Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2016) 40: $832-837$
© TÜBİTAK
doi:10.3906/mat-1505-26

A new aspect to Picard operators with simulation functions

Murat OLGUN*, Özge BİÇER, Tuğçe ALYILDIZ
Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey

Received: 08.05.2015 \quad Accepted/Published Online: 07.11.2015 \quad • Final Version: 16.06 .2016

Abstract

In the present paper, considering the simulation function, we give a new class of Picard operators on complete metric spaces. We also provide a nontrivial example that shows the aforementioned class properly contains some earlier such classes.

Key words: Fixed point, Picard operators, simulation functions

1. Introduction

Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping; then T is called a Picard operator on X, if T has a unique fixed point and the sequence of successive approximation for any initial point converges to the fixed point. The concept of Picard operators is closely related to that of contractive-type mappings on metric spaces. It is well known that almost all contractive-type mappings are Picard operators on complete metric spaces. (See for more details [2-6]).

In the present paper, considering the simulation function, we give a new class of Picard operators on complete metric spaces. The concept of simulation functions is given by [8] in fixed point theory.

Let $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ be a mapping; then ζ is called a simulation function if it satisfies the following conditions:
$\left(\zeta_{1}\right) \quad \zeta(0,0)=0$
$\left(\zeta_{2}\right) \zeta(t, s)<s-t$ for all $t, s>0$
$\left(\zeta_{3}\right)$ If $\left\{t_{n}\right\},\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}>0$, then

$$
\lim _{n \rightarrow \infty} \sup \zeta\left(t_{n}, s_{n}\right)<0
$$

We denote the set of all simulation functions by Z. For example, $\zeta(t, s)=\lambda s-t$ with $0 \leq \lambda<1$ belonging to Z. Many different examples of simulations functions can be found in Example 2.2 of [8].

Before we give our main result we recall the following definition and theorem presented in [8].
Definition 1 ([8]) Let (X, d) be a metric space, $T: X \rightarrow X$ be a mapping, and $\zeta \in \mathrm{Z}$. Then T is called a Z-contraction with respect to ζ if the following condition is satisfied:

$$
\zeta(d(T x, T y), d(x, y)) \geq 0 \text { for all } x, y \in X
$$

*Correspondence: olgun@ankara.edu.tr
2000 AMS Mathematics Subject Classification: Primary 54H25; Secondary, 47H10.

Taking into account Definition 1 we can say that every Banach contraction is a Z-contraction with respect to $\zeta(t, s)=\lambda s-t$ with $0 \leq \lambda<1$. Moreover, it is clear from the definition of the simulation function that $\zeta(t, s)<0$ for all $t \geq s>0$. Therefore, if T is a Z-contraction with respect to $\zeta \in Z$ then

$$
d(T x, T y)<d(x, y) \text { for all distinct } x, y \in X
$$

This shows that every Z-contraction mapping is contractive; therefore it is continuous.

Theorem 1 Every Z-contraction on a complete metric space has a unique fixed point and moreover every Picard sequence converges to the fixed point.

If we consider the concept of Picard operator, every Z-contraction on a complete metric is a Picard operator.

2. Main Result

First we introduce the concept of generalized Z-contraction on metric spaces.

Definition 2 Let (X, d) be a metric space, $T: X \rightarrow X$ be a mapping, and $\zeta \in \mathrm{Z}$. Then T is called generalized Z-contraction with respect to ζ if the following condition is satisfied

$$
\begin{equation*}
\zeta(d(T x, T y), M(x, y)) \geq 0 \text { for all } x, y \in X \tag{2.1}
\end{equation*}
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(x, T y)+d(y, T x)]\right\}
$$

Remark 1 Every generalized Z-contraction on a metric space has at most one fixed point. Indeed, let z and w be two fixed points of T, which is a generalized Z-contraction self map of a metric space (X, d). Then

$$
0 \leq \zeta(d(T z, T w), M(z, w))=\zeta(d(z, w), d(z, w))
$$

which is a contradiction.
Now we give our main theorem.

Theorem 2 Every generalized Z-contraction on a complete metric space is a Picard operator.
Proof Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a generalized Z-contraction with respect to $\zeta \in Z$. First, we show that T has a fixed point.

