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Abstract: Let R be a commutative ring with identity. We use Γ(R) to denote the comaximal ideal graph. The vertices

of Γ(R) are proper ideals of R that are not contained in the Jacobson radical of R , and two vertices I and J are

adjacent if and only if I + J = R . In this paper we show some properties of this graph together with the planarity and

perfection of Γ(R) .
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1. Introduction

For the sake of completeness, we explain some definitions and points used throughout this paper. A graph with

vertex set V is said to be a graph on V . The vertex set of a graph G is referred to as V (G) and its edge

set as E(G). Let v be a vertex of G . The neighbourhood of v is the set NG(v) = {u ∈ G|vu ∈ G} . For

a graph G , the degree of a vertex v in G , deg(v), is the number of edges of G incident with v . A graph

G is said to be connected if there is at least one path between every pair of vertices in G and the distance

between two vertices v and w , d(v, w), is the length of the shortest path connecting them. The diameter of a

connected graph is the maximum of the distances between vertices. A loop of G is an edge that joins a vertex

to itself. Multiple edges are two or more edges connecting the same two vertices within a multigraph . A

simple graph is an unweighted, undirected graph containing no loops or multiple edges . A connected acyclic

graph is called a tree . Acyclic graphs are usually called forests . A graph in which each pair of distinct

vertices is joined by an edge is called a complete graph . We denote by Kn a complete graph with n vertices. A

complete bipartite graph is a bipartite graph (i.e. a set of graph vertices decomposed into two disjoint sets X

and Y such that no two graph vertices within the same set are adjacent) such that all pairs of graph vertices in

the two sets are adjacent. We denote by Kn,m a complete bipartite graph with |X| = n and |Y | = m . We define

a coloring of G to be an assignment of colors to the vertices of G , one color to each vertex, so that adjacent

vertices are assigned distinct colors. If n colors are used, then the coloring is referred to as n − coloring . If

there exists n− coloring of G , then G is called n− colorable . The minimum n for which G is n− colorable

is called the chromatic number of G , and is denoted by χ(G). A subset S of the set of vertices of G is said

to be a clique in G if every pair of distinct elements x and y of S is adjacent in G . The clique number of

G is the maximum of the cardinality of all cliques in G and is denoted by clique(G). The complement of
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G , G , is the graph with the same vertex-set as G , where two distinct vertices are adjacent whenever they are

nonadjacent in G . A graph is said to be planar if it can be drawn in the plane so that its edges intersect only

at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing

edges by paths. Kuratowski’s theorem says that a graph is planar if and only if it contains no subdivision of

K5 or K3,3 [1, Theorem 4.4.6]. A subgraph of G is a graph H such that V (H) ⊆ V (G), E(H) ⊆ E(G). The

subgraph of G induced by a subset S of vertices of G is the subgraph whose vertex set is S and whose edges

are all the edges of G with both ends in S [5]. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint

vertices set Vi and edges set Ei . The union of G1 and G2 is denoted by G = G1∪G2 with vertices set V1∪V2

and edges set E1 ∪ E2 . The join of G1 and G2 is denoted by G = G1 ∨G2 with vertices set V1 ∪ V2 and the

set of edges is E1 ∪ E2 ∪ {xy|x ∈ V1 and y ∈ V2} .
From now on let R be a commutative ring with identity. In [4], Sharma and Bhatwadekar defined a

graph on R , with vertices as elements of R , where two distinct vertices a and b are adjacent if and only if

Ra+Rb = R .

Later, Maimani et al. [2] studied the graph structure defined by Sharma and Bhatwadekar and named

such graph structure ”Comaximal Graphs”. They considered the subgraph of Sharma’s graph, Γ2(R), which

consists of nonunit elements.

In [6], Ye and Wu defined comaximal ideal graph, Γ(R), with vertices as proper ideals of R that are not

contained in the Jacobson radical of R , and two vertices I and J are adjacent if and only if I + J = R .

Some results of this paper for the graph Γ(R) are similar to the results in [3] for the graph Γ2(R)\J(R).

In this paper, we consider some properties of Γ(R) and we investigate the planarity and perfection of

this graph.

2. Properties of Γ(R)

Let J(R) be Jacobson radical of R . R is said to be local if it has a unique maximal ideal. Let Max(R) be the

set of maximal ideals of R and |Max(R)| denote the number of maximal ideals of R . For any maximal ideal

M of R , M denotes the set of nonzero ideals contained in M and |M| denotes the number of ideals contained

in M .

