On the zero-divisor graphs of finite free semilattices

Kemal TOKER*
Department of Mathematics, Çukurova University, Adana, Turkey

| Received: 10.08 .2015 | Accepted/Published Online: 06.11 .2015 | Final Version: 16.06 .2016 |
| :--- | :--- | :--- | :--- |

Abstract

Let $S L_{X}$ be the free semilattice on a finite nonempty set X. There exists an undirected graph $\Gamma\left(S L_{X}\right)$ associated with $S L_{X}$ whose vertices are the proper subsets of X, except the empty set, and two distinct vertices A and B of $\Gamma\left(S L_{X}\right)$ are adjacent if and only if $A \cup B=X$. In this paper, the diameter, radius, girth, degree of any vertex, domination number, independence number, clique number, chromatic number, and chromatic index of $\Gamma\left(S L_{X}\right)$ have been established. Moreover, we have determined when $\Gamma\left(S L_{X}\right)$ is a perfect graph and when the core of $\Gamma\left(S L_{X}\right)$ is a Hamiltonian graph.

Key words: Finite free semilattice, zero-divisor graph, clique number, domination number, perfect graph, Hamiltonian graph

1. Introduction

The zero-divisor graph was first introduced by Beck in the study of commutative rings [3], and later studied by Anderson et al. [1, 2]. In [6, 7] DeMeyer et al. considered the zero-divisor graph on a commutative semigroup S with 0 . If the set of zero-divisor elements in S is $Z(S)$, then the zero-divisor graph $\Gamma(S)$ is defined as an undirected graph with vertices $Z(S) \backslash\{0\}$ and the vertices x and y are adjacent with a single edge if and only if $x y=0$. It is known that $\Gamma(S)$ is a connected graph (see [7]).

Let X be a finite nonempty set, and let $S L_{X}$ be the set consisting of all subsets of X except the empty set. Then $S L_{X}$ is a commutative semigroup of idempotents with the multiplication $A \cdot B=A \cup B$ for $A, B \in S L_{X}$ and it is called the free semilattice on X. The zero-divisor graph $\Gamma\left(S L_{X}\right)$ is associated with $S L_{X}$ and defined by:

- the vertex set of $\Gamma\left(S L_{X}\right)$, denoted by $V\left(\Gamma\left(S L_{X}\right)\right)$, which is the proper subsets of X except the empty set; and
- the undirected edge set of $\Gamma\left(S L_{X}\right)$, denoted by $E\left(\Gamma\left(S L_{X}\right)\right)$ and

$$
E\left(\Gamma\left(S L_{X}\right)\right)=\left\{A-B \mid A, B \in V\left(\Gamma\left(S L_{X}\right)\right) ; A \cup B=X\right\} .
$$

Moreover, we say that A and B are adjacent or A is adjacent to B if $A-B \in E\left(\Gamma\left(S L_{X}\right)\right.$. Throughout this paper we suppose that $|X|=n$ and that, without loss of generality, $X=\{1,2, \ldots, n\}$. Thus, there are $2^{n}-2$ vertices in $\Gamma\left(S L_{X}\right)$.

[^0]
TOKER/Turk J Math

In this paper, the diameter, radius, girth, degree of any vertex, domination number, independence number, clique number, chromatic number, and chromatic index of $\Gamma\left(S L_{X}\right)$ have been established. Moreover, we have determined when $\Gamma\left(S L_{X}\right)$ is a perfect graph and when the core of $\Gamma\left(S L_{X}\right)$ is a Hamiltonian graph.

For graph theoretical terminology see [8], and for semigroup terminology see [9].

