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Abstract: In the present paper, considering the simulation function, we give a new class of Picard operators on complete

metric spaces. We also provide a nontrivial example that shows the aforementioned class properly contains some earlier

such classes.
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1. Introduction

Let (X, d) be a metric space and T : X → X be a mapping; then T is called a Picard operator on X , if T

has a unique fixed point and the sequence of successive approximation for any initial point converges to the

fixed point. The concept of Picard operators is closely related to that of contractive-type mappings on metric

spaces. It is well known that almost all contractive-type mappings are Picard operators on complete metric

spaces. (See for more details [2–6]).

In the present paper, considering the simulation function, we give a new class of Picard operators on

complete metric spaces. The concept of simulation functions is given by [8] in fixed point theory.

Let ζ : [0,∞)×[0,∞) → R be a mapping; then ζ is called a simulation function if it satisfies the following

conditions:

(ζ1) ζ(0, 0) = 0

(ζ2) ζ(t, s) < s− t for all t, s > 0

(ζ3) If {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim
n→∞

sup ζ(tn, sn) < 0.

We denote the set of all simulation functions by Z. For example, ζ(t, s) = λs−t with 0 ≤ λ < 1 belonging

to Z. Many different examples of simulations functions can be found in Example 2.2 of [8].

Before we give our main result we recall the following definition and theorem presented in [8].

Definition 1 ([8]) Let (X, d) be a metric space, T : X → X be a mapping, and ζ ∈ Z.Then T is called a

Z-contraction with respect to ζ if the following condition is satisfied:

ζ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X.
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Taking into account Definition 1 we can say that every Banach contraction is a Z-contraction with respect

to ζ(t, s) = λs − t with 0 ≤ λ < 1. Moreover, it is clear from the definition of the simulation function that

ζ(t, s) < 0 for all t ≥ s > 0. Therefore, if T is a Z -contraction with respect to ζ ∈Z then

d(Tx, Ty) < d(x, y) for all distinct x, y ∈ X.

This shows that every Z -contraction mapping is contractive; therefore it is continuous.

Theorem 1 Every Z-contraction on a complete metric space has a unique fixed point and moreover every Picard

sequence converges to the fixed point.

If we consider the concept of Picard operator, every Z-contraction on a complete metric is a Picard

operator.

2. Main Result

First we introduce the concept of generalized Z-contraction on metric spaces.

Definition 2 Let (X, d) be a metric space, T : X → X be a mapping, and ζ ∈ Z.Then T is called generalized

Z-contraction with respect to ζ if the following condition is satisfied

ζ(d(Tx, Ty),M(x, y)) ≥ 0 for all x, y ∈ X, (2.1)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2
[d(x, Ty) + d(y, Tx)]}.

Remark 1 Every generalized Z -contraction on a metric space has at most one fixed point. Indeed, let z and

w be two fixed points of T , which is a generalized Z -contraction self map of a metric space (X, d) . Then

0 ≤ ζ(d(Tz, Tw),M(z, w)) = ζ(d(z, w), d(z, w)),

which is a contradiction.

Now we give our main theorem.

Theorem 2 Every generalized Z -contraction on a complete metric space is a Picard operator.

Proof Let (X, d) be a complete metric space and T : X → X be a generalized Z-contraction with respect to

ζ ∈Z. First, we show that T has a fixed point.

Let x0 ∈ X be an arbitrary point and {xn} be the Picard sequence, that is, xn = Txn−1 for all n ∈ N .

