

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

A new aspect to Picard operators with simulation functions

Murat OLGUN^{*}, Özge BİÇER, Tuğçe ALYILDIZ

Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey

Received: 08.05.2015	•	Accepted/Published Online: 07.11.2015	•	Final Version: 16.06.2016
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: In the present paper, considering the simulation function, we give a new class of Picard operators on complete metric spaces. We also provide a nontrivial example that shows the aforementioned class properly contains some earlier such classes.

Key words: Fixed point, Picard operators, simulation functions

1. Introduction

Let (X, d) be a metric space and $T: X \to X$ be a mapping; then T is called a Picard operator on X, if T has a unique fixed point and the sequence of successive approximation for any initial point converges to the fixed point. The concept of Picard operators is closely related to that of contractive-type mappings on metric spaces. It is well known that almost all contractive-type mappings are Picard operators on complete metric spaces. (See for more details [2–6]).

In the present paper, considering the simulation function, we give a new class of Picard operators on complete metric spaces. The concept of simulation functions is given by [8] in fixed point theory.

Let $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be a mapping; then ζ is called a simulation function if it satisfies the following conditions:

 $\begin{aligned} &(\zeta_1) \ \zeta(0,0) = 0 \\ &(\zeta_2) \ \zeta(t,s) < s-t \text{ for all } t,s > 0 \\ &(\zeta_3) \text{ If } \{t_n\}, \{s_n\} \text{ are sequences in } (0,\infty) \text{ such that } \lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0, \text{ then} \end{aligned}$

 $\lim_{n \to \infty} \sup \zeta(t_n, s_n) < 0.$

We denote the set of all simulation functions by Z. For example, $\zeta(t, s) = \lambda s - t$ with $0 \le \lambda < 1$ belonging to Z. Many different examples of simulations functions can be found in Example 2.2 of [8].

Before we give our main result we recall the following definition and theorem presented in [8].

Definition 1 ([8]) Let (X,d) be a metric space, $T: X \to X$ be a mapping, and $\zeta \in \mathbb{Z}$. Then T is called a Z-contraction with respect to ζ if the following condition is satisfied:

$$\zeta(d(Tx,Ty),d(x,y)) \ge 0 \text{ for all } x,y \in X.$$

^{*}Correspondence: olgun@ankara.edu.tr

²⁰⁰⁰ AMS Mathematics Subject Classification: Primary 54H25; Secondary, 47H10.

Taking into account Definition 1 we can say that every Banach contraction is a Z-contraction with respect to $\zeta(t,s) = \lambda s - t$ with $0 \le \lambda < 1$. Moreover, it is clear from the definition of the simulation function that $\zeta(t,s) < 0$ for all $t \ge s > 0$. Therefore, if T is a Z-contraction with respect to $\zeta \in Z$ then

$$d(Tx,Ty) < d(x,y)$$
 for all distinct $x, y \in X$.

This shows that every Z-contraction mapping is contractive; therefore it is continuous.

Theorem 1 Every Z-contraction on a complete metric space has a unique fixed point and moreover every Picard sequence converges to the fixed point.

If we consider the concept of Picard operator, every Z-contraction on a complete metric is a Picard operator.

2. Main Result

First we introduce the concept of generalized Z-contraction on metric spaces.

Definition 2 Let (X, d) be a metric space, $T : X \to X$ be a mapping, and $\zeta \in \mathbb{Z}$. Then T is called generalized Z-contraction with respect to ζ if the following condition is satisfied

$$\zeta(d(Tx, Ty), M(x, y)) \ge 0 \text{ for all } x, y \in X,$$

$$(2.1)$$

where

$$M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2}[d(x,Ty) + d(y,Tx)]\}$$

Remark 1 Every generalized Z-contraction on a metric space has at most one fixed point. Indeed, let z and w be two fixed points of T, which is a generalized Z-contraction self map of a metric space (X, d). Then

$$0 \le \zeta(d(Tz, Tw), M(z, w)) = \zeta(d(z, w), d(z, w)),$$

which is a contradiction.

