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Abstract: In the present paper, considering the simulation function, we give a new class of Picard operators on complete
metric spaces. We also provide a nontrivial example that shows the aforementioned class properly contains some earlier

such classes.
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1. Introduction
Let (X,d) be a metric space and T : X — X be a mapping; then T is called a Picard operator on X, if T
has a unique fixed point and the sequence of successive approximation for any initial point converges to the
fixed point. The concept of Picard operators is closely related to that of contractive-type mappings on metric
spaces. It is well known that almost all contractive-type mappings are Picard operators on complete metric
spaces. (See for more details [2-0]).

In the present paper, considering the simulation function, we give a new class of Picard operators on
complete metric spaces. The concept of simulation functions is given by [8] in fixed point theory.

Let ¢ : [0,00) x[0,00) — R be a mapping; then ( is called a simulation function if it satisfies the following
conditions:

(¢1) €(0,0)=0

(C2) C(t,s) <s—t forall t,s >0

(¢3) If {t,},{sn} are sequences in (0,00) such that lim ¢, = lim s, > 0, then
n—oo n— oo
lim sup ((tn, $n) < 0.
n— o0

We denote the set of all simulation functions by Z. For example, ((t,s) = As—t with 0 < A < 1 belonging
to Z. Many different examples of simulations functions can be found in Example 2.2 of [3].

Before we give our main result we recall the following definition and theorem presented in [3].

Definition 1 ([8]) Let (X,d) be a metric space, T : X — X be a mapping, and ( € Z. Then T is called a

Z-contraction with respect to ¢ if the following condition is satisfied:

((d(T'z,Ty),d(z,y)) > 0 for allz,y € X.
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Taking into account Definition 1 we can say that every Banach contraction is a Z-contraction with respect
to ((t,s) = As —t with 0 < X\ < 1. Moreover, it is clear from the definition of the simulation function that
¢(t,s) <0 for all t > s> 0. Therefore, if T is a Z-contraction with respect to ¢ € Z then

d(Tz,Ty) < d(z,y) for all distinct z,y € X.

This shows that every Z-contraction mapping is contractive; therefore it is continuous.

Theorem 1 Every Z-contraction on a complete metric space has a unique fixed point and moreover every Picard
sequence converges to the fixed point.

If we consider the concept of Picard operator, every Z-contraction on a complete metric is a Picard
operator.

2. Main Result

First we introduce the concept of generalized Z-contraction on metric spaces.

Definition 2 Let (X,d) be a metric space, T : X — X be a mapping, and ( € Z. Then T is called generalized

Z-contraction with respect to  if the following condition is satisfied
C(d(Tx,Ty), M(z,y)) > 0 for all z,y € X, (2.1)

where

M (z,y) = max{d(z,y),d(x, Tz),d(y, Ty), %[d(l', Ty) +d(y, Tz)]}

Remark 1 FEvery generalized Z -contraction on a metric space has at most one fized point. Indeed, let z and

w be two fized points of T, which is a generalized Z -contraction self map of a metric space (X,d). Then
0 < ¢(d(Tz, Tw), M(z,w)) = ((d(z,w), d(z,w)),

which is a contradiction.
Now we give our main theorem.

Theorem 2 FEvery generalized Z -contraction on a complete metric space is a Picard operator.

Proof Let (X,d) be a complete metric space and T : X — X be a generalized Z-contraction with respect to
¢ € Z. First, we show that T has a fixed point.

Let g € X be an arbitrary point and {z,,} be the Picard sequence, that is, z,, = Tx,_; for all n € N.
If there exists ng € N such that x,, = 2,41 then z,, is a fixed point of T'. Now suppose d(z,, Tnt+1) > 0 for
all n € N and define d,, = d(xp,, Zns1). Then, since

d mnyxn— 7d xnaxn ?d ‘T"’I’L— ?'/ETL bl
Mz ) = max{ ( 1), d( +1), d(Tn—1, Tn) }

%[d(ﬂ,‘n, an) + d(.13”_1, x7z+1)]

= max{d,-1,dn}
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from (2.1) we get

0 < ((dTxp,Txp-1),M(xpn,Tn-1))

= ((dn,max{d,_1,d,}). (2.2)
Suppose that d,, > d,—; for some n € N; then from (2.2)
0 < ((dn, max {dy—1,dp}) = ((dn, dn),
which is a contradiction. Thus d,, < d,,_1 for all n € N and
0 < ((dn,dpn—1). (2.3)

Therefore, the sequence {d,} is a decreasing sequence of nonnegative reals and so it must be convergent. Let
lim d, =7 >0. If r >0 then from (2.3) and (¢3) we have

n—roo

0 < lim sup((d,,dn,—1) <0,
n— o0

which is a contradiction. Therefore, we have r = 0, that is, lim d,, = 0.
n—oo

Now we show that the Picard sequence {z,} is bounded. Assume that {z,} is not bounded. Without
loss of generality we can assume that z,4, # x, for all n,p € N. Since {z,} is not bounded, there exists a

subsequence {z,, } of {z,} such that n; =1 and, for each k € N, ny4 is the minimum integer such that
d(xnk+1’xnk) > 1

and

A, Ty, ) <1 for ny <m < ngyp — 1L
Therefore, by the triangular inequality we have

I < d@n,, ., Tn,)

IA

d(xnk+1 ’ xnk+1*1) + d(xnk+1*17 xnk)

IN

d(xnk+1 ) 'r7bk+1_1) + 1

Letting k — oo we get

klgrolo A(Znyy > Tny,) = 1
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Now, since

