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Abstract: Veronese rings, Segre embeddings, or more generally Segre–Veronese embeddings are very important rings

in algebraic geometry. In this paper we present an original, elementary way to compute the Hilbert–Poincaré series

of these rings; as a consequence we compute their Castelnuovo–Mumford regularity and also the highest graded Betti

number. Moreover, using the Castelnuovo–Mumford regularity of a Cohen–Macaulay finitely generated graded module,

we compute that of its Veronese transforms.
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1. Introduction

Veronese rings, Segre embeddings, or more generally Segre–Veronese embeddings are very important rings in

algebraic geometry. It is well known that these rings are arithmetically Cohen–Macaulay; hence their Hilbert–

Poincaré series can be written: PR(t) =
QR(t)

(1−t)dimR , where QR(t) is a polynomial on t with QR(1) ̸= 0 having

positive integer coefficients; the sequence of the coefficients of QR(t) is also called the h−vector of R . The

degree of QR(t) is the Castelnuovo–Mumford regularity (c.f.[5][Chapter 4]), and the coefficient of the leading

term of QR(t) is the highest graded Betti number of R . By using very original and elementary methods we are

able to compute the leading term of QR(t). Our results allow to compute the Castelnuovo–Mumford regularity

of the n Veronese module of any finitely generated Cohen–Macaulay graded module, and the rings called of

Veronese type. Note that this result can be proved easily by using local cohomology, but our purpose is to give

a very elementary proof.

Our main results improve partially [1] and [4].

Theorem. Let consider the Segre–Veronese ring Rb,n , dimRb,n = b1+ · · ·+bm+1. Let PRb,n
(t) =

QRb,n

(1−t)
dimRb,n

be the Hilbert–Poincaré series of Rb,n, with QRb,n
= h0 + h1t+ . . .+ hrb,nt

rb,n , where rb,n is the Castelnuovo–

Mumford regularity of Rb,n . We set αb,n = dimRb,n − rb,n . After a permutation of b1, . . . , bm , we can assume

that for all i = 1, . . . ,m, ⌈ b1+1
n1

⌉ > bi
ni
. Then

αb,n = ⌈b1 + 1

n1
⌉ ,
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and the highest graded Betti number of Rb,n is

βrb,n = hrb,n =

(
n1αb,n − 1

b1

)
· · ·

(
nmαb,n − 1

bm

)
.

In fact we get a more general statement about a class of formal powers series:

Theorem. Fix integers d, n ∈ N∗, τ ∈ Z . Let (al)l∈Z be a sequence of complex numbers, such that al = 0 for

l << 0 , set:

f(t) =
∑
l∈Z

alt
l, f<n,τ>(t) =

∑
l∈Z

anl+τ t
l.

If f(t) = h(t)
(1−t)d

with h(t) ∈ C[t, t−1] then f<n,τ>(t) = h<n>(t)
(1−t)d

for some h<n>(t) ∈ C[t, t−1] such that:

• deg h<n,τ>(t) ≤ d− ⌈d−deg h(t)+τ
n ⌉,

• If all the coefficients of h(t) are positive real numbers then deg h<n,τ>(t) = d− ⌈d−deg h(t)+τ
n ⌉,

• If deg h(t) = d then deg h<n>(t) = d .

2. Preliminaries on toric rings and Hilbert–Poincaré series

Let R = K[x0, . . . , xb, x
−1
0 , . . . , x−1

b ] be a Laurent polynomial ring over a field K on a finite set of variables.

For any finite set M of monomials in R , let K[M] ⊂ R be the subring of R generated by the set M . It is

the toric ring defined by the semigroup generated by M . In what follows we consider the special case where

R = K[x0, . . . , xb] is a polynomial ring over the field K and all the monomials in M are of the same degree.

Example 2.1. Let n ∈ N∗ , R = K[x0, . . . , xb] = ⊕l∈NRl , and M = {xα0
0 . . . xαb

b | α0 + . . .+ αb = n}. So that

Rb,n := K[M] = ⊕l∈NRnl.

This toric ring is known as the n−Veronese embedding of R .