In [6], Ye and Wu showed that Γ(R) has distance of at most 3. In what follows, first we characterize the

cases in which two vertices have distance 1, 2, or 3. For any ideal I of R , let

M(I) = {M ∈ Max(R) : I ⊆ M}.

Lemma 2.1 The elements I and J are adjacent in Γ(R) if and only if there does not exist a maximal ideal

M that contains both of them, that is,

{I, J} ∈ E(Γ(R)) ⇐⇒ M(I) ∩M(J) = ∅.

Proof Assume I, J ⊆ M , where M ∈ Max(R); then I + J ⊆ M and so I and J cannot be adjacent.

Conversely, if I and J are not adjacent, then I + J is a proper ideal of R ; hence there exists a maximal ideal

M such that I + J ⊆ M , and therefore M(I) ∩M(J) ̸= ∅. 2
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Theorem 2.2 ([6], Theorem 2.4) For a ring R , Γ(R) is a simple, connected graph with diameter less than or

equal to three.

Proposition 2.3 Let G = Γ(R) and I, J,K ∈ G be distinct elements. Then the following are equivalent:

(a) K ∈ NG(I) ∩NG(J) ;

(b) K ∈ NG(IJ) ;

(c) K ∈ NG(I ∩ J) .

Proof (a)⇒(b): Suppose K ∈ NG(I)∩NG(J). Then K+I = R = K+J . Thus k1+ i = 1 and k2+j = 1 for

some k1, k2 ∈ K, i ∈ I , and j ∈ J . Therefore, 1 = ij+ ik2+ jk1+k1k2 , which implies that IJ+K = R . Hence

K ∈ NG(IJ). (b)⇒(c): Assume K + IJ = R . As IJ ⊆ I ∩ J , and so K + (I ∩ J) = R and K ∈ NG(I ∩ J).

(c)⇒(a): If K+(I∩J) = R , then K+I = R and K+J = R , which means that K ∈ NG(I) and K ∈ NG(J).

Thus K ∈ NG(I) ∩NG(J). 2

Theorem 2.4 Let G = Γ(R) and I, J ∈ G be distinct elements. Then the following hold.

(a) d(I, J) = 1 if and only if M(I) ∩M(J) = ∅ .
(b) d(I, J) = 2 if and only if M(I) ∩M(J) ̸= ∅ and IJ ⊈ J(R) .

(c) d(I, J) = 3 if and only if M(I) ∩M(J) ̸= ∅ and IJ ⊆ J(R) .

Proof (a): By Lemma 2.1. (b): Assume that d(I, J) = 2. Then M(I) ∩M(J) ̸= ∅ , by Lemma 2.1 and there

is a K in Γ(R) such that K ∈ NG(I) and K ∈ NG(J). Thus K ∈ NG(IJ), by Proposition 2.3, which implies

that deg(IJ) > 0. Therefore IJ ⊈ J(R), by [6,Proposition 2.1(2)]. Conversely, if IJ ⊈ J(R), then deg(IJ) > 0

and there is a K in Γ(R) such that K + IJ = R . Again according to Proposition 2.3, K ∈ NG(I) ∩NG(J).

Since M(I) ∩M(J) ̸= ∅ , d(I, J) > 1. Thus d(I, J) = 2.

(c): According to Theorem 2.2 and (b), d(I, J) = 3 if and only if M(I) ∩M(J) ̸= ∅ and IJ ⊆ J(R). 2

In what follows, we investigate the condition that Γ(R) is a planar graph.

Lemma 2.5 If Γ(R) is planar, then |Max(R)| ≤ 4 .

Proof Assume to the contrary that |Max(R)| ≥ 5. Let M1, ...,M5 be distinct maximal ideals of R . As every

two maximal ideals are comaximal, K5 is a subgraph of Γ(R). Therefore Γ(R) is not planar, by Kuratowski’s

theorem, which is a contradiction. Hence |Max(R)| ≤ 4. 2

If |Max(R)| = 1, then Γ(R) is an empty graph, by [6, Proposition 2.1(1)] and it is planar. Suppose that

|Max(R)| = 2. Then Γ(R) is a complete bipartite graph, by [6,Lemma 4.1]. Thus Γ(R) is planar if and only

if |M1\M2| ≤ 2 or |M2\M1| ≤ 2. Otherwise it has K3,3 as a subgraph and so it is not planar.

