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Abstract: This article develops global regularity criteria for unsteady and magnetohydrodynamic flow of third grade

fluid in terms of bounded mean oscillations. Uniqueness of the solution is also verified.
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1. Introduction

Non-Newtonian materials are now well recognized by scientists and engineers due to their industrial and
technological applications. Several biological liquids also exhibit the rheological characteristics of non-Newtonian
materials. Such materials having a magnetohydrodynamic character play a pivotal role in polymer processing,
treatment of hyperthermia, cancer therapy, and many other fields. It is, however, well known that the flow of
non-Newtonian fluids cannot be addressed by using the classical Navier—Stokes equations. This is because of
their viscoelastic features in addition to the viscosity. Different non-Newtonian fluids have distinct rheological
properties. Hence, several constitutive equations have been recommended for the flow analysis of non-Newtonian
materials. The non-Newtonian fluids in general are classified into differential, rate, and integral categories.
Several investigators in the field have chosen the simplest subclass of second grade fluid. The information about
the flows of second grade fluid at present is quite sizeable. A few representative recent contributions in this
direction can be seen in [1, 2, 4, 16, 17, and several references therein]. Note that second grade fluid cannot
predict the stress relaxation and retardation time effects. Hence, the Maxwell fluid model is employed for stress
relaxation time while an Oldroyd-B fluid captures both the stress retardation times (see [3, 9, 11-15, 20, 22, 23]

for details).

Although the second grade fluid model is able to predict the normal stress effects, it does not capture
the shear thinning and shear thickening properties that many materials show. Having such limitations in mind,
researchers now prefer the third grade model. The third grade model predicts the shear thinning and shear
thickening features. The equation of motion for even unidirectional flow of the third grade model is nonlinear,
which is not the case in second grade fluid. Despite such complexities, recent workers in the field studied the

flows of third grade fluid for different configurations and aspects (see [1, 57, 19]).
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2. Mathematical model and analysis

We consider the flow of an incompressible third grade fluid in an annular region. The fluid is conducting in
the presence of an applied magnetic field By. The magnetic Reynolds number is taken to be small and thus
the induced magnetic field is neglected. Moreover, the effect of the electric field is not considered. The present

fundamental equations that govern the flow are:

divV =0, (2.1)

av o
pg = dwT + J x BQ, (22)

in which V is the velocity field, p the density of fluid, and % material time differentiation. The taken Cauchy

stress tensor (T') for third grade fluid is [1, 57, 19]:
T = —pl + (1 + Bstr(A2) Ay + a1 Ay + az A2, (2.3)

Fosdick and Rajagopal [10] presented the thermodynamic analysis for the constitutive equation of third grade
fluid. They found that all the fluid motions compatible with thermodynamics satisfy the Clausius—Dhem

inequality provided that the material constants satisfy the following conditions:

ez Oaﬁ?) > 0761 = 62 =0 and |041 +062‘ < V 24/-1/63

Here the specific Helmholtz free energy is minimum when the fluid is locally at rest. Note that the above

conditions are necessary to determine the stability properties of flow. The first two Rivlin—Ericksen tensors are

Ay = (gradV) + (gradV)7T, (2.4)
_ dA; _ _ I
Ay = T + Ay (gradV') + (gradV)" A;. (2.5)

Here p is the pressure, I the identity tensor, T the matrix transpose, and .J the current density. Now
JxB = —oBV, (2.6)
in which o is electrical conductivity of the fluid. The velocity field for the present flow is

V =w(rt)e,. (2.7)

The above equation satisfies the continuity equation (2.1). By Egs. (2.2), (2.6), and (2.7), we have in the

absence of a modified pressure gradient:

ow uow  pow ow ,0%w 283 /Ow\3
o = o e TG GE ()

a1 OPw a1 0w

— — oBjw. 2.
rorol | orzar 000" (28)
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The relevant conditions are prescribed as follows:

w(r,t) = 0 at r=Ry
w(r,t) = Wi, at r=R;
w(r,0) = wo(r), (2.9)

in which wg(r) is the initial velocity field, W7 is constant velocity, and Rog and R; are the radii of inner and
outer cylinder, respectively.