Example 2.2. More generally, let X1, . . . , Xm, m sets of independent disjoint variables, with Card(Xi) =

bi + 1 . Let R(i) = K[Xi] for i = 1, . . . ,m , R = K[X1 ∪X2 ∪ . . .∪Xm] , and M = {x1x2 . . . xm | xi ∈ Xi}. So
that

Rb1,...,bm := K[M] = ⊕l∈N(R(1))l ⊗ . . .⊗ (R(m))l.

This toric ring is known as the Segre embedding of the m polynomial rings R(1), . . . , R(m) .

Example 2.3. Let X1, . . . , Xm, sets of independent disjoint variables such that Xi = {xi,0, . . . , xi,bi}, R(i) =

K[Xi] for i = 1, . . . ,m , and n1, . . . , nm ∈ N . Let R = K[X1 ∪X2 ∪ . . . ∪Xm] , and

M = {xα1
1 . . . xαm

m || αi |= ni},

where αi = (αi,0, . . . , αi,bi), xαi
i = x

αi,0

i,0 . . . x
αi,bi

i,bi
, and | αi |= αi,0 + . . .+ αi,bi The Segre–Veronese embedding

is defined by:

Rb,n = K[M] = ⊕l∈N(R(1))n1l ⊗ . . .⊗ (R(m))nml,

where b = (b1, . . . , bm), n = (n1, . . . , nm) .
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Let R = K[x0, . . . , xs] be a polynomial ring over the field K , graded by the standard graduation, that is

deg xi = 1, for all i . Let T := R/I , where I ⊂ R is a graded ideal, and let M = ⊕l∈ZMl be a finitely generated

graded T -module; hence M is also an R−module. The Hilbert function of M is defined by HM (l) = dimK Ml,

for all l ∈ Z , and the Hilbert–Poincaré series of M :

PM (t) =
∑
l∈Z

HM (l)tl.

It is well known that

PM (t) =
QM (t)

(1− t)dimM

where QM (t) is a Laurent polynomial on t, t−1 with QM (1) ̸= 0. Moreover, if M is a Cohen–Macaulay R -

module, all the coefficients of QM (t) are natural integers, and the Castelnuovo–Mumford regularity of M is

the degree of QM (t). For more details on Hilbert–Poincaré series see [7], [3][Chapter 4], [5][Chapter 4].

Theorem 2.4. (Hilbert’s Theorem) let M = ⊕l∈ZMl be a finitely generated graded R -module. There exists

a polynomial with integer coefficients ΦHM
(l) such that HM (l) = ΦHM

(l), for l large enough. Moreover, the

leading term of ΦHM (l) can be written as: deg(M)
d! ld , where d + 1 is the dimension of M and deg(M) is the

degree or multiplicity of M .

Remark 2.5. The postulation number of the Hilbert function is the biggest integer l such that HM (l) ̸= ΦHM
(l).

It is well known ([7], [3][Chapter 4]) that the postulation number equals the degree of the rational fraction defining

the Poincaré series.

Remark 2.6. We recall that binomial coefficients can be defined in a more general setting than natural numbers;

indeed for k ∈ N, binomial coefficients are polynomial functions in the variable n . More precisely:

(1) If k = 0 then let
(
n
0

)
= 1 , for all n ∈ C.

(2) If k > 0 then let
(
n
k

)
= n(n−1)...(n−k+1)

k! , for all n ∈ C.

Note that for all n ∈ C ,
(
n
k

)
= (−1)k

(
k−n−1

k

)
and if n ∈ N, n < k , then

(
n
k

)
= 0 .

Example 2.7. Let R = K[x0, . . . , xb] , be a polynomial ring. Then

HR(l) =

{(
l+b
b

)
if l ≥ 0

0 if l < 0
, PR(t) =

1

(1− t)b+1
.

Note that in fact ∀l ≥ −b, HR(l) =
(
l+b
b

)
and 0 = HR(−b − 1) ̸=

(−b−1+b
b

)
= (−1)b , and so the postulation

number of R is −(b+ 1) .