Now we give our main theorem.

Theorem 2 Every generalized Z-contraction on a complete metric space is a Picard operator.

Proof Let (X, d) be a complete metric space and $T: X \to X$ be a generalized Z-contraction with respect to $\zeta \in Z$. First, we show that T has a fixed point.

Let $x_0 \in X$ be an arbitrary point and $\{x_n\}$ be the Picard sequence, that is, $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$. If there exists $n_0 \in \mathbb{N}$ such that $x_{n_0} = x_{n_0+1}$ then x_{n_0} is a fixed point of T. Now suppose $d(x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N}$ and define $d_n = d(x_n, x_{n+1})$. Then, since

$$M(x_n, x_{n-1}) = \max \left\{ \begin{array}{l} d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_n), \\ \frac{1}{2} [d(x_n, x_n) + d(x_{n-1}, x_{n+1})] \end{array} \right\}$$
$$= \max \left\{ d_{n-1}, d_n \right\}$$

833

from (2.1) we get

$$0 \leq \zeta(d(Tx_n, Tx_{n-1}), M(x_n, x_{n-1}))$$

= $\zeta(d_n, \max\{d_{n-1}, d_n\}).$ (2.2)

Suppose that $d_n \ge d_{n-1}$ for some $n \in \mathbb{N}$; then from (2.2)

$$0 \le \zeta(d_n, \max\left\{d_{n-1}, d_n\right\}) = \zeta(d_n, d_n),$$

which is a contradiction. Thus $d_n < d_{n-1}$ for all $n \in \mathbb{N}$ and

$$0 \le \zeta(d_n, d_{n-1}). \tag{2.3}$$

Therefore, the sequence $\{d_n\}$ is a decreasing sequence of nonnegative reals and so it must be convergent. Let $\lim_{n\to\infty} d_n = r \ge 0$. If r > 0 then from (2.3) and (ζ_3) we have

$$0 \le \lim_{n \to \infty} \sup \zeta(d_n, d_{n-1}) < 0,$$

which is a contradiction. Therefore, we have r = 0, that is, $\lim_{n \to \infty} d_n = 0$.

Now we show that the Picard sequence $\{x_n\}$ is bounded. Assume that $\{x_n\}$ is not bounded. Without loss of generality we can assume that $x_{n+p} \neq x_n$ for all $n, p \in \mathbb{N}$. Since $\{x_n\}$ is not bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $n_1 = 1$ and, for each $k \in \mathbb{N}$, n_{k+1} is the minimum integer such that

$$d(x_{n_{k+1}}, x_{n_k}) > 1$$

and

$$d(x_m, x_{n_k}) \le 1$$
 for $n_k \le m \le n_{k+1} - 1$.

Therefore, by the triangular inequality we have

$$1 < d(x_{n_{k+1}}, x_{n_k})$$

$$\leq d(x_{n_{k+1}}, x_{n_{k+1}-1}) + d(x_{n_{k+1}-1}, x_{n_k})$$

$$\leq d(x_{n_{k+1}}, x_{n_{k+1}-1}) + 1.$$

Letting $k \to \infty$ we get

$$\lim_{k \to \infty} d(x_{n_{k+1}}, x_{n_k}) = 1.$$

Now, since

$$1 < d(x_{n_{k+1}}, x_{n_k}) \leq M(x_{n_{k+1}-1}, x_{n_k-1})$$

$$= \max \left\{ \begin{array}{l} d(x_{n_{k+1}-1}, x_{n_k-1}), d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[d(x_{n_{k+1}-1}, x_{n_k}) + d(x_{n_k}, x_{n_{k-1}}), \\ d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[d(x_{n_{k+1}-1}, x_{n_k}) + d(x_{n_k-1}, x_{n_{k+1}})] \right\} \right\}$$