Let $x_{0} \in X$ be an arbitrary point and $\left\{x_{n}\right\}$ be the Picard sequence, that is, $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$. If there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}=x_{n_{0}+1}$ then $x_{n_{0}}$ is a fixed point of T. Now suppose $d\left(x_{n}, x_{n+1}\right)>0$ for all $n \in \mathbb{N}$ and define $d_{n}=d\left(x_{n}, x_{n+1}\right)$. Then, since

$$
\begin{aligned}
M\left(x_{n}, x_{n-1}\right) & =\max \left\{\begin{array}{c}
d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right) \\
\frac{1}{2}\left[d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)\right]
\end{array}\right\} \\
& =\max \left\{d_{n-1}, d_{n}\right\}
\end{aligned}
$$

from (2.1) we get

$$
\begin{align*}
0 & \leq \zeta\left(d\left(T x_{n}, T x_{n-1}\right), M\left(x_{n}, x_{n-1}\right)\right) \\
& =\zeta\left(d_{n}, \max \left\{d_{n-1}, d_{n}\right\}\right) \tag{2.2}
\end{align*}
$$

Suppose that $d_{n} \geq d_{n-1}$ for some $n \in \mathbb{N}$; then from (2.2)

$$
0 \leq \zeta\left(d_{n}, \max \left\{d_{n-1}, d_{n}\right\}\right)=\zeta\left(d_{n}, d_{n}\right)
$$

which is a contradiction. Thus $d_{n}<d_{n-1}$ for all $n \in \mathbb{N}$ and

$$
\begin{equation*}
0 \leq \zeta\left(d_{n}, d_{n-1}\right) \tag{2.3}
\end{equation*}
$$

Therefore, the sequence $\left\{d_{n}\right\}$ is a decreasing sequence of nonnegative reals and so it must be convergent. Let $\lim _{n \rightarrow \infty} d_{n}=r \geq 0$. If $r>0$ then from (2.3) and $\left(\zeta_{3}\right)$ we have

$$
0 \leq \lim _{n \rightarrow \infty} \sup \zeta\left(d_{n}, d_{n-1}\right)<0
$$

which is a contradiction. Therefore, we have $r=0$, that is, $\lim _{n \rightarrow \infty} d_{n}=0$.
Now we show that the Picard sequence $\left\{x_{n}\right\}$ is bounded. Assume that $\left\{x_{n}\right\}$ is not bounded. Without loss of generality we can assume that $x_{n+p} \neq x_{n}$ for all $n, p \in \mathbb{N}$. Since $\left\{x_{n}\right\}$ is not bounded, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $n_{1}=1$ and, for each $k \in \mathbb{N}, n_{k+1}$ is the minimum integer such that

$$
d\left(x_{n_{k+1}}, x_{n_{k}}\right)>1
$$

and

$$
d\left(x_{m}, x_{n_{k}}\right) \leq 1 \text { for } n_{k} \leq m \leq n_{k+1}-1
$$

Therefore, by the triangular inequality we have

$$
\begin{aligned}
1 & <d\left(x_{n_{k+1}}, x_{n_{k}}\right) \\
& \leq d\left(x_{n_{k+1}}, x_{n_{k+1}-1}\right)+d\left(x_{n_{k+1}-1}, x_{n_{k}}\right) \\
& \leq d\left(x_{n_{k+1}}, x_{n_{k+1}-1}\right)+1
\end{aligned}
$$

Letting $k \rightarrow \infty$ we get

$$
\lim _{k \rightarrow \infty} d\left(x_{n_{k+1}}, x_{n_{k}}\right)=1
$$

OLGUN et al./Turk J Math

Now, since

$$
\begin{aligned}
& 1<d\left(x_{n_{k+1}}, x_{n_{k}}\right) \leq M\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right) \\
&=\max \left\{\begin{array}{c}
d\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right), d\left(x_{n_{k+1}-1}, x_{n_{k+1}}\right), d\left(x_{n_{k}-1}, x_{n_{k}}\right), \\
\frac{1}{2}\left[d\left(x_{n_{k+1}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}-1}, x_{n_{k+1}}\right)\right]
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
d\left(x_{n_{k+1}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{n_{k}-1}\right), \\
d\left(x_{n_{k+1}-1}, x_{n_{k+1}}\right), d\left(x_{n_{k}-1}, x_{n_{k}}\right), \\
\frac{1}{2}\left[d\left(x_{n_{k+1}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}-1}, x_{n_{k+1}}\right)\right]
\end{array}\right\} \\
& 1+d\left(x_{n_{k}}, x_{n_{k}-1}\right), \\
& \leq \max \left\{\begin{array}{c}
d\left(x_{n_{k+1}-1}, x_{n_{k+1}}\right), d\left(x_{n_{k}-1}, x_{n_{k}}\right), \\
\frac{1}{2}\left[d\left(x_{n_{k+1}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}-1}, x_{n_{k+1}}\right)\right]
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
1+d\left(x_{n_{k}}, x_{n_{k}-1}\right), \\
d\left(x_{n_{k+1}-1}, x_{n_{k+1}}\right), d\left(x_{n_{k}-1}, x_{n_{k}}\right), \\
\frac{1}{2}\left[1+d\left(x_{n_{k}-1}, x_{n_{k+1}}\right)\right] \\
1+d\left(x_{n_{k}}, x_{n_{k}-1}\right),
\end{array}\right. \\
& \leq \max \left\{\begin{array}{c}
d\left(x_{n_{k+1}-1}, x_{n_{k+1}}\right), d\left(x_{n_{k}-1}, x_{n_{k}}\right), \\
\frac{1}{2}\left[1+d\left(x_{n_{k}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{n_{k+1}}\right)\right]
\end{array}\right\}
\end{aligned}
$$