If there exists n0 ∈ N such that xn0 = xn0+1 then xn0 is a fixed point of T . Now suppose d(xn, xn+1) > 0 for

all n ∈ N and define dn = d(xn, xn+1). Then, since

M(xn, xn−1) = max

{
d(xn, xn−1), d(xn, xn+1), d(xn−1, xn),

1
2 [d(xn, xn) + d(xn−1, xn+1)]

}

= max {dn−1, dn}
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from (2.1) we get

0 ≤ ζ(d(Txn, Txn−1),M(xn, xn−1))

= ζ(dn,max {dn−1, dn}). (2.2)

Suppose that dn ≥ dn−1 for some n ∈ N ; then from (2.2)

0 ≤ ζ(dn,max {dn−1, dn}) = ζ(dn, dn),

which is a contradiction. Thus dn < dn−1 for all n ∈ N and

0 ≤ ζ(dn, dn−1). (2.3)

Therefore, the sequence {dn} is a decreasing sequence of nonnegative reals and so it must be convergent. Let

lim
n→∞

dn = r ≥ 0. If r > 0 then from (2.3) and (ζ3) we have

0 ≤ lim
n→∞

sup ζ(dn, dn−1) < 0,

which is a contradiction. Therefore, we have r = 0, that is, lim
n→∞

dn = 0.

Now we show that the Picard sequence {xn} is bounded. Assume that {xn} is not bounded. Without

loss of generality we can assume that xn+p ̸= xn for all n, p ∈ N . Since {xn} is not bounded, there exists a

subsequence {xnk
} of {xn} such that n1 = 1 and, for each k ∈ N , nk+1 is the minimum integer such that

d(xnk+1
, xnk

) > 1

and

d(xm, xnk
) ≤ 1 for nk ≤ m ≤ nk+1 − 1.

Therefore, by the triangular inequality we have

1 < d(xnk+1
, xnk

)

≤ d(xnk+1
, xnk+1−1) + d(xnk+1−1, xnk

)

≤ d(xnk+1
, xnk+1−1) + 1.

Letting k → ∞ we get

lim
k→∞

d(xnk+1
, xnk

) = 1.
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Now, since

1 < d(xnk+1
, xnk

) ≤ M(xnk+1−1, xnk−1)

= max

{
d(xnk+1−1, xnk−1), d(xnk+1−1, xnk+1

), d(xnk−1, xnk
),

1
2 [d(xnk+1−1, xnk

) + d(xnk−1, xnk+1
)]

}

≤ max


d(xnk+1−1, xnk

) + d(xnk
, xnk−1),

d(xnk+1−1, xnk+1
), d(xnk−1, xnk

),
1
2 [d(xnk+1−1, xnk

) + d(xnk−1, xnk+1
)]



≤ max


1 + d(xnk

, xnk−1),

d(xnk+1−1, xnk+1
), d(xnk−1, xnk

),
1
2 [d(xnk+1−1, xnk

) + d(xnk−1, xnk+1
)]



≤ max


1 + d(xnk

, xnk−1),

d(xnk+1−1, xnk+1
), d(xnk−1, xnk

),
1
2 [1 + d(xnk−1, xnk+1

)]



≤ max


1 + d(xnk

, xnk−1),

d(xnk+1−1, xnk+1
), d(xnk−1, xnk

),
1
2 [1 + d(xnk−1, xnk

) + d(xnk
, xnk+1

)]

 ,

taking k → ∞ we get

1 ≤ lim
k→∞

M(xnk+1−1, xnk−1) ≤ 1,

that is, limk→∞ M(xnk+1−1, xnk−1) = 1. By (2.1) we have

0 ≤ lim
k→∞

sup ζ(d(xnk+1
, xnk

),M(xnk+1−1, xnk−1)) < 0,

which is a contradiction. This result proves that {xn} is bounded. Now we shall show that the sequence {xn}
is a Cauchy sequence. For this, consider the real sequence

Cn = sup{d(xi, xj) : i, j ≥ n}.

Note that the sequence {Cn} is a decreasing sequence of nonnegative reals. Thus there exists C ≥ 0 such that

lim
n→∞

Cn = C. We shall show that C = 0. If C > 0 then by the definition of Cn, for every k ∈ N there exists

nk,mk such that mk > nk ≥ k and

Ck − 1

k
< d(xmk

, xnk
) ≤ Ck.

