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Abstract: In this work, inspired by the recent technique of Jleli and Samet, we give a new generalization of the well-

known Mizoguchi–Takahashi fixed point theorem, which is the closest answer to Reich’s conjecture about the existence

of fixed points of multivalued mappings on complete metric spaces. We also provide a nontrivial example showing that

our result is a proper generalization of the Mizoguchi–Takahashi result.
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1. Introduction and preliminaries

In 1922, Banach established the most famous fundamental fixed point theorem, called the Banach contraction

principle, for metric fixed point theory. This principle is a very powerful test for the existence and uniqueness

of the solution of considerable problems arising in mathematics and has played an important role in various

fields of applied mathematical analysis. The Banach contraction principle asserts that if (X, d) is a complete

metric space and T : X → X is a contraction mapping, that is, there exists L ∈ [0, 1) such that

d(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X , then there exists a unique x ∈ X such that x = Tx . This principle has been extended

and generalized in many ways (see [3, 4, 11, 16, 25]). In 1969, Nadler [19] initiated the idea for multivalued

contraction mapping and extended the Banach contraction principle to multivalued mappings and afterwards

proved the following result:

Theorem 1 (Nadler [19]) Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued

mapping, where CB(X) is the family of all nonempty closed and bounded subsets of X . If T is a multivalued

contraction, that is, if there exists L ∈ [0, 1) such that

H(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X , where H is the Pompeiu–Hausdorff metric on CB(X) defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

and d(x,B) = inf {d(x, y) : y ∈ B} , then there exists z ∈ X such that z ∈ Tz .
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Inspired by his result, since then there has been continuous intense research activity for fixed point

results concerning multivalued contractions, and by now, there are a number of results that extend this result

in different ways (see [6, 7, 9, 14, 15]). Concerning these, Reich [20] proved the following result for multivalued

nonlinear contractions.

Theorem 2 (Reich [20]) Let (X, d) be a complete metric space and T : X → K(X) be a multivalued mapping,

where K(X) is the family of all nonempty compact subsets of X . If there exists a function α : (0,∞) → [0, 1)

such that

lim sup
t→s+

α(t) < 1, ∀s ∈ (0,∞) (1.1)

satisfying

H(Tx, Ty) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X with x ̸= y , then T has a fixed point.

In 1974, Reich [21] (see also [22]) asked if we can relax the compactness assumption on T to closed and

bounded subsets of X in Theorem 2. This question is called Reich’s conjecture in the literature. Although a

lot of researchers studied this conjecture, it has not been completely solved. There are some partial positive

answers to this conjecture and the nearest answer was given by Mizoguchi and Takahashi [18] in 1989 with the

substitution s ≥ 0 instead of s > 0 in assumption (1.1). They proved the following theorem:

Theorem 3 (Mizoguchi and Takahashi [18]) Let (X, d) be a complete metric space and let T : X → CB(X)

be a multivalued mapping. If there exists a function α : (0,∞) → [0, 1) such that

lim sup
t→s+

α(t) < 1, ∀s ∈ [0,∞) (1.2)

satisfying

H(Tx, Ty) ≤ α(d(x, y))d(x, y), (1.3)

for all x, y ∈ X with x ̸= y , then T has a fixed point.

We can find in [23] both a simple proof of Mizoguchi and Takahashi’s result and an example showing that

it is real generalization of Nadler’s result. We can also find some general fixed point results in these directions

in the literature (see [2, 5, 8, 17]).

On the other hand, an attractive generalization of the Banach contraction principle given by Jleli and

Samet [13] introduced a new type of contractive condition, which throughout this study we shall call θ -

contraction. First we recall the basic definitions, relevant notions, and some related results concerning θ -

contraction.

Let Θ be the set of all functions θ : (0,∞) → (1,∞) satisfying the following conditions:

(θ1) θ is nondecreasing;

(θ2) For each sequence {tn} ⊂ (0,∞) , limn→∞ θ(tn) = 1 and limn→∞ tn = 0+ are equivalent;

(θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)−1

tr = l .

Let (X, d) be a metric space and θ ∈ Θ. A mapping T : X → X is said to be a θ -contraction if there

exists a fixed constant k ∈ [0, 1) such that
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θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
k

(1.4)

for all x, y ∈ X with d(Tx, Ty) > 0.