Example 2.8. Let R = K[x0, . . . , xb] , M = {xα0
0 . . . xαb

b | α0 + . . . + αb = n}, and Rb,n = K[M] the

n−Veronese embedding. Then

HRb,n
(l) = HR(nl) =

{(
nl+b
b

)
if l ≥ 0

0 if l < 0
.
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Note that
(
nl+b
b

)
= (nl+1)(nl+2)...(nl+b)

b! is a polynomial on l with leading term nblb

b! , so that deg(Rb,n) =

nb, dimRb,n = b+1 . Note also that ∀l > −⌈ b+1
n ⌉, HRb,n

(l) =
(
nl+b
b

)
and 0 = HRb,n

(−⌈ b+1
n ⌉) ̸=

(−⌈ b+1
n ⌉n+b
b

)
=

(−1)b
(⌈ b+1

n ⌉n−1
b

)
, and so the postulation number of Rb,n is −⌈ b+1

n ⌉ . More generally, let Rb,n[τ ] := ⊕l∈NRnl+τ .

Note that HRb,n[τ ](l) =
(
nl+τ+b

b

)
for nl + τ + b ≥ 0 , and HRb,n[τ ](l) = 0 ̸=

(
nl+τ+b

b

)
for nl + τ + 1 + b ≤ 0 .

Hence the postulation number of Rb,n[τ ] is −⌈ b+1+τ
n ⌉ .

3. Veronese of generating series

In a recent paper [2], Brenti and Welker prove that taking the n−Veronese transform of the h polynomial is

a linear function; in this section we improve this result, giving an elementary proof of the fact that taking the

shifted n− Veronese transform of the h polynomial is a linear function on h .

Let us recall the following fact:

Theorem 3.1. Let (al)l∈Z be a sequence of complex numbers, such that al = 0 for l << 0 , set: f(t) =∑
l∈Z alt

l, TFAE:

• There exists h(t) ∈ C[t, t−1] and a natural integer d such that f(t) = h(t)
(1−t)d

.

• There exists Φ(t) ∈ C[t, t−1] of degree d− 1 with leading coefficient e0/(d− 1)! , such that Φ(l) = al for

l large enough.

Moreover, h(1) = e0 .

Let us introduce some notations.

Notation 3.2. Fix integers d, n ∈ N∗, τ ∈ Z . Let (al)l∈Z be a sequence of complex numbers, such that al = 0

for l << 0 , set:

f(t) =
∑
l∈Z

alt
l, f<n,τ>(t) =

∑
l∈Z

anl+τ t
l.

By the Theorem 3.1 if f(t) = h(t)
(1−t)d

with h(t) ∈ C[t, t−1] then f<n,τ>(t) = h<n,τ>(t)
(1−t)d

for some h<n,τ>(t) ∈

C[t, t−1] . In Theorem 3.5 we will prove that h<n,τ>(t) can be written in terms of h(t) . To any nonzero polyno-

mial h(t) = hσt
σ+ . . . .+h0+h1t+ . . .+hst

s ∈ C[t, t−1] we associate the h-vector h⃗ = (. . . , 0, hσ, . . . , hs, 0, . . .) ,

and we set deg
−→
h = deg h(t). For j ∈ Z , let −→εj be the h-vector of the polynomial tj . Let us denote by [tk]h(t)

the coefficient of tk in the polynomial h(t) . For any i, j ∈ Z define Di,j by

Di,j = [tin−j ](
(1− tn)d

(1− t)d
) = [tin−j ]((1 + t+ . . .+ tn−1)d).

Note that

Di,j = Card{(x1, . . . , xd) ∈ Nd | ∀l, xl ≤ n− 1;x1 + . . .+ xd = in− j}.

Finally let D[σ, τ ] be the infinite square matrix D[σ, τ ] = (Di+σ,j+τ ) . For σ = τ = 0 we write D instead of

D[0, 0] .
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We can give some properties of the numbers Di,j .

Lemma 3.3. Let i, j, k ∈ Z ; then we have:

Di,j = 0 if either in− j < 0 or in− j > d(n− 1) .

•• For any i, j , Di,j = Dd−i,d−j . That is D is symmetrical around the point (d/2, d/2).

• For 0 ≤ k ≤ n− 1 , Dd,d+k =
(
k+d−1
d−1

)
.