2. Some basic properties of $\Gamma\left(S L_{X}\right)$

For any simple graph G, the length of the shortest path between two vertices u and v of G is denoted by $d_{G}(u, v)$. The eccentricity of a vertex v in a connected simple graph G is the maximum distance (length of the shortest path) between v and any other vertex u of G and it is denoted by $\operatorname{ecc}(v)$; that is,

$$
\operatorname{ecc}(v)=\max \left\{d_{G}(u, v) \mid u \in V(G)\right\}
$$

The diameter of G, denoted by $\operatorname{diam}(G)$, is

$$
\operatorname{diam}(G)=\max \{\operatorname{ecc}(v) \mid v \in V(G)\}
$$

and it is known that the diameter of the zero-divisor graph of any commutative semigroup with zero is at most 3 (see Theorem 1.2 in [7]). The radius of G, denoted by $\operatorname{rad}(G)$, is

$$
\operatorname{rad}(G)=\min \{\operatorname{ecc}(v) \mid v \in V(G)\}
$$

The central vertex set of G, denoted by $C(G)$, is

$$
C(G)=\{v \in V(G) \mid \operatorname{ecc}(v)=\operatorname{rad}(G)\}
$$

The girth of G is the length of a shortest cycle contained in G and it is denoted by $\operatorname{gr}(G)$. If G does not contain any cycles, then its girth is defined to be infinity. The degree of a vertex $v \in V(G)$ is the number of vertices adjacent to v and denoted by $\operatorname{deg}_{G}(v)$. Among all degrees, the maximum degree $\Delta(G)$ (the minimum degree $\delta(G))$ of G is the biggest (the smallest) degree in G. A vertex of maximum degree is called a delta-vertex and we denote the set of delta-vertices of G by Λ_{G}. An independent set of a graph G is a subset of vertices $V(G)$ such that no two vertices in the subset represent an edge of G. Independence number, denoted by $\alpha(G)$, is defined by

$$
\alpha(G)=\max \{|I| \mid I \text { is an independent set of } G\} .
$$

Let D be a nonempty subset of the vertex set $V(G)$ of G. If, for each $u \in V(G) \backslash D$, there exists $v_{u} \in D$ such that $u-v_{u} \in E(G)$, then D is called a dominating set. The domination number of G, denoted by $\gamma(G)$, is

$$
\gamma(G)=\min \{|D| \mid D \text { is a dominating set of } G\}
$$

The open neighborhood of a vertex $v \in V(G)$, denoted by $N_{G}(v)$, is the set of vertices that are adjacent to v and the closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. For a nonempty subset Z of $V(G)$, the closed neighborhood of Z in G, denoted by $N_{G}[Z]$, is $N_{G}[Z]=\bigcup_{v \in Z} N_{G}[v]$. It is clear that $\left|N_{G}[v] \cap D\right| \geq 1$ for each dominating set D, and for each $v \in V(G)$.

In this section, we mainly deal with some graph properties of $\Gamma\left(S L_{X}\right)$, namely the diameter, radius, girth, degree of any vertex, domination number, and independence number of $\Gamma\left(S L_{X}\right)$.

TOKER/Turk J Math

For convenience, we use the notation $\bar{A}=(X \backslash A)$ for each $A \subseteq X, \Gamma$ instead of $\Gamma\left(S L_{X}\right)$ and $d(A, B)$ instead of $d_{\Gamma\left(S L_{X}\right)}(A, B)$. For each pair $A, B \in V(\Gamma)$, notice that

$$
A-B \in E(\Gamma) \Leftrightarrow \bar{A} \subseteq B \Leftrightarrow \bar{B} \subseteq A
$$

Theorem 2.1. If $|X|=n \geq 3$ then we have:
(i) $\operatorname{gr}(\Gamma)=3$,
(ii) $\operatorname{rad}(\Gamma)=2$ and $\operatorname{diam}(\Gamma)=3$.

Proof (i) Since Γ is a simple graph and from the definiton of Γ it is clear that $\operatorname{gr}(\Gamma) \geq 3$, let $|X| \geq 3$ and $A \in V(\Gamma)$ with $|A| \geq 2$. We consider any 2 -partition A_{1} and A_{2} of $A, B=\bar{A} \cup A_{1}$ and $C=\bar{A} \cup A_{2}$. Thus, we have a cycle $A-B-C-A$ in Γ.
(ii) Let $|X| \geq 3$; for proof we show that show that the eccentricity of a vertex $A \in V(\Gamma)$ is either 2 or 3 . Let $A \in V(\Gamma)$ with $|A|=n-1$, and $B \in V(\Gamma)$. If $A \cap B=\varnothing$ then it is clear that $\bar{B} \subseteq A$ and so $d(A, B)=1$ or if $A \cap B \neq \varnothing$ and $\bar{B} \subseteq A$ then $d(A, B)=1$. If $A \cap B \neq \varnothing$ and $\bar{B} \nsubseteq A$ it is clear that $d(A, B) \geq 2$ and we have a path $A-C-B$ where $C=\overline{A \cap B}$, and so $d(A, B)=2$. Thus, ecc $(A)=2$.