The aim of our research is to prove the existence of a global classical solution of third grade fluid in terms
of the bounded mean oscillation (BMO) norm. For this purpose we apply the procedure followed in the recent
attempts [18, 25, 26] and obtain the bounded velocity and vorticity. BMO denotes the homogeneous space of
BMOs associated with the norm

1 1
[fllgpo = sup = fW) = === /(2)|dz| dy.
BMO T o0 [Be(@)] J, () |Br ()] JB, )
For the details of BMO spaces, we refer readers to [23].
Let us recall the following Lemma (see [3]):
Lemma 1 Let 1 < g <p < oco; then
~ 1—49 q
[ull Lo < Cllullpaio lullZa
where C' is a constant. Our main results are:
Theorem 1 Assuming uo € H*(Q) and ||wl|7 llgll HB—“’H2 ‘@ ’ and ‘i‘g ’ are
BMO BMO> \arliBymor ||or| guyo’ 7% || gyro

sufficiently small then the system of (2.8) and (2.9) has a unique global classical solution w(r,t) on (0,T),
where g =V x V = -2 and Q = [Ro, Ry].

3. Proof of Theorem 1

For proving Theorem 1, we need the following propositions.

" X . : 2 2 dw |2 99
Proposition 1 If w is the solution of (2.8) and (2.9) with |w|zy0, 9500 > ||3—7“:HBMO, and ‘ || saro
being sufficiently small, then velocity w and vorticity g =V x V = —%—’: satisfy

2 2
2 ow ) 2 8w0
su w72 + a1 || = < C ( w +aq || —=— )
s (el +on |50 ) < Gafpluolis +ar| 2| ),
2 g ? 2 990 ?
sup <p||g||L2 + o I ) < C(p||go|\L2 + o e ), on [0,7T]
0<t<T 7| 12 Tl L2

in which C1 and C' depend on T.
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Proof We assume that the solution of (2.8) is given by
w(r,t) = e “F(r). (3.1)

Taking the inner product of (2.8) with w, and using integration by parts, we arrive at

P2 wpar = —p [ (22 /E‘lw /%aw"‘
2 Qat|w| dr = M/Q(ar) dr+p Qrardr—i_(wz)’ QwBTQ((‘?r) dr
ow w 0%w Ow 0w
* 2ﬂ3/sz?(ar> d’"”‘l/g?aratdr_o‘l o or orar

UBS/ lw|?dr,
Q

Dz, < -2 /’w‘2d+/3w2d+l
Pag "z = “mm MQT T“Qar rTa
+ 28 dr+2a v az—w dr
3 ! 0 31"8t
0 /0w 2
- Oq/Q 875(8 ) dr —QO'Bg ||UJHL2
2 4 ow It
< MH +u/’9‘ dr+11+53/‘9’ dr + 38 || 22
or L2 Qlr ol'r or L4
w 2w d ||ow|? 9
2 ‘ ‘ dr — o S |22~ 20B2 7 3.2

where we used Young’s inequality. Using integration by parts of I;, we have

4

=25 37“

L4

From (3.1), we obtain

dr

2&1/ ‘w’

w ‘

arar|

2o [ |75

oqa/‘—’ dr + aqa

)

L2

T
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where we used Young’s inequality. Therefore, Eq.(3.2) becomes

d ow 2 w |2
) < - —| d
dt(p”wHL T or Lz) - (ala H or || 2 (u—i—ala)/ﬂlr‘ "
’LU4 2 2
i ,83/ =] ar + s — 2082 w2
Qlr L4
< (o) |2+ (s ann)e [ ]o
- 87" 2 Q
4 4
+ B5C5 [ |6 dr + B5 —20B2 w3 .
Q L4