• D1,0 =
(
n+d−1
d−1

)
− d, and for 1 ≤ k ≤ n , D1,k =

(
n−k+d−1

d−1

)
.

• For any integers q, k , Dd+q,nq+k = Dd,k .

• For any i , let d− i = nq − k with q = ⌈d−i
n ⌉, 0 ≤ k < n ; then

Dd−⌈ d−i
n ⌉,i =

(
k + d− 1

d− 1

)
=

(
n⌈d−i

n ⌉+ i− 1

d− 1

)
.

Proof The first claim is trivial. In order to prove the other claims, let us remark that the map (x1, . . . , xd) 7→
(y1, . . . , yd), where yl = (n− 1)− xl for l = 1, . . . , d , establishes a bijection between

{(x1, . . . , xd) ∈ Nd | xl ≤ n− 1 for l = 1, . . . , d; x1 + . . .+ xd = in− j}

and

{(y1, . . . , yd) ∈ Nd | yl ≤ n− 1 for l = 1, . . . , d; y1 + . . .+ yd = (d− i)n− (d− j)}.

The third claim follows from the second claim, because if 0 ≤ k ≤ n− 1, then the sets

{(x1, . . . , xd) ∈ Nd | xl ≤ n− 1 for l = 1, . . . , d; x1 + . . .+ xd = dn− d− k}

and

{(y1, . . . , yd) ∈ Nd | y1 + . . .+ yd = k}

are in bijection.

The fourth claim follows trivially from the previous items.

The fifth claim follows from the equality: (d+ q)n− (nq + k) = dn− k .

Finally the sixth claim follows from the third claim, since, if d − i = nq − k with 0 ≤ k < n , then

(d− q)n− i = dn− (d+ k); hence Dd−q,i = Dd,d+k , and n⌈d−i
n ⌉+ i− 1 = k + d− 1. 2

Remark 3.4. Let (al)l∈Z be a sequence of complex numbers, such that al = 0 for l << 0 , set:

f(t) =
∑
l∈Z

alt
l.

Fix integers d, k, n ∈ N∗, τ ∈ Z . With the notations introduced in 3.2, it is clear that f<n,kn+τ>(t) =

t−kf<n,τ>(t) , which implies h<n,kn+τ>(t) = t−kh<n,τ>(t) for any integer numbers k, τ .

The following theorem improves and has a simpler proof than that of [2, Theorem 1.1]:
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Theorem 3.5. Fix integers d, k, n ∈ N∗, τ ∈ Z . Let (al)l∈Z be a sequence of complex numbers, such that al = 0

for l << 0 , set:

f(t) =
∑
l∈Z

alt
l =

h(t)

(1− t)d
,

f<n,τ>(t) =
∑
l∈Z

anl+τ t
l =

h<n,τ>(t)

(1− t)d
,

where h(t), h<n,τ>(t) ∈ C[t, t−1] . Then

−−−−−−−→
h<n,kn+τ> = D[−k,−τ ]⃗h.

Proof Because of Remark 3.4 we have to compute h<n,τ>(t) only for 0 ≤ τ ≤ n− 1. The following formula

is clear:

f<n,0>(tn) + tf<n,1>(tn) + . . .+ tn−1f<n,n−1>(tn) = f(t);

hence

h<n,0>(tn) + th<n,1>(tn) + . . .+ tn−1h<n,n−1>(tn)

(1− tn)d
=

h(t)

(1− t)d
,

and

h<n,0>(tn) + th<n,1>(tn) + . . .+ tn−1h<n,n−1>(tn) = h(t)
(1− tn)d

(1− t)d
,

tτh<n,τ>(tn) equals the sum of all the terms Aβt
β of h(t) (1−tn)d

(1−t)d
with β ≡ τ mod n . In particular, h<n,τ>(t)

is a linear function of h(t). Therefore, it is enough to compute h<n,τ>(t) for the canonical basis {εj := tj , j ∈ Z}
of C[t, t−1] . We have

[ti](h<n,τ>(t)) = [tni+τ ](h(t)
(1− tn)d

(1− t)d
);

hence

∀j ∈ Z; [ti](ε<n,τ>
j (t)) = [tni+τ ](tj)

(1− tn)d

(1− t)d
= [tni+τ−j ](

(1− tn)d

(1− t)d
),

which proves our statement. 2

Corollary 3.6. Fix an integer d ∈ N∗ . For j ∈ Z , let −→εj be the h-vector of the polynomial tj . Then for any

n ∈ N∗ , we have deg
−−−→
ε<n>
j = d− ⌈d− j

n
⌉. Moreover, the leading coefficient of

−−−→
ε<n>
j is

(n⌈ d−j
n ⌉+j−1
d−1

)
.