Assume that |Max(R)| = 3 and M1,M2 , and M3 are distinct maximal ideals of R . Set Vi :=

Mi\
∪

j ̸=i Mj , Vi1i2 := (Mi1

∩
Mi2)\Mj for j ̸= i1, i2 and 1 ≤ i1 < i2 ≤ 3. It is obvious that |Vi| ≥ 1, since

Mi ∈ Vi .

By the above notations, we have the following theorem.

Theorem 2.6 Assume that |Max(R)| = 3 . Then Γ(R) is planar if and only if one of the following conditions

hold.

(a) For only one Vi , |Vi| ≥ 3 and for j ̸= i , |Vj | = 1 . Moreover, Vjk = ∅ for distinct j, k , where

1 ≤ j, k ≤ 3 .

(b) |Vi| = 2 for all 1 ≤ i ≤ 3 , and Vij = ∅ for all 1 ≤ i < j ≤ 3 .
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(c) |Vi| = |Vj | = 2 , |Vk| = 1 with {i, j, k} = {1, 2, 3} and Vki = ∅ or Vkj = ∅ .
(d) There exists only one Vi with |Vi| = 2 and |Vj | = 1 for all j ̸= i , where 1 ≤ i, j ≤ 3 .

(e) |Vi| = 1 for all 1 ≤ i ≤ 3 .

Proof (⇐): Recall that each ideal in Vi is adjacent to all ideals of Vj , j ̸= i , and all ideals in Vjk , j ̸= i and

k ̸= i , by the definition of Γ(R). There is no edge between ideals of Vi and Vik . There is also no edge between

an ideal of Vik and an ideal of Vjk . According to the given conditions, in all cases, graphs can be drawn in the

plane. See Figures 1–5.

Figure 1. Figure 2.

Figure 3. Figure 4.

Figure 5.

Figure 1. (a). |V1| ≥ 3, |V2| = |V3| = 1, and V23 = ∅ .
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Figure 2. (b). V1 = {I1, J1}, V2 = {I2, J2}, V3 = {I3, J3} , and V12, V13, V23 = ∅ .
Figure 3. (c). V1 = {I1, J1}, V2 = {I2, J2}, V3 = {I3} , and V13 = ∅ .
Figure 4. (d). V1 = {I1, J1}, V2 = {I2}, V3 = {I3} .
Figure 5. (e). V1 = {I1}, V2 = {I2}, V3 = {I3} , and V12, V23, V13 ̸= ∅ .
(⇒): we consider the following cases:

Case 1. If for distinct i and j with 1 ≤ i, j ≤ 3, |Vi|, |Vj | ≥ 3, then we have K3,3 in Γ(R) and so it is

not planar.

Case 2. Let there exist only one Vi such that |Vi| ≥ 3. Without loss of generality, we assume that

|V1| ≥ 3. If |V2 ∪ V3| ≥ 3 or |V2 ∪ V3 ∪ V23| ≥ 3, then K3,3 is the subgraph of Γ(R) and so it is not planar.

Therefore, in this case Γ(R) is planar if |V2| = |V3| = 1 and V23 = ∅ .
Case 3. Assume that |Vi| ≤ 2 for all 1 ≤ i ≤ 3. First suppose that |Vi| = 2 for all 1 ≤ i ≤ 3. Let there

exist Vij , say V12 , such that V12 ̸= ∅ . Let V1 = {I1, J1}, V2 = {I2, J2}, V3 = {I3, J3} , and K ∈ V12 . As each

ideal in Vi is adjacent to all ideals of Vj for i ̸= j , and all ideals in Vjk for j, k ̸= i , Γ(R) has a subdivision of

K3,3 (Figure 6) and it is not planar. Therefore in this case |Vi| = 2 and Vij = ∅ for all distinct i and j .

Figure 6. Figure 7.

Now let without loss of generality, |V1| = |V3| = 2 and |V2| = 1. Let V12, V23 ̸= ∅ , V1 = {I1, J1}, V2 =

{I2}, V3 = {I3, J3} , I ∈ V12 , and J ∈ V23 . Then the subgraph generated by {I1, J1, I2, I3, J3, I, J} is a

subdivision of K5 as shown in Figure 7. Therefore Γ(R) is not planar.