An easy example of such mapping is the Banach contraction, which can be seen by taking θ(t) = e
√
t in

inequality (1.4). By choice of function θ(t) = e
√
tet in (1.4), we obtain a contraction type condition

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ k2, (1.5)

for all x, y ∈ X with d(Tx, Ty) > 0.

Now we give some of its important properties. Let θ1, θ2 ∈ Θ. If θ = θ2
θ1

is nondecreasing and θ1(t) ≤ θ2(t)

for all t ∈ (0,∞), then it is easy to see that every θ1 -contraction is also a θ2 -contraction. Thus, if a mapping

T is a Banach contraction, then it satisfies contraction type condition (1.5). In addition, it is clear that if T is

a θ -contraction, then T is a contractive mapping, i.e. d(Tx, Ty) < d(x, y) for all x, y ∈ X with x ̸= y . Hence,

every θ -contraction on a metric space is continuous. Recently, Jleli and Samet [13] established a fixed point

result for a type of such mappings on complete metric spaces:

Theorem 4 (Corollary 2.1 of [13]) Let (X, d) be a complete metric space and T : X → X be a given mapping.

If T is an θ -contraction, then T has a unique fixed point in X .

In the theory of fixed point literature, we can find more papers dealing with θ -contraction mappings (see

[1, 12]).

Naturally, the concept of θ -contraction was extended to multivalued mappings by Hançer et al. [10]

(see also [24]) and they introduced the concept of multivalued θ -contraction: let (X, d) be a metric space,

T : X → CB(X) be a mapping, and θ ∈ Θ. Then T is said to be a multivalued θ -contraction if there exists a

fixed constant k ∈ [0, 1) such that

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
k

(1.6)

for all x, y ∈ X with H(Tx, Ty) > 0.

Consequently, they established fixed point results for multivalued θ -contractions on complete metric
spaces:

Theorem 5 ([10]) Let (X, d) be a complete metric space and T : X → K(X) be a multivalued θ -contraction.

Then T has a fixed point.

In the following example (Example 2.4 of [10]) we can see that K(X) cannot be replaced by CB(X) under

the same conditions in Theorem 5.

Example 1 ([10]) Consider the complete metric space (X, d) , where X = [0, 2] , and d(x, y) = 0 if x = y and

d(x, y) = 1 + |x− y| if x ̸= y . Define a mapping T : X → CB(X) , by Tx = Q if x ∈ X\Q and Tx = X\Q if

x ∈ Q , where Q is the set of all rational numbers in X . Then T is a multivalued θ -contraction with θ ∈ Θ

defined by θ(t) = e
√
t if t ≤ 1 and θ(t) = 9 if t > 1 , but T has no fixed points.
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However, by taking into account the following condition, which is not strong, on θ , this replacement can

be made:

(θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.

Note that if θ is right continuous and satisfies (θ1), then (θ4) holds. Conversely, if (θ4) holds, then θ is

right continuous. Let Ξ be the family of all functions θ satisfying (θ1)–(θ4).

Theorem 6 ([10]) Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued θ -contraction

with θ ∈ Ξ . Then T has a fixed point.

In the present paper, we give a new generalization of Mizoguchi and Takahashi’s result using this new

approach for multivalued mappings. We will consider the contractive constant k as a function of d(x, y) in

(1.6) and therefore we will introduce a new concept called multivalued nonlinear θ -contraction. Later, we give

some fixed point results for mappings of this type on complete metric spaces. In a special case, we obtain the

Mizoguchi–Takahashi result. We also give an example showing that our result is a real generalization of the

Mizoguchi–Takahashi result.

2. The results

Let (X, d) be a metric space, T : X → CB(X), and θ ∈ Θ. Then we say that T is a multivalued nonlinear

θ -contraction if there exists a function k : (0,∞) → [0, 1) such that

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]k(d(x,y)), (2.1)

for all x, y ∈ X with H(Tx, Ty) > 0.

If k ∈ [0, 1) is a constant, then T is a multivalued θ -contraction, and also, if θ(t) = e
√
t , then T is a

multivalued contraction.

Our first result is connected to mapping T : X → K(X). For this, we will use the following lemma:

Lemma 1 Let (X, d) be a metric space and A be compact subset of X . Then, for x ∈ X, there exists a ∈ A

such that d(x, a) = d(x,A) .

Theorem 7 Let (X, d) be a complete metric space and T : X → K(X) be a multivalued nonlinear θ -

contraction. Then T has a fixed point provided that

lim sup
t→s+

k(t) < 1, ∀s ∈ [0,∞) (2.2)

holds.