Proof Let us remark that the set of tj , j ∈ Z is the canonical basis of C[t, t−1] . We have by Theorem 3.5 that

D−→εj =
−−−→
ε<n>
j ; hence

−−−→
ε<n>
j is the j column vector of D . By Example 2.8, we have that deg

−−−→
ε<n>
j = d−⌈d− j

n
⌉.

The last claim follows from Lemma 3.3. Indeed for any j ∈ Z, we have Dd−⌈ d−j
n ⌉,j =

(n⌈ d−j
n ⌉+j−1
d−1

)
. This

proves that the leading coefficient of
−−−→
ε<n>
j is

(n⌈ d−j
n ⌉+j−1
d−1

)
. 2
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Example 3.7. Let d = 2 and n ∈ N∗ ; we can describe the matrix D

HHHHHi
j

-(n+1) . . . -1 0 1 2 3 . . . n n+1 n+2 . . . 2n

-1 2 . . . 0 0 0 0 0 . . . 0 0 0 . . . . 0
0 n-2 . . . 2 1 0 0 0 . . . 0 0 0 . . . 0
1 0 . . . n-2 n-1 n n-1 n-2 . . . 1 0 0 . . . 0
2 0 . . . 0 0 0 1 2 . . . n-1 n n-1 . . . 1
3 0 . . . 0 0 0 0 0 . . . 0 0 1 . . . n-1

Theorem 3.8. Fix integers d, n ∈ N∗, τ ∈ Z . Let (al)l∈Z be a sequence of complex numbers, such that al = 0

for l << 0 , set :

f(t) =
∑
l∈Z

alt
l, f<n,τ>(t) =

∑
l∈Z

anl+τ t
l.

If f(t) = h(t)
(1−t)d

with h(t) ∈ C[t, t−1] then f<n,τ>(t) = h<n>(t)
(1−t)d

with h<n>(t) ∈ C[t, t−1] such that:

• deg h<n,τ>(t) ≤ d− ⌈d−deg h(t)+τ
n ⌉,

• If all the coefficients of h(t) are positive real numbers then deg h<n,τ>(t) = d− ⌈d−deg h(t)+τ
n ⌉,

• If deg h(t) = d then deg h<n>(t) = d .

Proof Let f(t) =
∑

l∈Z alt
l = h(t)

(1−t)d
, where h(t) ∈ C[t, t−1] h(t) = γσt

σ+ . . .+γst
s with deg h(t) = s, γs ̸= 0.

It follows that
−→
h =

∑s
l=σ γl

−→εl . We multiply this relation on the left by D[−τ ] , and so Theorem 3.5 implies

−−−−→
h<n,τ> =

∑s
l=σ γl

−−−→
ε<n>
l−τ . Since deg

−−−→
ε<n>
σ−τ ≤ deg

−−−−→
ε<n>
σ−τ+1 ≤ . . . ≤ deg

−−−→
ε<n>
s−τ , we have, deg

−−−−→
h<n,τ> ≤ deg

−−−→
ε<n>
s−τ . It

is clear that if all the coefficients of h(t) are positive real numbers then deg
−−−−→
h<n,τ> = deg

−−−→
ε<n>
s−τ .

In the special case s = d , we have seen that for 0 ≤ l ≤ d− 1 and any n ∈ N∗ , deg
−−−→
ε<n>
l = d− ⌈d−l

n ⌉ ≤

d− 1, and deg
−−−→
ε<n>
d = d , which implies deg

−−−→
h<n> = d. 2

As an application of the main results of this section, the following relates invariants of a module and that

of its Veronese transform.