Let $A \in V(\Gamma)$ with $|A|<n-1$. Then there exists a vertex $D \in V(\Gamma)$ such that $A \cap D=\varnothing$ and $A \cup D \neq X$, and it is clear that $d(A, B) \geq 2$. Assume that there is a vertex $E \in V(\Gamma)$ such that $A-E-D$ in Γ. Then $\bar{A} \subseteq E$ and $\bar{D} \subseteq E$, and so $E \supseteq \bar{A} \cup \bar{D}=\overline{A \cap D}=X$, which is a contradiction. Thus, we have $d(A, D) \geq 3$ and so $\operatorname{ecc}(A) \geq 3$. As we said before, since the diameter of the zero-divisor graph of any commutative semigroup with zero is at most 3 (see Theorem 1.2 in [7]), it follows that $\operatorname{ecc}(A)=3$. Thus, $\operatorname{rad}(\Gamma)=2$ and $\operatorname{diam}(\Gamma)=3$.

Moreover, we have the following immediate corollary.
Corollary 2.2. If $|X|=n \geq 3$ then

$$
C(\Gamma)=\{A \in V(\Gamma)| | A \mid=n-1\}
$$

Lemma 2.3. Let $|X|=n \geq 2$ and $A \in V(\Gamma)$. If $|A|=r \quad(1 \leq r \leq n-1)$ then $\operatorname{deg}_{\Gamma}(A)=2^{r}-1$.
Proof Let $|X| \geq 2$ and $A \in V(\Gamma)$ with $|A|=r$. For $B \in V(\Gamma)$, since $A-B \in E(\Gamma)$ if and only if $\bar{A} \subseteq B \subsetneq X$, there exists a proper subset Y of A such that $B=\bar{A} \cup Y$, and so $\operatorname{deg}_{\Gamma}(A)=2^{r}-1$.

Corollary 2.4. Let $|X|=n \geq 2$ and $1 \leq r \leq n-1$. In Γ there are $\binom{n}{r}$ vertices whose vertex degrees are $2^{r}-1$. Moreover, $\Delta(\Gamma)=2^{n-1}-1$ and $\delta(\Gamma)=1$.

Theorem 2.5. (i) If $|X|=2$ then $\gamma(\Gamma)=1$ and if $|X|=n \geq 3$ then $\gamma(\Gamma)=n$.
(ii) If $|X|=n \geq 2$ then $\alpha(\Gamma)=2^{n-1}-1$.

Proof (i) It is clear that $\gamma(\Gamma)=1$ when $|X|=2$. Let $|X|=n \geq 3$ and D be a dominating set of Γ. For each $k \in X$ since the vertex degree of $\{k\}$ is 1 , equivalently $N_{\Gamma}[\{k\}]=\{X \backslash\{k\},\{k\}\}$, and since $\left|N_{\Gamma}[\{k\}] \cap D\right| \geq 1$, either $\{k\} \in D$ or $X \backslash\{k\} \in D$. Moreover, for any $i, j \in X$ with $i \neq j$, since $|X| \geq 3$, we have $N_{\Gamma}[\{i\}] \cap N_{\Gamma}[\{j\}]=\varnothing$. Thus, $|D| \geq n$. Now we consider the set

$$
D=\{X \backslash\{k\} \mid k \in X\}
$$

TOKER/Turk J Math

It is clear that $|D|=n$ and D is a dominating set, and so $\gamma(\Gamma)=n$.
(ii) Let $|X|=n \geq 2, i \in X$ and let $B=X \backslash\{i\}$. Then consider the subsets