. . 2 .
Since O;w = %%—f, and + 2 |w| |%—':| and el after using Young’s

inequality we have:

2

d ow||? 9 ow
= (pllwlze + a1 | 52 Lz) < (3u-%3a1a—-2033)HumLz+—2a1a arl .
aw
+ 253 HU’HL4 + B3
L4
2
< <3u +3aja — 2033) Hw||2LQ + 2010 o
,
ow ow||?
b 20 ol ol + 20 |22 %]
BMO

are sufficiently small, we can choose 235C ”w”QBMO <

where we used Lemma 1. Since ||w||?3MO and ||‘Z,—‘:||2BMO

CQ and BgCH

HBMO < O3, and therefore we obtain

d Gw 9 2 aw
<
pr (p ||w||L2 + o = ) (3u +3a1a — 2085 + CQ) lw||7= + (Qala + 03) o
< | H ;U
w + «
P L2 1 r |

where (3,u + 3aia — 20B§ + 02) < p and (2@1(1 + Cg) < «1. Using Gronwall’s inequality, we have

2

(plwts +an [ 22 ) < u (ol +a | 222 )

su w @ w o1 ||— ,

ogth P L2 1 or )= 1{pllwoll g2 1 ar Lo

where C7 depends on T. O

From (2.8) and (2.9), the vorticity g satisfies the following equations:

dg 1g by 1 dg dg 20%g | 68397 dg
. R AR | - J -7
pat or? + r Or + 12839 ( r) +68s(9) Oor? + r Or
2 3
Pag” —ﬂ@+alag+a 09 _ ,p2q, (3.3)

72 29t r orot | or2ot
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g(r,t) = 0 at r=Rp
g(r,t) = 0, at r=R;
g(r,0) = go(r).

We assume that the solution of (3.3) is given by

g(r,t) = e *g(r).

By taking the inner product of (3.3) with ¢ and integrating by parts, it follows that

2dt - - =l d Z=dr—6 ‘d
2dt lgllz: H‘ or|| 2 H/Q r rtp o1 or r— 603 ( )? a5 )
g 9% )
_ al/ Tad r+ « /Qrarﬁt _thH O'Bg llgll72
2 4
[ - s
< —Slall -5 5] dr+3 3
-2 ‘ or|| - Q/Q pl o Bs llgllzs +3Bs L
9|99 S
oo /Q ‘7“2 ot r+a1/ 8r8t' 2 dt H —oB; gll-
ara
- Ha (%5 - *)/ |21 dr + 385 g3 + 365 || 22
T L2 »
+ Oéla//ﬂ ; — 7% H O'Bg ||g||i2
< K g 2d 4
: ol * —5) 2] ar+ 383 gl
3 _ == B2 2
+ 38 87" 1 2 dt H —oBqllgll7-
: (e~ H)/ .|| dr + 35 gl
N 87" L2 2/ Jq r L
3 _ == B2 2
+ 30 [“)7“ 4 2 dt H —oBq g7
where we used Young’s inequality, (3.5), and Poincare’s inequality. Since 0;9 = %% and

2] g| +2]g| | 24|, after using Young’s inequality we have

87‘

o4 <
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@2

or

+

o ) < (400 — 20+ e(200 — ) — o B3) g1l

d 2
= (gl

L2

+3B3 |lgll 7« + 385

+ (aa+u+%(2aa—u)> Hgi ;

99
Or||ps
< <40¢a—2,u+e(2aa— )—O‘BO) ||g||L2 (aa—i—,u—i— (204@—

8g 2
or

Jdg
or

+

3650 1912 1913000 + 365C H

)
BMO

. 2
where we used Lemma 1. Since ||g||5,,0 and ‘ %
BMO

o < C5 and therefore we get

2

d
=(elolie +ar| 52| ) = (40a—2u+e(200-p)+Co-oBE) gl
L2
1 ag||”
+ (aa—i—,u—i-f(Qaa— )+C5>‘ J
€ aT L2
g 2
2
< _—Z
< plglfs+or |50

in which 4aa—2u+e(2aa—,u)+04—aB(2)‘ < p and ‘aa—l—u—l—%(Qaa—u)—l—Cg)’ < ay.