Theorem 3.9. Let n ∈ N∗ , R be a standard graded polynomial ring, M = ⊕l∈ZMl be a finitely generated

Cohen–Macaulay graded R -module of dimension d ≥ 1 , and M<n> = ⊕l∈ZMnl . Let
Q(t)

(1− t)d
be the Hilbert–

Poincaré series of M , where Q(t) = γσt
σ + . . . + γst

s ∈ C[t, t−1] is the h−polynomial of M , with reg(M) =

degQ(t) = s . Then

• regM<n> = d − ⌈d−regM
n ⌉. Moreover, by taking the sum over all index l such that ⌈d−l

n ⌉ = ⌈d−regM
n ⌉ ,

we will get the leading coefficient of Q<n>(t) :

∑
l | ⌈ d−l

n ⌉=⌈ d−reg M
n ⌉

γl

(
n⌈d−l

n ⌉+ l − 1

d− 1

)
.
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• If regM ≤ d− 1 and n ≥ d then regM<n> = d− 1 , and the leading coefficient of Q<n>(t) is

d−1∑
l=0

γl

(
n⌈d−l

n ⌉+ l − 1

d− 1

)
.

• If n > regM ≥ d then regM<n> = d , and the leading coefficient of Q<n>(t) is

regM∑
l=d

γl

(
l − 1

d− 1

)
.

Proof We have
−→
Q =

∑s
l=σ γl

−→εl . We multiply this relation on the left by D , and so Theorem 3.5 implies that for

any n ∈ N∗ ,
−−−→
Q<n> =

∑s
l=σ γl

−−−→
ε<n>
l . Since γl ≥ 0 for all l , γs > 0, and deg

−−−→
ε<n>
σ ≤ deg

−−−→
ε<n>
σ+1 ≤ . . . ≤ deg

−−−→
ε<n>
s ,

we have deg
−−−→
Q<n> = deg

−−−→
ε<n>
s = d−⌈d−regM

n ⌉; this number is reg(M<n>) since M<n> is a Cohen–Macaulay

R -module. The computation of the leading coefficient of Q<n>(t) is immediate from Corollary 3.6. 2

4. h-vector of the Segre–Veronese embedding

The next Theorem improves partially [1] and [4].

Theorem 4.1. Let us consider the Segre–Veronese ring Rb,n , dimRb,n = b1 + . . . + bm + 1. Let PRb,n
(t) =

QRb,n
(t)

(1− t)dimRb,n
be the Hilbert–Poincaré series of Rb,n, with QRb,n

(t) = h0 + h1t + . . . + hrb,nt
rb,n , where

rb,n = degQRb,n
(t) is the Castelnuovo–Mumford regularity of Rb,n . We set αb,n = dimRb,n − rb,n . After

a permutation of b1, . . . , bm , we can assume that ⌈ b1+1
n1

⌉ > bi
ni

∀i; then

αb,n = ⌈b1 + 1

n1
⌉ , rb,n = (b1 + . . .+ bm + 1)− ⌈b1 + 1

n1
⌉,

and the highest graded Betti number of Rb,n is

βrb,n = hrb,n =

(
n1αb,n − 1

b1

)
. . .

(
nmαb,n − 1

bm

)
.

Proof The proof is by double induction on m and bm . The case m = 1 is given by Example 2.8 and Corollary

3.6, and so we can assume m ≥ 2. We have that ⌈ b1+1
n1

⌉ > bm
nm

> bm−1
nm

, and so by induction hypothesis the

theorem is true for Rb−ϵm,n , where b− ϵm = (b1, . . . , bm−1, bm − 1). On the other hand, the Hilbert function of

Rb,n is HRb,n
(l) =

(
n1l+b1

b1

)
. . .

(
nml+bm

bm

)
, and so

HRb,n
(l) = (1 +

nm

bm
l)HRb−ϵm,n

(l). (1)

Let PRb−ϵm,n
(t) =

QRb−ϵm,n
(t)

(1− t)b1+...+bm
be the Hilbert–Poincaré series of Rb−ϵm,n, where QRb−ϵm,n

(t) = h0 +

h1t + . . . + hrb−ϵm,n
trb−ϵm,n , with hrb−ϵm,n

̸= 0. In order to avoid any confusion we also set: PRb,n
(t) =
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QRb,n
(t)

(1− t)b1+...+bm+1
to be the Hilbert–Poincaré series of Rb,n, where

QRb,n
(t) = ĥ0 + . . .+ ĥrb,nt

rb,n ,

with ĥrb,n ̸= 0.