I < d('rnkJrl?mnk)SM(xnkJrl_l"T"k_l)

1

d(xnk+171’ xnk*1)7 d(xnk+1*1’ xnk+1)v d(xnkflv xnk)’
max
E[d(xnk+1,1, xnk) + d(xnkflv ‘Tnk+1)]

d(xnk+1—17 x"k) + d(xnk » xnk—l),
d(xnkaflv xnk“)» d(xnkfl, xnk)v

%[d(xnk+1*17 xnk) + d(xnkflﬂ Trgia )]

IN

max

1 + d(,’Enk, (Enkfl)a

IA

max d('rnlﬂ»l_l’xnk+1)7d(xnk_17xnk)7

{ %[d(x7bk+l_17 xnk) + d(xnk—h Trgq )]

1+ d(zn,, Tn—1),
d(xnk+1*17 xnk+1)a d(xnkfl’ xnk)’

%[1 + d(xnkflv Crnk+1)]

IN

max

1 + d(xnkv‘rnkfl)a
d(xnk+1—17xnk+1)7d('rnk—l)xnk)) )

%[1 + d(xnk—lv xnk) + d(xnk ) xnk+1)]

max

IN

taking k — oo we get
1< lim M(2p,,, —1,%n,-1) < 1,

k—o0

that is, limy 00 M(2n,,,—1,%n,—1) = 1. By (2.1) we have
0< klin;o supC(d(znkHvInk)v M(Ink+1—17xnk—1)) <0,

which is a contradiction. This result proves that {z,} is bounded. Now we shall show that the sequence {x,}

is a Cauchy sequence. For this, consider the real sequence
C, = Sup{d(xiaxj) : Za] > Tl}

Note that the sequence {C,,} is a decreasing sequence of nonnegative reals. Thus there exists C' > 0 such that
lim C, = C. We shall show that C' = 0. If C' > 0 then by the definition of C,,, for every k € N there exists

n—oo

ng, mg such that my > ngx > k and

1
CrL — Z < ATy, Tny,) < C.

Hence
lim d(zp,,zn,) =C. (4)

k— o0

lim d(xmk_l,xnk_l) =C.
k—o0
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d(xmk—17xnk—1) < M(xmk—17xnk—1)

{ d(xnlk—hxnk—l); d(xmk—lvznlk)7d(xnk—17xnk)7 }
max

%[d(xmk—17 xnk) + d(xmk ) mnk—l)]

d(xmk—ly xnk—1)7 d(xmk—la xmk)v d(xnk—la -rnk)a

max %[d('rmk—h x'"lk) + d(xmk ) xnk)

+d(xmk’ xnk) + d(xnka xnk—l)]

IN

Letting k — co we get
lim M (%, —1,2%n,—1) = C.

k—o0

Using (2.1), we have
0 < lim sup ¢(d(@m,, s Tny, )y M (Tmp—1,Tn,—1)) <0,
k—o0

which is a contradiction. Therefore, C = 0. That is {z,} is a Cauchy sequence; since X is complete there
exists u € X such that lim,_,. z, = u. We shall show that the point u is a fixed point of T. Suppose that
Tu # u; then d(u,Tu) > 0. Using (2.1), (¢2), (¢3), we have

0< ILm sup ((d(T'xp, Tu), M (xy,u)) <0,

since limy,_yoo M (2, u) = d(u, Tw). This contradiction shows that d(u,Tu) = 0, that is, Tu = u. If we consider
the proof, we can see that every Picard sequence converges to the fixed point of T". Therefore, T is a Picard
operator. O

The following example shows that our main theorem is a generalization of Theorem 2.8 of [3].

Example 1 Let X =1[0,1] and d is a usual metric on X . Define a mapping T : X — X by

2, z€l0,?)
Ty =
i zel]

Since T is not continuous, then it is not a Z -contraction. Thus considering Theorem 1, we cannot guarantee

that T is a Picard operator. Now we claim that T is a generalized Z -contraction with respect to a simulation
function defined by ((t,s) = gs —t. By Example 1.3.1 of [9], we get

ATe,Ty) < Hfd(e,Ta) +dly,Ty)

< gmax{d(x,Tl‘),d(vay)}
< gM(w,y)

for all x,y € X. That is, we have

(AT, Ty), M(z,y)) = 2M(z,y) — d(T2,Ty) 2 0
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for all x,y € X. Thus, taking into account Theorem 2, we can say that T is a Picard operator.

In the next example, T is a Z-contraction and also a generalized Z-contraction with respect to the same

¢ € Z. However, T is not a Cirié—type generalized contraction.

T
1+

Example 2 Let X =[0,1] and d is a usual metric on X . Define a mapping T : X — X as Tx = . By

Ezample 2.9 of [S] we get T is a Z -contraction with respect to ¢ € Z where

C(t, ) —t for allt,s € 0, 00).

s
1+s
Therefore, for all x,y € X, we get

0 < ((d(T=,Ty),d(z,y))

_ Ay

 14d(x,y) d(Tz,Ty)
M(z,y)

S H—T(%y) - d(Tl", Ty)

= ((d(Tz,Ty), M(z,y)).
This shows that T is a generalized Z -contraction with respect to the same ¢ € Z. On the other hand, since

d(T+,T0) )
sup —2——= =1,
nellzl M(%70)
we cannot find A € [0,1) such that
d(Tx, Ty) < AM(x,y)

for all z,y € X. That is, T is not a Cirié-type generalized contraction (see for details [1, 7]).
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