥ n . Now we consider the set

D = {X \ {k} | k ∈ X}.
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It is clear that |D| = n and D is a dominating set, and so γ(Γ) = n .

(ii) Let |X| = n ≥ 2, i ∈ X and let B = X \ {i} . Then consider the subsets

P (B) = {Y | ∅ ̸= Y ⊆ B} and Q(B) = {X \ Y | Y ∈ P (B)}

of V (Γ). Notice that i ̸∈ Y for each Y ∈ P (B), and it follows that i ∈ Z for each Z ∈ Q(B). Thus,

P (B) ∩ Q(B) = ∅ and |P (B)| = |Q(B)| = 2n−1 − 1, and it follows that P (B) ∪ Q(B) = V (Γ). If A ⊆ V (Γ)

is an independent set, then from the pigeonhole principle, |A| ≤ 2n−1 − 1. (Otherwise, A must contain both

Y and X \ Y for some Y in P (B), which contradicts the independence of A .) Moreover, since P (B) is an

independent set in Γ, then α(Γ) = 2n−1 − 1.

3. Perfectness of Γ(SLX)

Let G be a graph. Each of the maximal complete subgraphs of G is called a clique. The number of all the

vertices in any clique of G , denoted by ω(G), is called a clique number. There exists another graph parameter,

namely the chromatic number. It is the minimum number of colors needed to assign the vertices of a graph G

such that no two adjacent vertices have the same color and it is denoted by χ(G). It is well known that

χ(G) ≥ ω(G) (1)

for any graph G (see Corollary 6.2 in [4]). Moreover, let V
′ ⊆ V (G). Then the induced subgraph G

′
= (V

′
, E

′
)

is a subgraph of G such that E
′
consists of those edges whose endpoints are in V

′
. For each induced subgraph

H of G , if χ(H) = ω(H), then G is called a perfect graph.

The complement or inverse of a simple graph G is a simple graph on the same vertices such that two

distinct vertices are adjacent with a single edge if and only if they are not adjacent in G and it is denoted by

Gc . A graph G is called Berge if no induced subgraph of G is an odd cycle of length of at least five or the

complement of one.

The edges are called adjacent if they share a common end vertex. An edge coloring of a graph is an

assignment of colors to the edges of G such that no two adjacent edges have the same color. The minimum

required number of colors for and the edge coloring of G is called the chromatic index of G and is denoted by

χ
′
(G). A fundamental theorem due to Vizing states that, for any graph G , we have

∆(G) ≤ χ
′
(G) ≤ ∆(G) + 1

(see [11]). Graph G is called class-1 if ∆(G) = χ
′
(G) and class-2 if χ

′
(G) = ∆(G) + 1.

The core of a graph G is defined to be the largest induced subgraph of G such that each edge in the

core is part of a cycle and it is denoted by G∆ . Finally, let M be a subset of E(G) for a graph G ; if there are

no two edges in M that are adjacent, then M is called a matching.

Theorem 3.1. If |X| = n ≥ 2 then ω(Γ) = χ(Γ) = n .

Proof Without loss of generality suppose that X = {1, 2, . . . , n} . Let Ai = X \ {i} for each i ∈ X , and let Π

be the induced subgraph by the subset {Ai | i ∈ X} ⊆ V (Γ). Then it is clear that Π is a complete graph with

n vertices, and so ω(Γ) ≥ n .
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On the other hand, let

P1 = {B | ∅ ̸= B ⊆ A1},

P2 = {B | ∅ ̸= B ⊆ A2 and B /∈ P1},

...

Pn = {B | ∅ ̸= B ⊆ An and B /∈
n−1∪
i=1

Pi}.

Then it is easy to see that
n∪

i=1

Pi = V (Γ). It is also easy to see that B ∈ P1 if and only if 1 /∈ B , and for

each 2 ≤ k ≤ n , B ∈ Pk if and only if 1, . . . , k − 1 ∈ B , but k /∈ B . Thus, Pi ̸= ∅ for each 1 ≤ i ≤ n and

Pi ∩ Pj = ∅ for each 1 ≤ i ̸= j ≤ n .

For each 1 ≤ k ≤ n , if we choose a different color for each Pk and assign the chosen color to the all

vertices in Pk , there are no two adjacent vertices that have the same color, and so χ(Γ) ≤ n .