Gronwall’s inequality, we obtain

892 2)
L2

or|l;,

990
or

2 2
sup (p lgllze + 1 ) < C(p lgollz2 + a1
0<t<T 2

where C depends on T.

2
Proposition 2 If g is the solution of (3.3) and (3.4) with ||g||129MO, ’% , and ‘
BMO
sufficiently small, then the vorticity g =V x V satisfies
2 2112
R TR
0<t<T ar L2 or? or 2 or? 2

on [0,T] and C depends on gy and T.

734

Har

L2

are sufficiently small, we can choose 33;C ||g||%MO <0y

Now applying

2
8%g

52 being

BMO

(3.6)
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Proof Taking the inner product of (3.3) with — 8r2 and integrating by parts, we get

g 199 0%g / g4
- I g | 2T g4y 99V g
2dt H@r 2 MH@TQ / 2 0r? /QT8T87"2 r 45 Q(@r) "
0%g 9" (99 g (99\?
+ 663/ - dr—QBg/T(a>d+6ﬁ3/r<aT) dr
dg 1 99 0%g /1 0%g 0%g
I (99 g — 90 gy 99,
+ 53/ (6 ) 7"—|—a/ r2 Ot Or? q 1 Otor Or? "
329 g ||”
- a22)12g o B2
2 dt || 0r? o\l or L2
9% g2 19g/? g]*
791 ) < 91" g DI dr + 2885 || 2
Har L2 * or? LQ)_'M/QIW‘ T+H/Q ror 2805 or||

A

4 2
4 gl g 9%g
+ 68sllglLs + 186, /Q 2 ar v 35| 200 /Q 3 %9,

1dg 62 5 || 0g 2
2 29 4r — 2082 || 22
+ aa/ﬂ r 8 8 2 ? 0 87‘ L2
2 (2 9 2
g g 10yg
< o o) ) [ 2
< (6707 a2 L2+ m+ aa o172 r+({u+ aa o |ror T
4 82 89
+ 280 +68s [lgll 74 + 685 +1853 ‘ dr 2053 |
L4 L4 T2
2 1802
< 2 29 —i—(;H—aa)(b/ 0; %‘ dr+(u+aa)08/ 0; g‘ dr
o2 Q r Q ror
dg 82 g\t 2 ||9g]?
+ +6/33 ol + 6 |22+ 188 / 2] ar 203 | %
ar 14 Qlr or || 2
where we used Young’s inequality, (3.5), and Poincare’s inequality. Since 0;9 = %%, and |0; |g|4‘ <
2 dg 1 dg 2 g dg . ;
2|9l ar | 5| ‘ < 41g* +21g/|%2|, and |0; ’C'T) 541|52|, after using Young’s
inequality we have
829 2 9
2 ) < (5u+ saa+ 4885C)
10 - I =1 i E CRE VR [

+ ((,u + Oé(l)C7 + 3(/L + oza)C’s + 1863C9 — 20‘BO H ar

L2

99

2 4

+685 |9l 7 + 2885
L2

4 92

d%g
or?

0%g

ar?

+ <2aa + (p+ aa)Cg> H

L4 L4
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2

&%g
2
< <5u+5aa+485309) lgll?. + <2aa+ (u+aa)cg) ‘ =i

39
+ ((,u + aa)C7 + 3(pu + aa)Cs + 1833Cy — 20B0>

or|| 2

ag|* 1|99 |’ a2g > |192g
+ 665C lgl2 ol +2863CH +6630H ,
v BMO or orllgao or? or? BMO

where we used Lemma 1. Since ||g||QBM

5 e sufficiently small, we can choose 635C Hg||2BMO <

2
Cho, 28530‘ a—g < C11, and 603 gig < (42 and therefore we get
BMO BMO
0%g 2 2
=9 ) < (5u + 5aa + 4885Co + 010) lgll?. + ((u + aa)Cr + 3(u + aa)Cs
87“ L2 a'r L2
dg 2 0%g 2
2
+ Ci1 — QO'BO) Har L + (20&& + (M + aa)C'g + 012) Har?
< (5u+5aa+ 435Cs + Cuo) gl *”H H al

where (14 aa)Cr +3(pu+aa)Cs+Cip —20B2 < p and 2aa+ (pu+ aa)Cs + Cia < a. Now applying Proposition