By simple calculations from (1) we get:

PRb,n
(t) = PRb−ϵm,n

(t) +
nm

bm
tP ′

Rb−ϵm,n
(t). (2)

Hence dimRb,n = dimRb−ϵm,n + 1, and QRb,n
(t) equals

QRb−ϵm,n
(t) + t[QRb−ϵm,n

(t)(
nm

bm
Rb−ϵm,n − 1) +

nm

bm
Q′

Rb−ϵm,n
(t)− nm

bm
tQ′

Rb−ϵm,n
(t)];

note that QRb,n
(1) = nm

bm
dimRb−ϵm,nQRb−ϵm,n

(1) ̸= 0.

In particular, we have rb,n ≤ rb−ϵm,n + 1 and for all k = 0, . . . , rb−ϵm,n + 1 we have

ĥk = hk−1(
nm

bm
dimRb−ϵm,n − (k − 1)

nm

bm
− 1) + hk(k

nm

bm
+ 1). (3)

By induction hypothesis we have αb−ϵm,n = ⌈ b1+1
n1

⌉ ̸= bm
nm

, and so we put k = rb−ϵm,n + 1 in equality

(3), and we get:

ĥrb−ϵm,n+1 = hrb−ϵm,n
(
nmαb−ϵm,n − bm

bm
) ̸= 0.

Hence ĥrb−ϵm,n+1 is the leading coefficient of QRb,n
and rb,n = rb−ϵm,n + 1 and αb,n = αb−ϵm,n = ⌈ b1+1

n1
⌉ . By

induction hypothesis

hrb−ϵm,n
=

(
n1αb,n − 1

b1

)
. . .

(
nm−1αb,n − 1

bm−1

)(
nmαb,n − 1

bm

)
,

so that

ĥrb,n =

(
n1αb,n − 1

b1

)
. . .

(
nm−1αb,n − 1

bm−1

)(
nmαb,n − 1

bm − 1

)
(
nmαb,n − bm

bm
)

=

(
n1αb,n − 1

b1

)
. . .

(
nm−1αb,n − 1

bm−1

)(
nmαb,n − 1

bm

)
.

2

5. Rings of Veronese type

Let b, n ∈ N∗, a = (a0, . . . , ab) ∈ Nb+1 such that 1 ≤ ai ≤ n, a0 + . . . + ab > n , and Mb,n,a be the following

subset of the polynomial ring K[x0, . . . , xb] :

Mb,n,a = {xα0
0 . . . xαb

b | α0 + . . .+ αb = n, αi ≤ ai, ∀i = 0, . . . , b}.

Let us denote by Rb,n,a the toric subring of K[x0, . . . , xb] generated by Mb,n,a . It is well known that Rb,n,a is

a Cohen–Macaulay ring. Let S be the collection of subsets S of {0, . . . , b} such that ΣS :=
∑

i∈S ai < n .
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Theorem 5.1. ([6]) With the above notations the Hilbert function of Rb,n,a is

∀l ≥ 0; Hb,n,a(l) =
∑
S∈S

(−1)|S|
(
l(n− ΣS)− | S | +b

b

)
.

We have dim(Rb,n,a) = b+ 1, and its degree or multiplicity is

deg(Rb,n,a) =
∑
S∈S

(−1)|S|(n− ΣS)b.

Our aim is to study the Hilbert–Poincaré series of Rb,n,a :

PRb,n,a
=

∑
S∈S

(−1)|S|
∑
l≥0

(
l(n− ΣS)− | S | +b

b

)
tl. (4)

The following corollary follows immediately from Corollary 3.6 by setting d = b+1, n = k, and j = −|S| .

Note that ε<n>
j (t) = ε<n,j>

0 (t).