At the end, let for a unique Vi , |Vi| = 2 and |Vj | = 1 for 1 ≤ j ̸= i ≤ 3 or |Vi| = 1 for all 1 ≤ i ≤ 3. It

is obvious that in these cases Γ(R) is planar. 2

Now suppose that |Max(R)| = 4. Set Vi := Mi\
∪

j ̸=i Mj , Vi1i2 := (Mi1

∩
Mi2)\

∪
j ̸=i1,i2

Mj , Vi1i2i3

:= (Mi1

∩
Mi2

∩
Mi3)\Mj for j ̸= i1, i2, i3 , 1 ≤ i, j ≤ 4, where 1 ≤ i1 < i2 < i3 ≤ 4.

Theorem 2.7 Assume that |Max(R)| = 4 . Then Γ(R) is planar if and only if one of the following conditions

hold.

(a) There exists only one Vi with |Vi| = 2 . Also Vjk = ∅ and Vjkl = ∅ for distinct 1 ≤ i, j, k, l ≤ 4 .

(b) |Vi| = 1 for all 1 ≤ i ≤ 4 .

Proof (⇐): Note that each ideal in Vi is adjacent to all ideals of Vj for 1 ≤ i ̸= j ≤ 4, all ideals in Vjk

for 1 ≤ j, k ̸= i ≤ 4, and all ideals in Vjkl for 1 ≤ j, k, l ̸= i ≤ 4, according to the definition of Γ(R). Similar

to Theorem 2.6, in the conditions (a) and (b) of the theorem, we can draw the figure of Γ(R) as Figure 8 and

Figure 9. Hence Γ(R) is planar.
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Figure 8. Figure 9.

Figure 8. (a). V1 = {I1, J1}, V2 = {I2}, V3 = {I3}, V4 = {I4}, V12, V13, V14, V123, V124, V134 ̸= ∅ , and
V23, V24, V34, V234 = ∅ .

Figure 9. (b). V1 = {I1}, V2 = {I2}, V3 = {I3}, V4 = {I4} , and V12, V13, V14, V23, V24, V34, V123,

V124, V134 , V234 ̸= ∅ .
(⇒): Assume that for some i with 1 ≤ i ≤ 4, |Vi| ≥ 2. Let |V1| ≥ 2. We have the following cases:

Case 1. Let for some j with 2 ≤ j ≤ 4, |Vj | ≥ 2. Without loss of generality, let |V2| ≥ 2. Then we have

the subdivision of K3,3 in Γ(R), where V1 = {I1, J1}, V2 = {I2, J2}, K ∈ V3 , and L ∈ V4 . Hence Γ(R) is not

planar.

Case 2. Assume that for only one Vi , |Vi| = 2, |Vj | = 1, for all 1 ≤ j ̸= i ≤ 4 and for some 1 < j < k ,

Vjk ̸= ∅ . Let i = 1 and V24 ̸= ∅ or V234 ̸= ∅ . If V24 ̸= ∅ , then Γ(R) has the subdivision of K3,3 , where

V1 = {I1, J1}, V2 = {I2}, V3 = {I3}, V4 = {I4} , and I ∈ V24 (Figure 10). Hence Γ(R) is not planar. Now let

V234 ̸= ∅, V1 = {I1, J1}, V2 = {I2}, V3 = {I3}, V4 = {I4} , and I ∈ V234 . Then Γ(R) has the subdivision of K5

(Figure 11). Thus Γ(R) is not planar. 2

Figure 10. Figure 11.

3. Perfect comaximal ideal graph of a commutative ring

In this section, we investigate the perfection of Γ(R). Firstly we recall some definitions and notations on perfect

graphs.

Definition 3.1 ([1]) A graph G is perfect if for every induced subgraph H of G , χ(H) = clique(H) .
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Definition 3.2 ([1]) A graph is chordal (or triangulated) if each of its cycles of length at least 4 has a chord,

i.e. if it contains no induced cycles other than triangles.

([1]) Let G be a graph with induced subgraphs G1 and G2 such that G = G1 ∪G2 . Let S = G1 ∩G2 ;

we say that G arises from G1 and G2 by pasting these graphs together along S (Figure 12).

Figure 12.

Proposition 3.3 ([1], Proposition 5.5.1) A graph is chordal if and only if it can be constructed recursively by

pasting along complete subgraphs, starting from complete graphs.

Proposition 3.4 ([1], Proposition 5.5.2) Every chordal graph is perfect.

([1]) Complete graphs, empty graphs, and complete k -partite graphs are perfect.

([1]) If G is obtained from two chordal graphs G1 and G2 by pasting them together along a complete

subgraph S , then G is chordal.