$$
P(B)=\{Y \mid \varnothing \neq Y \subseteq B\} \text { and } Q(B)=\{X \backslash Y \mid Y \in P(B)\}
$$

of $V(\Gamma)$. Notice that $i \notin Y$ for each $Y \in P(B)$, and it follows that $i \in Z$ for each $Z \in Q(B)$. Thus, $P(B) \cap Q(B)=\varnothing$ and $|P(B)|=|Q(B)|=2^{n-1}-1$, and it follows that $P(B) \cup Q(B)=V(\Gamma)$. If $A \subseteq V(\Gamma)$ is an independent set, then from the pigeonhole principle, $|A| \leq 2^{n-1}-1$. (Otherwise, A must contain both Y and $X \backslash Y$ for some Y in $P(B)$, which contradicts the independence of A.) Moreover, since $P(B)$ is an independent set in Γ, then $\alpha(\Gamma)=2^{n-1}-1$.

3. Perfectness of $\Gamma\left(S L_{X}\right)$

Let G be a graph. Each of the maximal complete subgraphs of G is called a clique. The number of all the vertices in any clique of G, denoted by $\omega(G)$, is called a clique number. There exists another graph parameter, namely the chromatic number. It is the minimum number of colors needed to assign the vertices of a graph G such that no two adjacent vertices have the same color and it is denoted by $\chi(G)$. It is well known that

$$
\begin{equation*}
\chi(G) \geq \omega(G) \tag{1}
\end{equation*}
$$

for any graph G (see Corollary 6.2 in [4]). Moreover, let $V^{\prime} \subseteq V(G)$. Then the induced subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G such that E^{\prime} consists of those edges whose endpoints are in V^{\prime}. For each induced subgraph H of G, if $\chi(H)=\omega(H)$, then G is called a perfect graph.

The complement or inverse of a simple graph G is a simple graph on the same vertices such that two distinct vertices are adjacent with a single edge if and only if they are not adjacent in G and it is denoted by G^{c}. A graph G is called Berge if no induced subgraph of G is an odd cycle of length of at least five or the complement of one.

The edges are called adjacent if they share a common end vertex. An edge coloring of a graph is an assignment of colors to the edges of G such that no two adjacent edges have the same color. The minimum required number of colors for and the edge coloring of G is called the chromatic index of G and is denoted by $\chi^{\prime}(G)$. A fundamental theorem due to Vizing states that, for any graph G, we have

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

(see [11]). Graph G is called class- 1 if $\Delta(G)=\chi^{\prime}(G)$ and class- 2 if $\chi^{\prime}(G)=\Delta(G)+1$.
The core of a graph G is defined to be the largest induced subgraph of G such that each edge in the core is part of a cycle and it is denoted by G_{Δ}. Finally, let M be a subset of $E(G)$ for a graph G; if there are no two edges in M that are adjacent, then M is called a matching.

Theorem 3.1. If $|X|=n \geq 2$ then $\omega(\Gamma)=\chi(\Gamma)=n$.
Proof Without loss of generality suppose that $X=\{1,2, \ldots, n\}$. Let $A_{i}=X \backslash\{i\}$ for each $i \in X$, and let Π be the induced subgraph by the subset $\left\{A_{i} \mid i \in X\right\} \subseteq V(\Gamma)$. Then it is clear that Π is a complete graph with n vertices, and so $\omega(\Gamma) \geq n$.

On the other hand, let

$$
\begin{aligned}
\mathcal{P}_{1} & =\left\{B \mid \varnothing \neq B \subseteq A_{1}\right\} \\
\mathcal{P}_{2} & =\left\{B \mid \varnothing \neq B \subseteq A_{2} \text { and } B \notin \mathcal{P}_{1}\right\} \\
& \vdots \\
\mathcal{P}_{n} & =\left\{B \mid \varnothing \neq B \subseteq A_{n} \text { and } B \notin \bigcup_{i=1}^{n-1} \mathcal{P}_{i}\right\}
\end{aligned}
$$

Then it is easy to see that $\bigcup_{i=1}^{n} \mathcal{P}_{i}=V(\Gamma)$. It is also easy to see that $B \in \mathcal{P}_{1}$ if and only if $1 \notin B$, and for each $2 \leq k \leq n, B \in \mathcal{P}_{k}$ if and only if $1, \ldots, k-1 \in B$, but $k \notin B$. Thus, $\mathcal{P}_{i} \neq \varnothing$ for each $1 \leq i \leq n$ and $\mathcal{P}_{i} \cap \mathcal{P}_{j}=\varnothing$ for each $1 \leq i \neq j \leq n$.