taking $k \rightarrow \infty$ we get

$$
1 \leq \lim _{k \rightarrow \infty} M\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right) \leq 1
$$

that is, $\lim _{k \rightarrow \infty} M\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right)=1$. By (2.1) we have

$$
0 \leq \lim _{k \rightarrow \infty} \sup \zeta\left(d\left(x_{n_{k+1}}, x_{n_{k}}\right), M\left(x_{n_{k+1}-1}, x_{n_{k}-1}\right)\right)<0
$$

which is a contradiction. This result proves that $\left\{x_{n}\right\}$ is bounded. Now we shall show that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence. For this, consider the real sequence

$$
C_{n}=\sup \left\{d\left(x_{i}, x_{j}\right): i, j \geq n\right\}
$$

Note that the sequence $\left\{C_{n}\right\}$ is a decreasing sequence of nonnegative reals. Thus there exists $C \geq 0$ such that $\lim _{n \rightarrow \infty} C_{n}=C$. We shall show that $C=0$. If $C>0$ then by the definition of C_{n}, for every $k \in \mathbb{N}$ there exists n_{k}, m_{k} such that $m_{k}>n_{k} \geq k$ and

$$
C_{k}-\frac{1}{k}<d\left(x_{m_{k}}, x_{n_{k}}\right) \leq C_{k}
$$

Hence

$$
\begin{gather*}
\lim _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}}\right)=C \tag{4}\\
\lim _{k \rightarrow \infty} d\left(x_{m_{k}-1}, x_{n_{k}-1}\right)=C
\end{gather*}
$$

$$
\begin{aligned}
d\left(x_{m_{k}-1}, x_{n_{k}-1}\right) & \leq M\left(x_{m_{k}-1}, x_{n_{k}-1}\right) \\
& =\max \left\{\begin{array}{c}
d\left(x_{m_{k}-1}, x_{n_{k}-1}\right), d\left(x_{m_{k}-1}, x_{m_{k}}\right), d\left(x_{n_{k}-1}, x_{n_{k}}\right) \\
\frac{1}{2}\left[d\left(x_{m_{k}-1}, x_{n_{k}}\right)+d\left(x_{m_{k}}, x_{n_{k}-1}\right)\right]
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
d\left(x_{m_{k}-1}, x_{n_{k}-1}\right), d\left(x_{m_{k}-1}, x_{m_{k}}\right), d\left(x_{n_{k}-1}, x_{n_{k}}\right) \\
\frac{1}{2}\left[d\left(x_{m_{k}-1}, x_{m_{k}}\right)+d\left(x_{m_{k}}, x_{n_{k}}\right)\right. \\
\left.+d\left(x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{n_{k}-1}\right)\right]
\end{array}\right\}
\end{aligned}
$$

Letting $k \rightarrow \infty$ we get

$$
\lim _{k \rightarrow \infty} M\left(x_{m_{k}-1}, x_{n_{k}-1}\right)=C
$$

Using (2.1), we have

$$
0 \leq \lim _{k \rightarrow \infty} \sup \zeta\left(d\left(x_{m_{k}}, x_{n_{k}}\right), M\left(x_{m_{k}-1}, x_{n_{k}-1}\right)\right)<0
$$

which is a contradiction. Therefore, $C=0$. That is $\left\{x_{n}\right\}$ is a Cauchy sequence; since X is complete there exists $u \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=u$. We shall show that the point u is a fixed point of T. Suppose that $T u \neq u$; then $d(u, T u)>0$. Using (2.1), ($\zeta 2)$, ($\zeta 3$), we have

$$
0 \leq \lim _{n \rightarrow \infty} \sup \zeta\left(d\left(T x_{n}, T u\right), M\left(x_{n}, u\right)\right)<0
$$

since $\lim _{n \rightarrow \infty} M\left(x_{n}, u\right)=d(u, T u)$. This contradiction shows that $d(u, T u)=0$, that is, $T u=u$. If we consider the proof, we can see that every Picard sequence converges to the fixed point of T. Therefore, T is a Picard operator.