$$\leq \max \left\{ \begin{array}{l} 1 + d(x_{n_k}, x_{n_k-1}), \\ d(x_{n_{k+1}-1}, x_{n_k}) + d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[d(x_{n_{k+1}-1}, x_{n_k+1}), d(x_{n_k-1}, x_{n_k+1})] \end{array} \right\}$$

$$\leq \max \left\{ \begin{array}{l} 1 + d(x_{n_k}, x_{n_k-1}), \\ d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[1 + d(x_{n_k}, x_{n_{k-1}}), \\ d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[1 + d(x_{n_k}, x_{n_{k-1}}), \\ d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[1 + d(x_{n_k-1}, x_{n_k}) + d(x_{n_k}, x_{n_{k+1}})] \end{array} \right\},$$

taking $k \to \infty$ we get

$$1 \le \lim_{k \to \infty} M(x_{n_{k+1}-1}, x_{n_k-1}) \le 1,$$

that is, $\lim_{k\to\infty} M(x_{n_{k+1}-1}, x_{n_k-1}) = 1$. By (2.1) we have

$$0 \le \lim_{k \to \infty} \sup \zeta(d(x_{n_{k+1}}, x_{n_k}), M(x_{n_{k+1}-1}, x_{n_k-1})) < 0,$$

which is a contradiction. This result proves that $\{x_n\}$ is bounded. Now we shall show that the sequence $\{x_n\}$ is a Cauchy sequence. For this, consider the real sequence

$$C_n = \sup\{d(x_i, x_j) : i, j \ge n\}.$$

Note that the sequence $\{C_n\}$ is a decreasing sequence of nonnegative reals. Thus there exists $C \ge 0$ such that $\lim_{n\to\infty} C_n = C$. We shall show that C = 0. If C > 0 then by the definition of C_n , for every $k \in \mathbb{N}$ there exists n_k, m_k such that $m_k > n_k \ge k$ and

$$C_k - \frac{1}{k} < d(x_{m_k}, x_{n_k}) \le C_k.$$

Hence

$$\lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = C.$$

$$\lim_{k \to \infty} d(x_{m_k-1}, x_{n_k-1}) = C.$$
(4)

$$d(x_{m_k-1}, x_{n_k-1}) \leq M(x_{m_k-1}, x_{n_k-1})$$

$$= \max \left\{ \begin{array}{l} d(x_{m_k-1}, x_{n_k-1}), d(x_{m_k-1}, x_{m_k}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[d(x_{m_k-1}, x_{n_k}) + d(x_{m_k}, x_{n_k-1})] \end{array} \right\}$$

$$\leq \max \left\{ \begin{array}{l} d(x_{m_k-1}, x_{n_k-1}), d(x_{m_k-1}, x_{m_k}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}[d(x_{m_k-1}, x_{m_k}) + d(x_{m_k}, x_{n_k}), \\ + d(x_{m_k}, x_{n_k}) + d(x_{n_k}, x_{n_k-1})] \end{array} \right\}$$

Letting $k \to \infty$ we get

$$\lim_{k \to \infty} M(x_{m_k-1}, x_{n_k-1}) = C.$$

Using (2.1), we have

$$0 \le \lim_{k \to \infty} \sup \zeta(d(x_{m_k}, x_{n_k}), M(x_{m_k-1}, x_{n_k-1})) < 0,$$

which is a contradiction. Therefore, C = 0. That is $\{x_n\}$ is a Cauchy sequence; since X is complete there exists $u \in X$ such that $\lim_{n\to\infty} x_n = u$. We shall show that the point u is a fixed point of T. Suppose that $Tu \neq u$; then d(u, Tu) > 0. Using (2.1), $(\zeta 2)$, $(\zeta 3)$, we have

$$0 \le \lim_{n \to \infty} \sup \zeta(d(Tx_n, Tu), M(x_n, u)) < 0,$$

since $\lim_{n\to\infty} M(x_n, u) = d(u, Tu)$. This contradiction shows that d(u, Tu) = 0, that is, Tu = u. If we consider the proof, we can see that every Picard sequence converges to the fixed point of T. Therefore, T is a Picard operator.