Since n ≥ χ(Γ) and ω(Γ) ≥ n , it follows from equation (1) that

χ(Γ) = ω(Γ) = n,

as required.

Lemma 3.2. [5] A graph is perfect if and only if it is Berge. □

Therefore, a graph G is perfect if and only if neither G nor Gc contains an odd cycle of length of at

least 5 as an induced subgraph.

Theorem 3.3. Γ is a perfect graph if |X| = 2, 3 , or 4 , but Γ is not a perfect graph if |X| ≥ 5 .

Proof For |X| = 2, it is clear.

For |X| = 3 or 4, we assume that there exists an induced subgraph of Γ that is an odd cycle with 2m−1

vertices where m ≥ 3, say

C1 − C2 − · · · − C2m−1 − C1.

Since Ci ̸= X , it is clear that |Ci| = 2 for each 1 ≤ i ≤ 2m− 1 for |X| = 3. Similarly for |X| = 4, it is clear

that |Ci| ≥ 2 for each 1 ≤ i ≤ 2m− 1. Moreover, if |Ci| = 3 for any 1 ≤ i ≤ 2m− 1, without loss of generality,

say |C1| = 3, then neither C3 nor C4 must include X \C1 . On the other hand, since C3 and C4 are adjacent

vertices, one of them must contain X \ C1 , which is a contradiction. Thus, |Ci| = 2 for each 1 ≤ i ≤ 2m− 1.

Suppose that the subgraphs of Γ induced by the set of all the vertices whose cardinality is 2 are Φ and

Ψ for |X| = 3 and |X| = 4, respectively. Then we have

s s
s








 J

J
J
JJ

s s s
s s s

Φ : Ψ :

so the result is clear.
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Similarly, for |X| = 3 or 4, we assume that there exists an induced subgraph of Γc that is an odd cycle with

2m− 1 vertices where m ≥ 3, say

C1 − C2 − · · · − C2m−1 − C1.

For |X| = 3 or 4, |Ci| ≥ 2 for each 1 ≤ i ≤ 2m − 1; otherwise, if |Ci| = 1 for any 1 ≤ i ≤ 2m − 1, then all

other vertices are adjacent to Ci except X \ Ci in Γc . Thus, |Ci| = 2 for each 1 ≤ i ≤ 2m − 1 for |X| = 3.

Now we show that |Ci| = 2 for each 1 ≤ i ≤ 2m− 1 for |X| = 4. If |Ci| = 3 for any 1 ≤ i ≤ 2m− 1, without

loss of generality, say |C1| = 3. Then C2 and C2m−1 must be subsets of C1 . It follows that C2 and C2m−1

are adjacent vertices in Γc , which is a contradiction. Thus, |Ci| = 2 for each 1 ≤ i ≤ 2m− 1. For |X| = 3 it is

clear that the subgraph of Γc induced by the set of all the vertices with cardinality 2 is the null graph with 3

vertices. For |X| = 4, if Ω is the subgraph of Γc induced by the set of all the vertices with cardinality 2, then

we have

s ss
ss s

"
"
"
"
"
"
"
"
"
"

   
  

�
�
�
�
�

b
b
b
b
b
b
b
b
b
b
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@
@

@
@
@

     �
�
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�
�

Ω :

Since all the vertices in Ω have degree 4, it follows that there does not exist an induced subgraph that is a

cycle with 5 vertices. Therefore, Γ is a perfect graph if |X| = 2, 3, or 4.

For |X| = n ≥ 5, without loss of generality, suppose that X = {1, 2, . . . , n} , Y = X \ {1, 2, 3, 4, 5} , and
H is the subgraph induced by the vertex set

{{1, 2, 3} ∪ Y, {1, 4, 5} ∪ Y, {2, 3, 5} ∪ Y, {1, 3, 4} ∪ Y, {2, 4, 5} ∪ Y }.

Then it is clear that H is a cycle graph of length 5 with the cycle

{1, 2, 3} ∪ Y − {1, 4, 5} ∪ Y − {2, 3, 5} ∪ Y − {1, 3, 4} ∪ Y − {2, 4, 5} ∪ Y − {1, 2, 3} ∪ Y.

Thus, Γ is not a perfect graph if |X| ≥ 5.