The following example shows that our main theorem is a generalization of Theorem 2.8 of [8].
Example 1 Let $X=[0,1]$ and d is a usual metric on X. Define a mapping $T: X \rightarrow X$ by

$$
T x=\left\{\begin{array}{cc}
\frac{2}{5} & , \quad x \in\left[0, \frac{2}{3}\right) \\
\frac{1}{5} & , \quad x \in\left[\frac{2}{3}, 1\right]
\end{array} .\right.
$$

Since T is not continuous, then it is not a Z-contraction. Thus considering Theorem 1, we cannot guarantee that T is a Picard operator. Now we claim that T is a generalized Z-contraction with respect to a simulation function defined by $\zeta(t, s)=\frac{6}{7} s-t$. By Example 1.3.1 of [9], we get

$$
\begin{aligned}
d(T x, T y) & \leq \frac{3}{7}[d(x, T x)+d(y, T y)] \\
& \leq \frac{6}{7} \max \{d(x, T x), d(y, T y)\} \\
& \leq \frac{6}{7} M(x, y)
\end{aligned}
$$

for all $x, y \in X$. That is, we have

$$
\zeta(d(T x, T y), M(x, y))=\frac{6}{7} M(x, y)-d(T x, T y) \geq 0
$$

for all $x, y \in X$. Thus, taking into account Theorem 2, we can say that T is a Picard operator.
In the next example, T is a Z-contraction and also a generalized Z-contraction with respect to the same $\zeta \in Z$. However, T is not a Ćirić-type generalized contraction.

Example 2 Let $X=[0,1]$ and d is a usual metric on X. Define a mapping $T: X \rightarrow X$ as $T x=\frac{x}{1+x}$. By Example 2.9 of [8] we get T is a Z-contraction with respect to $\zeta \in Z$ where

$$
\zeta(t, s)=\frac{s}{1+s}-t \text { for all } t, s \in[0, \infty)
$$

Therefore, for all $x, y \in X$, we get

$$
\begin{aligned}
0 & \leq \zeta(d(T x, T y), d(x, y)) \\
& =\frac{d(x, y)}{1+d(x, y)}-d(T x, T y) \\
& \leq \frac{M(x, y)}{1+M(x, y)}-d(T x, T y) \\
& =\zeta(d(T x, T y), M(x, y))
\end{aligned}
$$

This shows that T is a generalized Z-contraction with respect to the same $\zeta \in Z$. On the other hand, since

$$
\sup _{n \in \mathbb{N}} \frac{d\left(T \frac{1}{n}, T 0\right)}{M\left(\frac{1}{n}, 0\right)}=1
$$

we cannot find $\lambda \in[0,1)$ such that

$$
d(T x, T y) \leq \lambda M(x, y)
$$

for all $x, y \in X$. That is, T is not a Ćirić-type generalized contraction (see for details [1, 7]).

References

[1] Altun I. A common fixed point theorem for multivalued Ciric type mappings with new type compatibility. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica 2009; 17: 19-26.
[2] Altun I, Hancer HA, Mınak G. On a general class of weakly Picard operators. Miskolc Mathematical Notes 2015; 16: 25-32.
[3] Berinde V. On the approximation of fixed points of weak contractive mappings. Carpathian J Math 2003; 19: 7-22.
[4] Berinde V. Approximating fixed points of weak φ-contractions using the Picard iteration. Fixed Point Theory 2003; 4: 131-147.
[5] Berinde V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Analysis Forum 2004; 9 : 43-53.
[6] Berinde V. Iterative Approximation of Fixed Points. Berlin, Germany: Springer-Verlag, 2007.
[7] Ćirić LB. Fixed Point Theory, Contraction Mapping Principle. Belgrade, Serbia: FME Press, 2003.
[8] Khojasteh F, Shukla S, Radenović S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015; 29: 1189-1194.
[9] Păcurar M. Iterative Methods for Fixed Point Approximation. Cluj-Napoca, Romania: Risoprint, 2009.