Corollary 5.2. For any S ∈ S and k ∈ N∗ , we have:

∑
l≥0

(
kl− | S | +b

b

)
tl =

QS,k(t)

(1− t)b+1
,

where QS,k(t) is a polynomial with QS,k(1) ̸= 0 , with leading term(
kαS,k+ | S | −1

b

)
tb+1−αS,k ,

with αS,k = ⌈ b+1−|S|
k ⌉ .

The following theorem is immediate from (4) and Corollary 5.2. It improves the description of the

Hilbert–Poincaré series given in [6].

Theorem 5.3. With the above notations, let S be the collection of subsets S of {0, . . . , b} such that ΣS :=∑
i∈S ai < n . Then we can write the Hilbert–Poincaré series of Rb,n,a :

PRb,n,a
=

Qb,n,a(t)

(1− t)b+1
,

with Qb,n,a(t) =
∑

S∈S(−1)|S|QS,n(t), where QS,n(t) is a polynomial with QS,n(1) ̸= 0 , with leading term(
(n− ΣS)αS,n−ΣS+ | S | −1

b

)
tb+1−αS,n−ΣS ,

where αS,n−ΣS = ⌈ b+1−|S|
n−ΣS ⌉ .

Part one of the following corollary improves [6][Cor. 2.12].
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Corollary 5.4. With the above notations:

1. reg(Rb,n,a) ≤ b+ 1− ⌈ b+1
n ⌉ , and the equality is true if and only if

∑
S∈S,αS,n−ΣS=⌈ b+1

n ⌉

(−1)|S|
(
(n− ΣS)αS,n−ΣS+ | S | −1

b

)
̸= 0.

2. If b+1 > n2 then reg(Rb,n,a) = b+1−⌈ b+1
n ⌉ . Moreover, the leading term of Qb,n,a(t) is

((n⌈ b+1
n ⌉−1
b

)
tb+1−⌈ b+1

n ⌉.

Proof

1. It is enough to prove that minS∈S⌈ b+1−|S|
n−ΣS ⌉ = ⌈ b+1

n ⌉ . We consider two cases:

• if b+ 1 < n then ⌈ b+1
n ⌉ = 1 ≤ ⌈ b+1−|S|

n−ΣS ⌉, ∀S ∈ S .

• If b+ 1 ≥ n , then

b+ 1

n
≤ b+ 1− | S |

n− ΣS
⇔ (b+ 1)(n− ΣS) ≤ n(b+ 1− | S |)

⇔ (b+ 1)ΣS ≥ n | S |;

this is true since by hypothesis b+1
n ≥ 1 ≥ |S|

ΣS .

2. Let b+1 > n2 and S ̸= ∅ . By definition ⌈ b+1
n ⌉ is the integer q such that b+1 = qn− r , with 0 ≤ r < n

and q ≥ n+ 1. We have

b+ 1− | S |= qn− r− | S |= q(n− ΣS)− r− | S | +qΣS,

and qΣS− | S |≥ (n+1)ΣS− | S |≥ nΣS > r , so that qΣS− | S | −r > 0; hence ⌈ b+1−|S|
n−ΣS ⌉ > q = ⌈ b+1

n ⌉.

2

In general leading terms of the alternating sum can cancel, as we can see in the next example.

Example 5.5. Let us consider the ring R4,3,(1,1,1,1,1) , the sets S can have 0,1 or 2 elements, and we have: If

S = ∅ then α∅,3 = ⌈ 5
3⌉ = 2, if | S |= 1 then αS,3 = ⌈ 4

2⌉ = 2, and finally if | S |= 2 then αS,2 = ⌈ 3
1⌉ = 3. By

using Theorem 5.3 we can write

PR4,3,(1,1,1,1,1)
=

Q0(t)− 5Q1(t) + 10Q2(t)

(1− t)5
,

with Q0(t) = 5t3 + . . . ;Q1(t) = t3 + . . . ;Q2(t) = t2 + . . . Note that in this case Q0(t) − 5Q1(t) + 10Q2(t) =

h0+h1t+h2t
2 , where h0 = 1, h1 = 5 and since h0+h1+h2 = deg(R4,3,(1,1,1,1,1)) = 11 , we get h2 = 5 , so that

PR4,3,(1,1,1,1,1)
=

1 + 5t+ 5t2

(1− t)5
.
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