The following example shows that our main theorem is a generalization of Theorem 2.8 of [8].

Example 1 Let X = [0,1] and d is a usual metric on X. Define a mapping $T: X \to X$ by

$$Tx = \begin{cases} \frac{2}{5} & , & x \in [0, \frac{2}{3}) \\ \\ \\ \frac{1}{5} & , & x \in [\frac{2}{3}, 1] \end{cases}$$

Since T is not continuous, then it is not a Z-contraction. Thus considering Theorem 1, we cannot guarantee that T is a Picard operator. Now we claim that T is a generalized Z-contraction with respect to a simulation function defined by $\zeta(t,s) = \frac{6}{7}s - t$. By Example 1.3.1 of [9], we get

$$d(Tx,Ty) \leq \frac{3}{7}[d(x,Tx) + d(y,Ty)]$$
$$\leq \frac{6}{7}\max\{d(x,Tx), d(y,Ty)\}$$
$$\leq \frac{6}{7}M(x,y)$$

for all $x, y \in X$. That is, we have

$$\zeta(d(Tx,Ty),M(x,y)) = \frac{6}{7}M(x,y) - d(Tx,Ty) \ge 0$$

836

for all $x, y \in X$. Thus, taking into account Theorem 2, we can say that T is a Picard operator.

In the next example, T is a Z-contraction and also a generalized Z-contraction with respect to the same $\zeta \in Z$. However, T is not a Ćirić-type generalized contraction.

Example 2 Let X = [0,1] and d is a usual metric on X. Define a mapping $T: X \to X$ as $Tx = \frac{x}{1+x}$. By Example 2.9 of [8] we get T is a Z-contraction with respect to $\zeta \in Z$ where

$$\zeta(t,s) = \frac{s}{1+s} - t \text{ for all } t, s \in [0,\infty)$$

Therefore, for all $x, y \in X$, we get

$$0 \leq \zeta(d(Tx,Ty),d(x,y))$$

$$= \frac{d(x,y)}{1+d(x,y)} - d(Tx,Ty)$$

$$\leq \frac{M(x,y)}{1+M(x,y)} - d(Tx,Ty)$$

$$= \zeta(d(Tx,Ty),M(x,y)).$$

This shows that T is a generalized Z-contraction with respect to the same $\zeta \in Z$. On the other hand, since

$$\sup_{n\in\mathbb{N}}\frac{d(T\frac{1}{n},T0)}{M(\frac{1}{n},0)}=1$$

we cannot find $\lambda \in [0, 1)$ such that

$$d(Tx, Ty) \le \lambda M(x, y)$$

for all $x, y \in X$. That is, T is not a Cirić-type generalized contraction (see for details [1, 7]).

References

- Altun I. A common fixed point theorem for multivalued Ciric type mappings with new type compatibility. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica 2009; 17: 19-26.
- [2] Altun I, Hancer HA, Minak G. On a general class of weakly Picard operators. Miskolc Mathematical Notes 2015; 16: 25-32.
- [3] Berinde V. On the approximation of fixed points of weak contractive mappings. Carpathian J Math 2003; 19: 7-22.
- [4] Berinde V. Approximating fixed points of weak φ -contractions using the Picard iteration. Fixed Point Theory 2003; 4: 131-147.
- [5] Berinde V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Analysis Forum 2004; 9: 43-53.
- [6] Berinde V. Iterative Approximation of Fixed Points. Berlin, Germany: Springer-Verlag, 2007.
- [7] Ćirić LB. Fixed Point Theory, Contraction Mapping Principle. Belgrade, Serbia: FME Press, 2003.
- [8] Khojasteh F, Shukla S, Radenović S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015; 29: 1189-1194.
- [9] Păcurar M. Iterative Methods for Fixed Point Approximation. Cluj-Napoca, Romania: Risoprint, 2009.