For each $1 \leq k \leq n$, if we choose a different color for each \mathcal{P}_{k} and assign the chosen color to the all vertices in \mathcal{P}_{k}, there are no two adjacent vertices that have the same color, and so $\chi(\Gamma) \leq n$.

Since $n \geq \chi(\Gamma)$ and $\omega(\Gamma) \geq n$, it follows from equation (1) that

$$
\chi(\Gamma)=\omega(\Gamma)=n
$$

as required.
Lemma 3.2. [5] A graph is perfect if and only if it is Berge.
Therefore, a graph G is perfect if and only if neither G nor G^{c} contains an odd cycle of length of at least 5 as an induced subgraph.

Theorem 3.3. Γ is a perfect graph if $|X|=2,3$, or 4 , but Γ is not a perfect graph if $|X| \geq 5$.
Proof For $|X|=2$, it is clear.
For $|X|=3$ or 4 , we assume that there exists an induced subgraph of Γ that is an odd cycle with $2 m-1$ vertices where $m \geq 3$, say

$$
C_{1}-C_{2}-\cdots-C_{2 m-1}-C_{1}
$$

Since $C_{i} \neq X$, it is clear that $\left|C_{i}\right|=2$ for each $1 \leq i \leq 2 m-1$ for $|X|=3$. Similarly for $|X|=4$, it is clear that $\left|C_{i}\right| \geq 2$ for each $1 \leq i \leq 2 m-1$. Moreover, if $\left|C_{i}\right|=3$ for any $1 \leq i \leq 2 m-1$, without loss of generality, say $\left|C_{1}\right|=3$, then neither C_{3} nor C_{4} must include $X \backslash C_{1}$. On the other hand, since C_{3} and C_{4} are adjacent vertices, one of them must contain $X \backslash C_{1}$, which is a contradiction. Thus, $\left|C_{i}\right|=2$ for each $1 \leq i \leq 2 m-1$.

Suppose that the subgraphs of Γ induced by the set of all the vertices whose cardinality is 2 are Φ and Ψ for $|X|=3$ and $|X|=4$, respectively. Then we have

so the result is clear.

Similarly, for $|X|=3$ or 4 , we assume that there exists an induced subgraph of Γ^{c} that is an odd cycle with $2 m-1$ vertices where $m \geq 3$, say

$$
C_{1}-C_{2}-\cdots-C_{2 m-1}-C_{1}
$$

For $|X|=3$ or $4,\left|C_{i}\right| \geq 2$ for each $1 \leq i \leq 2 m-1$; otherwise, if $\left|C_{i}\right|=1$ for any $1 \leq i \leq 2 m-1$, then all other vertices are adjacent to C_{i} except $X \backslash C_{i}$ in Γ^{c}. Thus, $\left|C_{i}\right|=2$ for each $1 \leq i \leq 2 m-1$ for $|X|=3$. Now we show that $\left|C_{i}\right|=2$ for each $1 \leq i \leq 2 m-1$ for $|X|=4$. If $\left|C_{i}\right|=3$ for any $1 \leq i \leq 2 m-1$, without loss of generality, say $\left|C_{1}\right|=3$. Then C_{2} and $C_{2 m-1}$ must be subsets of C_{1}. It follows that C_{2} and $C_{2 m-1}$ are adjacent vertices in Γ^{c}, which is a contradiction. Thus, $\left|C_{i}\right|=2$ for each $1 \leq i \leq 2 m-1$. For $|X|=3$ it is clear that the subgraph of Γ^{c} induced by the set of all the vertices with cardinality 2 is the null graph with 3 vertices. For $|X|=4$, if Ω is the subgraph of Γ^{c} induced by the set of all the vertices with cardinality 2 , then we have

Since all the vertices in Ω have degree 4 , it follows that there does not exist an induced subgraph that is a cycle with 5 vertices. Therefore, Γ is a perfect graph if $|X|=2,3$, or 4 .