Hence

lim
k→∞

d(xmk
, xnk

) = C. (4)

lim
k→∞

d(xmk−1, xnk−1) = C.
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d(xmk−1, xnk−1) ≤ M(xmk−1, xnk−1)

= max

{
d(xmk−1, xnk−1), d(xmk−1, xmk

), d(xnk−1, xnk
),

1
2 [d(xmk−1, xnk

) + d(xmk
, xnk−1)]

}

≤ max


d(xmk−1, xnk−1), d(xmk−1, xmk

), d(xnk−1, xnk
),

1
2 [d(xmk−1, xmk

) + d(xmk
, xnk

)

+d(xmk
, xnk

) + d(xnk
, xnk−1)]


Letting k → ∞ we get

lim
k→∞

M(xmk−1, xnk−1) = C.

Using (2.1), we have

0 ≤ lim
k→∞

sup ζ(d(xmk
, xnk

),M(xmk−1, xnk−1)) < 0,

which is a contradiction. Therefore, C = 0. That is {xn} is a Cauchy sequence; since X is complete there

exists u ∈ X such that limn→∞ xn = u. We shall show that the point u is a fixed point of T. Suppose that

Tu ̸= u ; then d(u, Tu) > 0. Using (2.1) , (ζ2), (ζ3), we have

0 ≤ lim
n→∞

sup ζ(d(Txn, Tu),M(xn, u)) < 0,

since limn→∞ M(xn, u) = d(u, Tu). This contradiction shows that d(u, Tu) = 0, that is, Tu = u. If we consider

the proof, we can see that every Picard sequence converges to the fixed point of T . Therefore, T is a Picard

operator. 2

The following example shows that our main theorem is a generalization of Theorem 2.8 of [8].

Example 1 Let X = [0, 1] and d is a usual metric on X . Define a mapping T : X → X by

Tx =


2
5 , x ∈ [0, 2

3 )

1
5 , x ∈ [ 23 , 1]

.

Since T is not continuous, then it is not a Z -contraction. Thus considering Theorem 1, we cannot guarantee

that T is a Picard operator. Now we claim that T is a generalized Z -contraction with respect to a simulation

function defined by ζ(t, s) = 6
7s− t . By Example 1.3.1 of [9], we get

d(Tx, Ty) ≤ 3

7
[d(x, Tx) + d(y, Ty)]

≤ 6

7
max{d(x, Tx), d(y, Ty)}

≤ 6

7
M(x, y)

for all x, y ∈ X . That is, we have

ζ(d(Tx, Ty),M(x, y)) =
6

7
M(x, y)− d(Tx, Ty) ≥ 0
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for all x, y ∈ X . Thus, taking into account Theorem 2, we can say that T is a Picard operator.

In the next example, T is a Z -contraction and also a generalized Z -contraction with respect to the same

ζ ∈ Z. However, T is not a Ćirić-type generalized contraction.

Example 2 Let X = [0, 1] and d is a usual metric on X . Define a mapping T : X → X as Tx =
x

1 + x
. By

Example 2.9 of [8] we get T is a Z -contraction with respect to ζ ∈ Z where

ζ(t, s) =
s

1 + s
− t for all t, s ∈ [0,∞).

Therefore, for all x, y ∈ X , we get

0 ≤ ζ(d(Tx, Ty), d(x, y))

=
d(x, y)

1 + d(x, y)
− d(Tx, Ty)

≤ M(x, y)

1 +M(x, y)
− d(Tx, Ty)

= ζ(d(Tx, Ty),M(x, y)).

This shows that T is a generalized Z -contraction with respect to the same ζ ∈ Z. On the other hand, since

sup
n∈N

d(T 1
n , T0)

M( 1n , 0)
= 1,

we cannot find λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λM(x, y)

for all x, y ∈ X . That is, T is not a Ćirić-type generalized contraction (see for details [1, 7]).
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