Theorem 3.5 ([1], Berge 1966) A graph G is perfect if and only if neither G or G contains an odd cycle of

length at least 5 as an induced subgraph.

Theorem 3.6 If |Max(R)| ≤ 4 , then Γ(R) is a perfect graph.

Proof Case 1. Let R be a local ring. Then Γ(R) is an empty graph, by [6, P roposition 2.1(1)] and so it is

perfect.

Case 2. Assume that R has only two maximal ideals. Then Γ(R) is a complete bipartite graph and so

it is perfect.

Case 3. Let |Max(R)| = 3. We show that Γ(R) is chordal. Let Vi and Vij be defined as in Section 2.

The connection between these sets is as Figure 13.

Figure 13. Vi ’s are independent of each other and Vjk too, j ̸= i and k ̸= i , each Vi is a complete graph, by the

definition of Γ(R) .
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Consider G1 = Γ(R)[V1 ∪ V12 ∪ V13] and G2 = Γ(R)[V3 ∪ V13 ∪ V23] . Both G1 and G2 are complete

graphs. G′ arises from G1 and G2 by pasting these graphs together along S = Γ(R)[V13] . Thus G′ is a chordal

graph, since Γ(R)[V13] is complete. Now define G′′ = Γ(R)[V2∪V12∪V23] . Then G′′ is a complete graph. Γ(R)

arises from G′ and G′′ by pasting these graphs together along S = Γ(R)[V12 ∪ V23] . Since Γ(R)[V12 ∪ V23] is

complete, Γ(R) is a chordal graph and so it is perfect.

Case 4. Suppose that |Max(R)| = 4. We show that Γ(R) is chordal. Consider Vi , Vij , and Vijk as in

Section 2.

Let G denote the induced subgraph of Γ(R) generated by V1∪V2∪V3∪V4∪V12∪V13∪V14∪V23∪V24∪V34 .

G is denoted in Figure 14.

We show that this graph has no odd cycle of length at least 5 as an induced subgraph. Assume to the

contrary that there is an induced 5-cycle, C , in graph G . Let there exist two vertices I and J , one in Vi and

the other in Vj in C . Without loss of generality, let I ∈ V1 , J ∈ V2 and the neighbour of J be in V13 or in

V14 . If K ∈ V13 and JK ∈ E(C), every neighbour of K is in V4 or V24 , which are joined to I . Thus C has a

chord, which is a contradiction. A similar case will occur if K ∈ V14 .

Now let C have only one vertex from
∪4

i=1 Vi . Without loss of generality, assume that I ∈ V1 , I ∈ C ,

J ∈ V23 is adjacent vertex of I in C and C : I − J −K −L−M − · · · . If K ∈ V14 , then L ∈ V2 or V3 . Thus

IL ∈ E(C) is a chord in C , which is a contradiction. If K ∈ V4 , then IK ∈ E(C) is a chord, a contradiction.

Therefore C has no vertex in
∪4

i=1 Vi . However, the induced subgraph of
∪

1≤i<j≤4 Vij , G , is a forest and has

no cycle and so G is perfect. Now Γ(R) is the graph shown in Figure 15.

Figure 14. Figure 15.

It is obvious that Γ(R) has no odd cycle of length at least 5 as an induced subgraph. Thus Γ(R) is

perfect. 2

For |Max(R)| ≥ 5, maybe Γ(R) is not perfect.

Example 3.7 Consider the ring R = Z2310 with Max(R) = {M1 =< 2 >,M2 =< 3 >,M3 =< 5 >,M4 =<

7 >,M5 =< 11 >} and < 6 >∈ V12, < 15 >∈ V23, < 35 >∈ V34, < 77 >∈ V45, < 22 >∈ V15 .

Clearly, the above ideals are distinct and they are not contained in J(R). It is easy to check that the

subgraph G of Γ(R) induced on {< 6 >,< 15 >,< 35 >,< 77 >,< 22 >} is a C5 . Therefore, Γ(R) is

imperfect.
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Now we give the main result on Γ(R).

Corollary 3.8 If Γ(R) is planar, then Γ(R) is also perfect.

Proof By Lemma 2.5 and Theorem 3.6. 2

The converse of the above corollary does not hold in general.

Example 3.9 Consider the ring R = Z36 . Clearly Max(R) = {< 2 >,< 3 >} with | < 2 > \ < 3 > | ≥ 3

and | < 3 > \ < 2 > | ≥ 3. Then Γ(R) is perfect but it is not planar, since it has a subdivision of K3,3 .
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