1 and Gronwall’s inequality, we get the required (3.6). O
For the uniqueness we assume that w; and wy are two solutions of (2.8) having the same initial condition.
Therefore:
Oown wo?wy  pOwy Owy 5 0%wy 283 fOw\3
N 2 (2)
"ot T e L e ol W7
a1 82w1 0418 w1 2
— - M 3.7
T S e T o " (3.7)
0 0? 0 Owsy 502 2 0 3
p we  _p 12112+H Wo + 68 wz) 71212 ﬁ( wQ)
ot or r or ar ~ Or r \ Or

%82102 a18 w2
r Orot or2ot

— M?ws. (3.8)

Subtracting (3.8) from (3.7) and letting h = wy; — wa, we have

oh wo*h 1 Oh Owi\ 2 0%w, Ows\ 2 0% ws
"ot T o2 Tror 1O {(87‘) 57 (50 87’2]
253 8w1 3 8’11}2 3 a183h 2
T {( o) (50 ] a2 — 7Bl (39)
h(r,t) = 0 at r= Ry
h(T,t) = 0, at r=R
h(y,0) = O. (3.10)
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2 2 3 3
For the case (851) > (%) and (83“;1) > (85‘7’}) , we have

oh u32 ,uah a10%h Owi\20%h 45 1 Own
+685 () (5

at ar) o T Uy

3
a2
pat - Or? T r or + or2ot ) M. (3.11)

Multiplying (3.11) by h and using integration by parts, we have
pd 2 oh / h Oh a1 0 (0Oh\?2
—— |l < - dr — — d
gt M= = ”’a Florar™ Bt(ar) "

ow, |* 92h 453
+ GBBK)h W 8 2d r /Q

Since w; is the solution of (2.8) and from Proposition 1, we can choose

3
8w1

2
| = M2 ||h)|7. .

(’9’11)1 2 Bwl 3
5 | and ‘Tw | less than or equal

to C, and integrating the fourth term on the right hand side, we get

2

pd 2 7 on|? 7 h
r= < (£ L i
Ll < (2+6ﬁ30)’a L2+<2+4530011> A
051 8 8h 2
- 8t<6r> dr = M7 [l
< —(4+680) oh* + (£ +a00u)C / a4
= 9 3 or Lo 9 3 11 ) L2 o i T
041 6 6h 2
2 () e
where we used Young’s inequality and Poincare’s inequality. Since 0;h = %% and
and after using Young’s inequality, we have
d 2 on||” 2\ |(52
el P < _
(ol +a |5 LQ) < (14C12 +248,0C1iCrz — 2007 B3
+ (W12 + 48500101 = § = 68:0) Ha
< [4uCha + 2485CC1 Oz — 2M3] 11|73
+ ‘,ucm +4B83CC1C12 — 5 — 6530‘ H 5
| 2
oh|?
< plnl? s
< ol +al 5

where ’4/1012 + 2453CC11Cha — 2M2’ < p and ’/,Lclg +483CC11C1o — % — 6530| < «. Applying Grownwall’s

inequality, we obtain

2
2
plIAlLz + o

L2
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which implies that Hh||2L2 = 0; that is, h =0 and w; = ws.

2 2
For the case (aa“j}) < (ag’j?) , subtracting (3.7) from (3.8) and using the same procedure as for the

ow 2 Ow 2
case (8—7}) > ( 67?) , wWe get wy = ws.
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