Proof Suppose that T has no fixed point, i.e. d(x, Tx) > 0 for all x ∈ X. Let x0 ∈ X and x1 ∈ Tx0 . Since

0 < d(x1, Tx1) ≤ H(Tx0, Tx1), then from (θ1) and using (2.1), we get

θ(d(x1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]
k(d(x0,x1)) . (2.3)

Since Tx1 is compact, then from Lemma 1 there exists x2 ∈ Tx1 such that d(x1, x2) = d(x1, Tx1). From (2.3),

θ(d(x1, x2)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]
k(d(x0,x1)) .
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By induction, we can find a sequence {xn} in X such that xn+1 ∈ Txn and

θ(d(xn, xn+1)) ≤ [θ(d(xn−1, xn))]
k(d(xn−1,xn)) < θ(d(xn−1, xn)) (2.4)

for all n ∈ N. Thus, by taking into account (θ1), the sequence {d(xn, xn+1)} is decreasing and hence convergent.

From (2.2), there exists b ∈ (0, 1) and n0 ∈ N such that k(d(xn, xn+1)) < b for all n ≥ n0. Thus, we obtain,

for all n ≥ n0 ,

1 < θ(d(xn, xn+1))

≤ [θ(d(xn−1, xn))]
k(d(xn−1,xn))

≤ [θ(d(xn−2, xn−1))]
k(d(xn−2,xn−1))k(d(xn−1,xn))

...

≤ [θ(d(x0, x1))]
k(d(x0,x1))···k(d(xn−2,xn−1))k(d(xn−1,xn))

= [θ(d(x0, x1))]
k(d(x0,x1))···k(d(xn0−1,xn0 ))k(d(xn0 ,xn0+1))···k(d(xn−2,xn−1))k(d(xn−1,xn))

≤ [θ(d(x0, x1))]
k(d(xn0 ,xn0+1))···k(d(xn−2,xn−1))k(d(xn−1,xn))

≤ [θ(d(x0, x1))]
b(n−n0)

.

Thus, we obtain

1 < θ(d(xn, xn+1)) ≤ [θ(d(x0, x1))]
b(n−n0)

(2.5)

for all n ≥ n0. Letting n → ∞ in (2.5), we obtain

lim
n→∞

θ(d(xn, xn+1)) = 1. (2.6)

From (θ2), limn→∞ d(xn, xn+1) = 0+ and so from (θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r = l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit, there exists n0 ∈ N such

that, for all n ≥ n0, ∣∣∣∣θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r − l

∣∣∣∣ ≤ B.

This implies that, for all n ≥ n0,

θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r ≥ l −B = B.

Then, for all n ≥ n0,

n [d(xn, xn+1)]
r ≤ An [θ(d(xn, xn+1))− 1] ,

where A = 1/B.
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Suppose now that l = ∞. Let B > 0 be an arbitrary positive number. From the definition of the limit,

there exists n0 ∈ N such that, for all n ≥ n0,

θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r ≥ B.

This implies that, for all n ≥ n0,

n [d(xn, xn+1)]
r ≤ An [θ(d(xn, xn+1))− 1] ,

where A = 1/B.

Thus, in all cases, there exist A > 0 and n0 ∈ N such that, for all n ≥ n0,

n [d(xn, xn+1)]
r ≤ An [θ(d(xn, xn+1))− 1] .

Using (2.5), we obtain, for all n ≥ n0,

n [d(xn, xn+1)]
r ≤ An

[
[θ(d(x0, x1))]

b(n−n0)

− 1
]
.

Letting n → ∞ in the above inequality, we obtain

lim
n→∞

n [d(xn, xn+1)]
r
= 0.

Thus, there exists n1 ∈ N such that n [d(xn, xn+1)]
r ≤ 1 for all n ≥ n1. Therefore, we have, for all n ≥ n1 ,

d(xn, xn+1) ≤
1

n1/r
. (2.7)

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such that m > n ≥ n1. Using the

triangular inequality for the metric and from (2.7), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=
m−1∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

1

i1/r
.

By the convergence of the series
∞∑
i=1

1
i1/r

, letting to limit n → ∞, we get d(xn, xm) → 0. This yields that {xn}

is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, the sequence {xn} converges to some

point z ∈ X , that is, limn→∞ xn = z.