For $|X|=n \geq 5$, without loss of generality, suppose that $X=\{1,2, \ldots, n\}, Y=X \backslash\{1,2,3,4,5\}$, and H is the subgraph induced by the vertex set

$$
\{\{1,2,3\} \cup Y,\{1,4,5\} \cup Y,\{2,3,5\} \cup Y,\{1,3,4\} \cup Y,\{2,4,5\} \cup Y\}
$$

Then it is clear that H is a cycle graph of length 5 with the cycle

$$
\{1,2,3\} \cup Y-\{1,4,5\} \cup Y-\{2,3,5\} \cup Y-\{1,3,4\} \cup Y-\{2,4,5\} \cup Y-\{1,2,3\} \cup Y
$$

Thus, Γ is not a perfect graph if $|X| \geq 5$.
Lemma 3.4. [10] Consider the graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with the same vertex set. Suppose that E_{1} is a matching such that no edge has both end vertices in $N_{G_{2}}\left[\Lambda_{G_{2}}\right]$. If the union graph $G=G_{1} \cup G_{2}$ has maximum degree $\Delta(G)=\Delta\left(G_{2}\right)+1$, then G is class -1 .

Now we consider the core of Γ. Notice that, from the proof of Theorem 2.1, Γ_{Δ} is the subgraph of Γ induced by the vertex set $\{A \in V(\Gamma)||A| \geq 2\}$.

Theorem 3.5. If $|X| \geq 2$ then $\chi^{\prime}(\Gamma)=2^{n-1}-1$.
Proof It is clear for $|X|=2$. For $|X|=n \geq 3$, consider the graphs

$$
\begin{aligned}
& G_{1}=(V(\Gamma), B) \quad \text { and } \\
& G_{2}=\left(V(\Gamma), E\left(\Gamma_{\Delta}\right)\right)
\end{aligned}
$$

where $B=\{\{i\}-(X \backslash\{i\}) \mid 1 \leq i \leq n\}$. Thus, B is a matching such that no edge has both end vertices in $N_{G_{2}}\left[\Lambda_{G_{2}}\right]=V\left(\Gamma_{\Delta}\right)$. Since $\Gamma=G_{1} \cup G_{2}$ and $\Delta(\Gamma)=\Delta\left(G_{2}\right)+1$, it follows from Lemma 3.4 that Γ is class- 1 .

4. Hamiltonian subgraphs of $\Gamma\left(S L_{X}\right)$

A cycle that travels exactly once over each vertex in a graph is called a Hamiltonian cycle. A graph is called a Hamiltonian graph if it has a Hamiltonian cycle. Since all degrees of all vertices in a Hamiltonian graph are at least $2, \Gamma$ is not a Hamiltonian graph. However, we may consider the Γ_{Δ} in the following theorem.

Theorem 4.1. Γ_{Δ} is a Hamiltonian graph if $|X|=3,4$, or 5 , but Γ_{Δ} is not a Hamiltonian graph if $|X| \geq 6$. Proof Without loss of generality suppose that $X=\{1,2, \ldots, n\}$. If $|X|=3$ then

$$
\{1,2\}-\{1,3\}-\{2,3\}-\{1,2\}
$$

is Hamiltonian a cycle in Γ_{Δ}. If $|X|=4$ then

$$
\begin{gathered}
\{1,2\}-\{3,4\}-\{1,2,4\}-\{1,3\}-\{2,4\}-\{1,3,4\}-\{2,3\}- \\
\{1,4\}-\{1,2,3\}-\{2,3,4\}-\{1,2\}
\end{gathered}
$$