Lemma 3.4. [10] Consider the graphs G1 = (V,E1) and G2 = (V,E2) with the same vertex set. Suppose that

E1 is a matching such that no edge has both end vertices in NG2 [ΛG2 ] . If the union graph G = G1 ∪ G2 has

maximum degree ∆(G) = ∆(G2) + 1 , then G is class-1 . □

Now we consider the core of Γ. Notice that, from the proof of Theorem 2.1, Γ∆ is the subgraph of Γ

induced by the vertex set {A ∈ V (Γ) | |A| ≥ 2} .

Theorem 3.5. If |X| ≥ 2 then χ
′
(Γ) = 2n−1 − 1 .

Proof It is clear for |X| = 2. For |X| = n ≥ 3, consider the graphs

G1 = (V (Γ), B) and

G2 = (V (Γ), E(Γ∆))

where B = {{i} − (X \ {i}) | 1 ≤ i ≤ n} . Thus, B is a matching such that no edge has both end vertices

in NG2 [ΛG2 ] = V (Γ∆). Since Γ = G1 ∪ G2 and ∆(Γ) = ∆(G2) + 1, it follows from Lemma 3.4 that Γ is

class-1.
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4. Hamiltonian subgraphs of Γ(SLX)

A cycle that travels exactly once over each vertex in a graph is called a Hamiltonian cycle. A graph is called a

Hamiltonian graph if it has a Hamiltonian cycle. Since all degrees of all vertices in a Hamiltonian graph are at

least 2, Γ is not a Hamiltonian graph. However, we may consider the Γ∆ in the following theorem.

Theorem 4.1. Γ∆ is a Hamiltonian graph if |X| = 3, 4 , or 5 , but Γ∆ is not a Hamiltonian graph if |X| ≥ 6 .

Proof Without loss of generality suppose that X = {1, 2, . . . , n} . If |X| = 3 then

{1, 2} − {1, 3} − {2, 3} − {1, 2}

is Hamiltonian a cycle in Γ∆ . If |X| = 4 then

{1, 2} − {3, 4} − {1, 2, 4} − {1, 3} − {2, 4} − {1, 3, 4} − {2, 3}−

{1, 4} − {1, 2, 3} − {2, 3, 4} − {1, 2}

is a Hamiltonian cycle in Γ∆ . If |X| = 5 then

{3, 4} − {1, 2, 5} − {3, 4, 5} − {1, 2} − {1, 3, 4, 5} − {2, 5} − {1, 3, 4}−

{2, 4, 5} − {1, 3} − {1, 2, 4, 5} − {2, 3} − {1, 4, 5} − {1, 2, 3} − {4, 5}−

{1, 2, 3, 4} − {3, 5} − {1, 2, 4} − {2, 3, 5} − {1, 4} − {2, 3, 4, 5} − {1, 5}−

{2, 3, 4} − {1, 3, 5} − {2, 4} − {1, 2, 3, 5} − {3, 4}

is a Hamiltonian cycle in Γ∆ . Therefore, Γ∆ is a Hamiltonian graph for |X| = 3, 4 or 5.

Suppose that |X| ≥ 6. Then consider the subsets

A = {U ∈ V (Γ) | |U | = 2},

B = {T ∈ V (Γ) | |T | = n− 2}, and

C = {W ∈ V (Γ) | |W | = n− 1}

of V (Γ). Notice that, for any U ∈ A , each adjacent vertex of U must be in B ∪ C , and that, if T ∈ B is an

adjacent vertex, then T = X \U . Now suppose that Γ∆ is a Hamiltonian graph. Then we have a Hamiltonian

cycle in Γ∆ of the form

U1 − Y1 − · · · − Z1 − U2 − Y2 − · · · − Zk−1 − Uk − Yk − · · · − Zk − U1

, where Ui ∈ A ; Yi, Zi ∈ B∪C for 1 ≤ i ≤ k =
(
n
2

)
. Since |C| = n , there are at most n pairs (Yi, Zi) such that

Yi = Zi ∈ C for 1 ≤ i ≤ k . Since we need at least n+ 2
((

n
2

)
− n

)
vertices from B ∪ C , then we have

n+ 2

((
n

2

)
− n

)
≤ n+

(
n

2

)
= |B ∪ C|,

which contradicts |X| = n ≥ 6. Therefore, Γ∆ is not a Hamiltonian graph for |X| ≥ 6.

Open Problem 4.2. What is the maximal cycle length in Γ for |X| ≥ 6?
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