On the other hand, from (2.1), for all x, y ∈ X with H(Tx, Ty) > 0, we get

H(Tx, Ty) < d(x, y)

and so
H(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X . Then we get

d(xn+1, T z) ≤ H(Txn, T z) ≤ d(xn, z).
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Letting n → ∞ in the above, we obtain d(z, Tz) = 0. This contradicts that T has no fixed point. Thereby,

this completes the proof. 2

As shown in Example 1, we cannot take CB(X) instead of K(X) in Theorem 7. However, by adding the

condition (θ4) on θ , we can give the following:

Theorem 8 Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued nonlinear θ -

contraction with θ ∈ Ξ . Then T has a fixed point provided that the condition (2.2) holds.

Proof Suppose that T has no fixed point, i.e. d(x, Tx) > 0 for all x ∈ X. Let x0 ∈ X and x1 ∈ Tx0 . Since

0 < d(x1, Tx1) ≤ H(Tx0, Tx1), then from (θ1) and using (2.1), we get

θ(d(x1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]
k(d(x0,x1)) . (2.8)

From (θ4), we can write

θ(d(x1, Tx1)) = inf
y∈Tx1

θ(d(x1, y))

and so from (2.8) we have

inf
y∈Tx1

θ(d(x1, y)) ≤ [θ(d(x0, x1))]
k(d(x0,x1)) (2.9)

< [θ(d(x0, x1))]
√

k(d(x0,x1)) .

Then, from (2.9), there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ [θ(d(x0, x1))]
√

k(d(x0,x1)) .

By induction, we find a sequence {xn} in X such that xn+1 ∈ Txn and

θ(d(xn, xn+1)) ≤ [θ(d(xn, xn−1))]
√

k(d(xn ,xn−1))

for all n ∈ N. The rest of the proof can be completed as in the proof of Theorem 7. 2

By considering θ(t) = e
√
t and k(t) =

√
α(t) in Theorem 8, we can obtain the following corollary, which

is the famous Mizoguchi–Takahashi fixed point result for multivalued nonlinear contractions:

Corollary 1 (Mizoguchi–Takahashi) Let (X, d) be a complete metric space. Suppose that T : X → CB(X)

satisfies

H(Tx, Ty) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X , x ̸= y , where α : (0,∞) → [0, 1) satisfying lim supt→s+ α(t) < 1 for all s ∈ [0,∞) . Then T

has a fixed point.

The following provided nontrivial example shows that the investigation of this paper is significant.

Example 2 Consider the complete metric space (X, d) , where X = { 1
n : n ∈ N} ∪ {0} and

d(x, y) =

 0 , x = y

max {x, y} , x ̸= y
.
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Define a mapping T : X → CB(X) by

Tx =


{0} , x = 0{

0, 1
n+1 ,

1
n+2 , · · ·

}
, x = 1

n , n ∈ N
.

We claim that T is multivalued nonlinear θ -contraction with θ(t) = e
√
tet and k : (0,∞) → [0, 1) defined by

k(t) =


√
e

1
n+1−

1
n , if t = 1

n for n ∈ N

0 , otherwise

.

It is clear that lim supt→s+ k(t) = 0 < 1 for all s ∈ [0,∞) . Observe that taking θ(t) = e
√
tet , the

contractive condition (2.1) turns to

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤ [k(d(x, y))]

2
.

In fact, if x = 1
n and y = 1

m with m > n , then

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤

1
n+1
1
n

e
1

n+1−
1
n

≤ e
1

n+1−
1
n

= k2(
1

n
)

= k2(d(x, y)),

and if x = 1
n and y = 0 , then

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤

1
n+1
1
n

e
1

n+1−
1
n

≤ e
1

n+1−
1
n

= k2(
1

n
)

= k2(d(x, y)).

This shows that T is a multivalued nonlinear θ -contraction, and therefore all conditions of Theorem 8 are

satisfied and so T has a fixed point.

Now we show that Mizoguchi and Takahashi’s result cannot be applied to this example.

Suppose that there exists a function α : (0,∞) → [0, 1) satisfying (1.2) and (1.3). Then, for x = 0 and

y = 1
n , we get

H(Tx, Ty) =
1

n+ 1
and d(x, y) =

1

n
,
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and so we obtain
H(Tx, Ty) ≤ α(d(x, y))d(x, y)

or
n

n+ 1
≤ α(

1

n
).

Taking the limit supremum as n → ∞ in above, we have

1 ≤ lim sup
n→∞

α(
1

n
) ≤ lim sup

t→0+
α(t) < 1,

which is a contradiction.
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