is a Hamiltonian cycle in Γ_{Δ}. If $|X|=5$ then

$$
\begin{gathered}
\{3,4\}-\{1,2,5\}-\{3,4,5\}-\{1,2\}-\{1,3,4,5\}-\{2,5\}-\{1,3,4\}- \\
\{2,4,5\}-\{1,3\}-\{1,2,4,5\}-\{2,3\}-\{1,4,5\}-\{1,2,3\}-\{4,5\}- \\
\{1,2,3,4\}-\{3,5\}-\{1,2,4\}-\{2,3,5\}-\{1,4\}-\{2,3,4,5\}-\{1,5\}- \\
\{2,3,4\}-\{1,3,5\}-\{2,4\}-\{1,2,3,5\}-\{3,4\}
\end{gathered}
$$

is a Hamiltonian cycle in Γ_{Δ}. Therefore, Γ_{Δ} is a Hamiltonian graph for $|X|=3,4$ or 5.
Suppose that $|X| \geq 6$. Then consider the subsets

$$
\begin{aligned}
\mathcal{A} & =\{U \in V(\Gamma)| | U \mid=2\} \\
\mathcal{B} & =\{T \in V(\Gamma)| | T \mid=n-2\} \\
\mathcal{C} & =\{W \in V(\Gamma)| | W \mid=n-1\}
\end{aligned}
$$

of $V(\Gamma)$. Notice that, for any $U \in \mathcal{A}$, each adjacent vertex of U must be in $\mathcal{B} \cup \mathcal{C}$, and that, if $T \in \mathcal{B}$ is an adjacent vertex, then $T=X \backslash U$. Now suppose that Γ_{Δ} is a Hamiltonian graph. Then we have a Hamiltonian cycle in Γ_{Δ} of the form

$$
U_{1}-Y_{1}-\cdots-Z_{1}-U_{2}-Y_{2}-\cdots-Z_{k-1}-U_{k}-Y_{k}-\cdots-Z_{k}-U_{1}
$$

, where $U_{i} \in \mathcal{A} ; Y_{i}, Z_{i} \in \mathcal{B} \cup \mathcal{C}$ for $1 \leq i \leq k=\binom{n}{2}$. Since $|\mathcal{C}|=n$, there are at most n pairs $\left(Y_{i}, Z_{i}\right)$ such that $Y_{i}=Z_{i} \in \mathcal{C}$ for $1 \leq i \leq k$. Since we need at least $n+2\left(\binom{n}{2}-n\right)$ vertices from $\mathcal{B} \cup \mathcal{C}$, then we have

$$
n+2\left(\binom{n}{2}-n\right) \leq n+\binom{n}{2}=|\mathcal{B} \cup \mathcal{C}|
$$

which contradicts $|X|=n \geq 6$. Therefore, Γ_{Δ} is not a Hamiltonian graph for $|X| \geq 6$.
Open Problem 4.2. What is the maximal cycle length in Γ for $|X| \geq 6$?

TOKER/Turk J Math

References

[1] Anderson DF, Badawi A. On the zero-divisor graph of a ring. Commun Algebra 2008; 36: 3073-3092.
[2] Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. J Algebra 1999; 217: 434-447.
[3] Beck I. Coloring of commutative rings. J Algebra 1988; 116: 208-226.
[4] Chartrand G, Zhang P. Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 2009.
[5] Chudnovsky M, Robertson N, Seymour P, Thomas R. The strong perfect graph theorem. Ann Math 2006; 164: 51-229.
[6] DeMeyer F, DeMeyer L. Zero divisor graphs of semigroups. J Algebra 2005; 283: 190-198.
[7] DeMeyer F, McKenzie T, Schneider K. The zero-divisor graph of a commutative semigroup. Semigroup Forum 2002; 65: 206-214.
[8] Gross JL, Yellen J. Handbook of Graph Theory. Boca Raton, FL, USA: CRC Press, 2004.
[9] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[10] Machado RCS, Figueiredo CMH. Decompositions for edge-coloring join graphs and cobipartite graphs. Discrete Appl Math 2010; 158: 1336-1342.
[11] Vizing VG. On an estimate of the chromatic class of a p-graph. Diskret Analiz 1964; 3: 25-30 (in Russian).

[^0]: *Correspondence: ktoker@cu.edu.tr
 2010 AMS Mathematics Subject Classification: 20M14, 97K30.

